Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > cdeqal1 | GIF version |
Description: Distribute conditional equality over quantification. (Contributed by Mario Carneiro, 11-Aug-2016.) |
Ref | Expression |
---|---|
cdeqnot.1 | ⊢ CondEq(𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
cdeqal1 | ⊢ CondEq(𝑥 = 𝑦 → (∀𝑥𝜑 ↔ ∀𝑦𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cdeqnot.1 | . . . 4 ⊢ CondEq(𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
2 | 1 | cdeqri 2941 | . . 3 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
3 | 2 | cbvalv 1910 | . 2 ⊢ (∀𝑥𝜑 ↔ ∀𝑦𝜓) |
4 | 3 | cdeqth 2942 | 1 ⊢ CondEq(𝑥 = 𝑦 → (∀𝑥𝜑 ↔ ∀𝑦𝜓)) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 104 ∀wal 1346 CondEqwcdeq 2938 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 |
This theorem depends on definitions: df-bi 116 df-nf 1454 df-cdeq 2939 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |