![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > iffalse | GIF version |
Description: Value of the conditional operator when its first argument is false. (Contributed by NM, 14-Aug-1999.) |
Ref | Expression |
---|---|
iffalse | ⊢ (¬ 𝜑 → if(𝜑, 𝐴, 𝐵) = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-if 3537 | . 2 ⊢ if(𝜑, 𝐴, 𝐵) = {𝑥 ∣ ((𝑥 ∈ 𝐴 ∧ 𝜑) ∨ (𝑥 ∈ 𝐵 ∧ ¬ 𝜑))} | |
2 | dedlemb 970 | . . 3 ⊢ (¬ 𝜑 → (𝑥 ∈ 𝐵 ↔ ((𝑥 ∈ 𝐴 ∧ 𝜑) ∨ (𝑥 ∈ 𝐵 ∧ ¬ 𝜑)))) | |
3 | 2 | abbi2dv 2296 | . 2 ⊢ (¬ 𝜑 → 𝐵 = {𝑥 ∣ ((𝑥 ∈ 𝐴 ∧ 𝜑) ∨ (𝑥 ∈ 𝐵 ∧ ¬ 𝜑))}) |
4 | 1, 3 | eqtr4id 2229 | 1 ⊢ (¬ 𝜑 → if(𝜑, 𝐴, 𝐵) = 𝐵) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ∨ wo 708 = wceq 1353 ∈ wcel 2148 {cab 2163 ifcif 3536 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-11 1506 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-ext 2159 |
This theorem depends on definitions: df-bi 117 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-if 3537 |
This theorem is referenced by: iffalsei 3545 iffalsed 3546 ifnefalse 3547 ifsbdc 3548 ifcldadc 3565 ifeq1dadc 3566 ifbothdadc 3568 ifbothdc 3569 ifiddc 3570 ifcldcd 3572 ifnotdc 3573 ifandc 3574 ifordc 3575 fidifsnen 6872 nnnninf 7126 uzin 9562 modifeq2int 10388 bcval 10731 bcval3 10733 sumrbdclem 11387 fsum3cvg 11388 summodclem2a 11391 sumsplitdc 11442 prodrbdclem 11581 fproddccvg 11582 prodssdc 11599 flodddiv4 11941 gcdn0val 11964 dfgcd2 12017 lcmn0val 12068 pcgcd 12330 pcmptcl 12342 pcmpt 12343 pcmpt2 12344 pcprod 12346 fldivp1 12348 unct 12445 lgsneg 14510 lgsdilem 14513 lgsdir2 14519 lgsdir 14521 lgsdi 14523 lgsne0 14524 |
Copyright terms: Public domain | W3C validator |