ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cdeqab1 GIF version

Theorem cdeqab1 3020
Description: Distribute conditional equality over abstraction. (Contributed by Mario Carneiro, 11-Aug-2016.)
Hypothesis
Ref Expression
cdeqnot.1 CondEq(𝑥 = 𝑦 → (𝜑𝜓))
Assertion
Ref Expression
cdeqab1 CondEq(𝑥 = 𝑦 → {𝑥𝜑} = {𝑦𝜓})
Distinct variable groups:   𝜓,𝑥   𝜑,𝑦
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑦)

Proof of Theorem cdeqab1
StepHypRef Expression
1 cdeqnot.1 . . . 4 CondEq(𝑥 = 𝑦 → (𝜑𝜓))
21cdeqri 3014 . . 3 (𝑥 = 𝑦 → (𝜑𝜓))
32cbvabv 2354 . 2 {𝑥𝜑} = {𝑦𝜓}
43cdeqth 3015 1 CondEq(𝑥 = 𝑦 → {𝑥𝜑} = {𝑦𝜓})
Colors of variables: wff set class
Syntax hints:  wb 105   = wceq 1395  {cab 2215  CondEqwcdeq 3011
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-cdeq 3012
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator