| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > iffalse | GIF version | ||
| Description: Value of the conditional operator when its first argument is false. (Contributed by NM, 14-Aug-1999.) |
| Ref | Expression |
|---|---|
| iffalse | ⊢ (¬ 𝜑 → if(𝜑, 𝐴, 𝐵) = 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-if 3563 | . 2 ⊢ if(𝜑, 𝐴, 𝐵) = {𝑥 ∣ ((𝑥 ∈ 𝐴 ∧ 𝜑) ∨ (𝑥 ∈ 𝐵 ∧ ¬ 𝜑))} | |
| 2 | dedlemb 972 | . . 3 ⊢ (¬ 𝜑 → (𝑥 ∈ 𝐵 ↔ ((𝑥 ∈ 𝐴 ∧ 𝜑) ∨ (𝑥 ∈ 𝐵 ∧ ¬ 𝜑)))) | |
| 3 | 2 | abbi2dv 2315 | . 2 ⊢ (¬ 𝜑 → 𝐵 = {𝑥 ∣ ((𝑥 ∈ 𝐴 ∧ 𝜑) ∨ (𝑥 ∈ 𝐵 ∧ ¬ 𝜑))}) |
| 4 | 1, 3 | eqtr4id 2248 | 1 ⊢ (¬ 𝜑 → if(𝜑, 𝐴, 𝐵) = 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ∨ wo 709 = wceq 1364 ∈ wcel 2167 {cab 2182 ifcif 3562 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-11 1520 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-if 3563 |
| This theorem is referenced by: iffalsei 3571 iffalsed 3572 ifnefalse 3573 ifsbdc 3574 ifcldadc 3591 ifeq1dadc 3592 ifbothdadc 3594 ifbothdc 3595 ifiddc 3596 ifcldcd 3598 ifnotdc 3599 ifandc 3600 ifordc 3601 ifnetruedc 3603 pw2f1odclem 6904 fidifsnen 6940 nnnninf 7201 uzin 9653 modifeq2int 10497 seqf1oglem1 10630 seqf1oglem2 10631 bcval 10860 bcval3 10862 sumrbdclem 11561 fsum3cvg 11562 summodclem2a 11565 sumsplitdc 11616 prodrbdclem 11755 fproddccvg 11756 prodssdc 11773 flodddiv4 12120 gcdn0val 12155 dfgcd2 12208 lcmn0val 12261 pcgcd 12525 pcmptcl 12538 pcmpt 12539 pcmpt2 12540 pcprod 12542 fldivp1 12544 unct 12686 lgsneg 15373 lgsdilem 15376 lgsdir2 15382 lgsdir 15384 lgsdi 15386 lgsne0 15387 gausslemma2dlem1a 15407 2lgslem1c 15439 2lgs 15453 |
| Copyright terms: Public domain | W3C validator |