ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cdeqab1 GIF version

Theorem cdeqab1 2981
Description: Distribute conditional equality over abstraction. (Contributed by Mario Carneiro, 11-Aug-2016.)
Hypothesis
Ref Expression
cdeqnot.1 CondEq(𝑥 = 𝑦 → (𝜑𝜓))
Assertion
Ref Expression
cdeqab1 CondEq(𝑥 = 𝑦 → {𝑥𝜑} = {𝑦𝜓})
Distinct variable groups:   𝜓,𝑥   𝜑,𝑦
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑦)

Proof of Theorem cdeqab1
StepHypRef Expression
1 cdeqnot.1 . . . 4 CondEq(𝑥 = 𝑦 → (𝜑𝜓))
21cdeqri 2975 . . 3 (𝑥 = 𝑦 → (𝜑𝜓))
32cbvabv 2321 . 2 {𝑥𝜑} = {𝑦𝜓}
43cdeqth 2976 1 CondEq(𝑥 = 𝑦 → {𝑥𝜑} = {𝑦𝜓})
Colors of variables: wff set class
Syntax hints:  wb 105   = wceq 1364  {cab 2182  CondEqwcdeq 2972
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-cdeq 2973
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator