| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > iffalse | GIF version | ||
| Description: Value of the conditional operator when its first argument is false. (Contributed by NM, 14-Aug-1999.) |
| Ref | Expression |
|---|---|
| iffalse | ⊢ (¬ 𝜑 → if(𝜑, 𝐴, 𝐵) = 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-if 3603 | . 2 ⊢ if(𝜑, 𝐴, 𝐵) = {𝑥 ∣ ((𝑥 ∈ 𝐴 ∧ 𝜑) ∨ (𝑥 ∈ 𝐵 ∧ ¬ 𝜑))} | |
| 2 | dedlemb 976 | . . 3 ⊢ (¬ 𝜑 → (𝑥 ∈ 𝐵 ↔ ((𝑥 ∈ 𝐴 ∧ 𝜑) ∨ (𝑥 ∈ 𝐵 ∧ ¬ 𝜑)))) | |
| 3 | 2 | abbi2dv 2348 | . 2 ⊢ (¬ 𝜑 → 𝐵 = {𝑥 ∣ ((𝑥 ∈ 𝐴 ∧ 𝜑) ∨ (𝑥 ∈ 𝐵 ∧ ¬ 𝜑))}) |
| 4 | 1, 3 | eqtr4id 2281 | 1 ⊢ (¬ 𝜑 → if(𝜑, 𝐴, 𝐵) = 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ∨ wo 713 = wceq 1395 ∈ wcel 2200 {cab 2215 ifcif 3602 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-11 1552 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-if 3603 |
| This theorem is referenced by: iffalsei 3611 iffalsed 3612 ifnefalse 3613 ifsbdc 3615 ifcldadc 3632 ifeq1dadc 3633 ifeqdadc 3635 ifbothdadc 3636 ifbothdc 3637 ifiddc 3638 ifcldcd 3640 ifnotdc 3641 2if2dc 3642 ifandc 3643 ifordc 3644 ifnetruedc 3646 pw2f1odclem 6983 fidifsnen 7020 nnnninf 7281 uzin 9743 modifeq2int 10595 seqf1oglem1 10728 seqf1oglem2 10729 bcval 10958 bcval3 10960 swrdccat 11253 pfxccat3a 11256 swrdccat3b 11258 sumrbdclem 11874 fsum3cvg 11875 summodclem2a 11878 sumsplitdc 11929 prodrbdclem 12068 fproddccvg 12069 prodssdc 12086 flodddiv4 12433 gcdn0val 12468 dfgcd2 12521 lcmn0val 12574 pcgcd 12838 pcmptcl 12851 pcmpt 12852 pcmpt2 12853 pcprod 12855 fldivp1 12857 unct 12999 lgsneg 15688 lgsdilem 15691 lgsdir2 15697 lgsdir 15699 lgsdi 15701 lgsne0 15702 gausslemma2dlem1a 15722 2lgslem1c 15754 2lgs 15768 |
| Copyright terms: Public domain | W3C validator |