![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > cdeqab1 | GIF version |
Description: Distribute conditional equality over abstraction. (Contributed by Mario Carneiro, 11-Aug-2016.) |
Ref | Expression |
---|---|
cdeqnot.1 | ⊢ CondEq(𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
cdeqab1 | ⊢ CondEq(𝑥 = 𝑦 → {𝑥 ∣ 𝜑} = {𝑦 ∣ 𝜓}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cdeqnot.1 | . . . 4 ⊢ CondEq(𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
2 | 1 | cdeqri 2960 | . . 3 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
3 | 2 | cbvabv 2312 | . 2 ⊢ {𝑥 ∣ 𝜑} = {𝑦 ∣ 𝜓} |
4 | 3 | cdeqth 2961 | 1 ⊢ CondEq(𝑥 = 𝑦 → {𝑥 ∣ 𝜑} = {𝑦 ∣ 𝜓}) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 105 = wceq 1363 {cab 2173 CondEqwcdeq 2957 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1457 ax-7 1458 ax-gen 1459 ax-ie1 1503 ax-ie2 1504 ax-8 1514 ax-10 1515 ax-11 1516 ax-i12 1517 ax-bndl 1519 ax-4 1520 ax-17 1536 ax-i9 1540 ax-ial 1544 ax-i5r 1545 ax-ext 2169 |
This theorem depends on definitions: df-bi 117 df-nf 1471 df-sb 1773 df-clab 2174 df-cleq 2180 df-cdeq 2958 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |