| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > iffalse | GIF version | ||
| Description: Value of the conditional operator when its first argument is false. (Contributed by NM, 14-Aug-1999.) |
| Ref | Expression |
|---|---|
| iffalse | ⊢ (¬ 𝜑 → if(𝜑, 𝐴, 𝐵) = 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-if 3574 | . 2 ⊢ if(𝜑, 𝐴, 𝐵) = {𝑥 ∣ ((𝑥 ∈ 𝐴 ∧ 𝜑) ∨ (𝑥 ∈ 𝐵 ∧ ¬ 𝜑))} | |
| 2 | dedlemb 973 | . . 3 ⊢ (¬ 𝜑 → (𝑥 ∈ 𝐵 ↔ ((𝑥 ∈ 𝐴 ∧ 𝜑) ∨ (𝑥 ∈ 𝐵 ∧ ¬ 𝜑)))) | |
| 3 | 2 | abbi2dv 2325 | . 2 ⊢ (¬ 𝜑 → 𝐵 = {𝑥 ∣ ((𝑥 ∈ 𝐴 ∧ 𝜑) ∨ (𝑥 ∈ 𝐵 ∧ ¬ 𝜑))}) |
| 4 | 1, 3 | eqtr4id 2258 | 1 ⊢ (¬ 𝜑 → if(𝜑, 𝐴, 𝐵) = 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ∨ wo 710 = wceq 1373 ∈ wcel 2177 {cab 2192 ifcif 3573 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-11 1530 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-if 3574 |
| This theorem is referenced by: iffalsei 3582 iffalsed 3583 ifnefalse 3584 ifsbdc 3585 ifcldadc 3602 ifeq1dadc 3603 ifeqdadc 3605 ifbothdadc 3606 ifbothdc 3607 ifiddc 3608 ifcldcd 3610 ifnotdc 3611 ifandc 3612 ifordc 3613 ifnetruedc 3615 pw2f1odclem 6943 fidifsnen 6979 nnnninf 7240 uzin 9694 modifeq2int 10544 seqf1oglem1 10677 seqf1oglem2 10678 bcval 10907 bcval3 10909 sumrbdclem 11738 fsum3cvg 11739 summodclem2a 11742 sumsplitdc 11793 prodrbdclem 11932 fproddccvg 11933 prodssdc 11950 flodddiv4 12297 gcdn0val 12332 dfgcd2 12385 lcmn0val 12438 pcgcd 12702 pcmptcl 12715 pcmpt 12716 pcmpt2 12717 pcprod 12719 fldivp1 12721 unct 12863 lgsneg 15551 lgsdilem 15554 lgsdir2 15560 lgsdir 15562 lgsdi 15564 lgsne0 15565 gausslemma2dlem1a 15585 2lgslem1c 15617 2lgs 15631 |
| Copyright terms: Public domain | W3C validator |