ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfcdeq GIF version

Theorem nfcdeq 2948
Description: If we have a conditional equality proof, where 𝜑 is 𝜑(𝑥) and 𝜓 is 𝜑(𝑦), and 𝜑(𝑥) in fact does not have 𝑥 free in it according to , then 𝜑(𝑥) ↔ 𝜑(𝑦) unconditionally. This proves that 𝑥𝜑 is actually a not-free predicate. (Contributed by Mario Carneiro, 11-Aug-2016.)
Hypotheses
Ref Expression
nfcdeq.1 𝑥𝜑
nfcdeq.2 CondEq(𝑥 = 𝑦 → (𝜑𝜓))
Assertion
Ref Expression
nfcdeq (𝜑𝜓)
Distinct variable groups:   𝜓,𝑥   𝜑,𝑦
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑦)

Proof of Theorem nfcdeq
StepHypRef Expression
1 nfcdeq.1 . . 3 𝑥𝜑
21sbf 1765 . 2 ([𝑦 / 𝑥]𝜑𝜑)
3 nfv 1516 . . 3 𝑥𝜓
4 nfcdeq.2 . . . 4 CondEq(𝑥 = 𝑦 → (𝜑𝜓))
54cdeqri 2937 . . 3 (𝑥 = 𝑦 → (𝜑𝜓))
63, 5sbie 1779 . 2 ([𝑦 / 𝑥]𝜑𝜓)
72, 6bitr3i 185 1 (𝜑𝜓)
Colors of variables: wff set class
Syntax hints:  wb 104  wnf 1448  [wsb 1750  CondEqwcdeq 2934
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1435  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522
This theorem depends on definitions:  df-bi 116  df-nf 1449  df-sb 1751  df-cdeq 2935
This theorem is referenced by:  nfccdeq  2949
  Copyright terms: Public domain W3C validator