ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iffalse GIF version

Theorem iffalse 3610
Description: Value of the conditional operator when its first argument is false. (Contributed by NM, 14-Aug-1999.)
Assertion
Ref Expression
iffalse 𝜑 → if(𝜑, 𝐴, 𝐵) = 𝐵)

Proof of Theorem iffalse
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 df-if 3603 . 2 if(𝜑, 𝐴, 𝐵) = {𝑥 ∣ ((𝑥𝐴𝜑) ∨ (𝑥𝐵 ∧ ¬ 𝜑))}
2 dedlemb 976 . . 3 𝜑 → (𝑥𝐵 ↔ ((𝑥𝐴𝜑) ∨ (𝑥𝐵 ∧ ¬ 𝜑))))
32abbi2dv 2348 . 2 𝜑𝐵 = {𝑥 ∣ ((𝑥𝐴𝜑) ∨ (𝑥𝐵 ∧ ¬ 𝜑))})
41, 3eqtr4id 2281 1 𝜑 → if(𝜑, 𝐴, 𝐵) = 𝐵)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wo 713   = wceq 1395  wcel 2200  {cab 2215  ifcif 3602
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-11 1552  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-if 3603
This theorem is referenced by:  iffalsei  3611  iffalsed  3612  ifnefalse  3613  ifsbdc  3615  ifcldadc  3632  ifeq1dadc  3633  ifeqdadc  3635  ifbothdadc  3636  ifbothdc  3637  ifiddc  3638  ifcldcd  3640  ifnotdc  3641  2if2dc  3642  ifandc  3643  ifordc  3644  ifnetruedc  3646  pw2f1odclem  7003  fidifsnen  7040  nnnninf  7301  uzin  9763  modifeq2int  10616  seqf1oglem1  10749  seqf1oglem2  10750  bcval  10979  bcval3  10981  swrdccat  11275  pfxccat3a  11278  swrdccat3b  11280  sumrbdclem  11896  fsum3cvg  11897  summodclem2a  11900  sumsplitdc  11951  prodrbdclem  12090  fproddccvg  12091  prodssdc  12108  flodddiv4  12455  gcdn0val  12490  dfgcd2  12543  lcmn0val  12596  pcgcd  12860  pcmptcl  12873  pcmpt  12874  pcmpt2  12875  pcprod  12877  fldivp1  12879  unct  13021  lgsneg  15711  lgsdilem  15714  lgsdir2  15720  lgsdir  15722  lgsdi  15724  lgsne0  15725  gausslemma2dlem1a  15745  2lgslem1c  15777  2lgs  15791
  Copyright terms: Public domain W3C validator