ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cdeqab1 GIF version

Theorem cdeqab1 2991
Description: Distribute conditional equality over abstraction. (Contributed by Mario Carneiro, 11-Aug-2016.)
Hypothesis
Ref Expression
cdeqnot.1 CondEq(𝑥 = 𝑦 → (𝜑𝜓))
Assertion
Ref Expression
cdeqab1 CondEq(𝑥 = 𝑦 → {𝑥𝜑} = {𝑦𝜓})
Distinct variable groups:   𝜓,𝑥   𝜑,𝑦
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑦)

Proof of Theorem cdeqab1
StepHypRef Expression
1 cdeqnot.1 . . . 4 CondEq(𝑥 = 𝑦 → (𝜑𝜓))
21cdeqri 2985 . . 3 (𝑥 = 𝑦 → (𝜑𝜓))
32cbvabv 2331 . 2 {𝑥𝜑} = {𝑦𝜓}
43cdeqth 2986 1 CondEq(𝑥 = 𝑦 → {𝑥𝜑} = {𝑦𝜓})
Colors of variables: wff set class
Syntax hints:  wb 105   = wceq 1373  {cab 2192  CondEqwcdeq 2982
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188
This theorem depends on definitions:  df-bi 117  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-cdeq 2983
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator