| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > cdeqal1 | GIF version | ||
| Description: Distribute conditional equality over quantification. (Contributed by Mario Carneiro, 11-Aug-2016.) |
| Ref | Expression |
|---|---|
| cdeqnot.1 | ⊢ CondEq(𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| cdeqal1 | ⊢ CondEq(𝑥 = 𝑦 → (∀𝑥𝜑 ↔ ∀𝑦𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cdeqnot.1 | . . . 4 ⊢ CondEq(𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
| 2 | 1 | cdeqri 2988 | . . 3 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
| 3 | 2 | cbvalv 1942 | . 2 ⊢ (∀𝑥𝜑 ↔ ∀𝑦𝜓) |
| 4 | 3 | cdeqth 2989 | 1 ⊢ CondEq(𝑥 = 𝑦 → (∀𝑥𝜑 ↔ ∀𝑦𝜓)) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 ∀wal 1371 CondEqwcdeq 2985 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 |
| This theorem depends on definitions: df-bi 117 df-nf 1485 df-cdeq 2986 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |