| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > cdeqab1 | GIF version | ||
| Description: Distribute conditional equality over abstraction. (Contributed by Mario Carneiro, 11-Aug-2016.) | 
| Ref | Expression | 
|---|---|
| cdeqnot.1 | ⊢ CondEq(𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | 
| Ref | Expression | 
|---|---|
| cdeqab1 | ⊢ CondEq(𝑥 = 𝑦 → {𝑥 ∣ 𝜑} = {𝑦 ∣ 𝜓}) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | cdeqnot.1 | . . . 4 ⊢ CondEq(𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
| 2 | 1 | cdeqri 2975 | . . 3 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | 
| 3 | 2 | cbvabv 2321 | . 2 ⊢ {𝑥 ∣ 𝜑} = {𝑦 ∣ 𝜓} | 
| 4 | 3 | cdeqth 2976 | 1 ⊢ CondEq(𝑥 = 𝑦 → {𝑥 ∣ 𝜑} = {𝑦 ∣ 𝜓}) | 
| Colors of variables: wff set class | 
| Syntax hints: ↔ wb 105 = wceq 1364 {cab 2182 CondEqwcdeq 2972 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-cdeq 2973 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |