ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iffalse GIF version

Theorem iffalse 3566
Description: Value of the conditional operator when its first argument is false. (Contributed by NM, 14-Aug-1999.)
Assertion
Ref Expression
iffalse 𝜑 → if(𝜑, 𝐴, 𝐵) = 𝐵)

Proof of Theorem iffalse
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 df-if 3559 . 2 if(𝜑, 𝐴, 𝐵) = {𝑥 ∣ ((𝑥𝐴𝜑) ∨ (𝑥𝐵 ∧ ¬ 𝜑))}
2 dedlemb 972 . . 3 𝜑 → (𝑥𝐵 ↔ ((𝑥𝐴𝜑) ∨ (𝑥𝐵 ∧ ¬ 𝜑))))
32abbi2dv 2312 . 2 𝜑𝐵 = {𝑥 ∣ ((𝑥𝐴𝜑) ∨ (𝑥𝐵 ∧ ¬ 𝜑))})
41, 3eqtr4id 2245 1 𝜑 → if(𝜑, 𝐴, 𝐵) = 𝐵)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wo 709   = wceq 1364  wcel 2164  {cab 2179  ifcif 3558
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-11 1517  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-if 3559
This theorem is referenced by:  iffalsei  3567  iffalsed  3568  ifnefalse  3569  ifsbdc  3570  ifcldadc  3587  ifeq1dadc  3588  ifbothdadc  3590  ifbothdc  3591  ifiddc  3592  ifcldcd  3594  ifnotdc  3595  ifandc  3596  ifordc  3597  ifnetruedc  3599  pw2f1odclem  6892  fidifsnen  6928  nnnninf  7187  uzin  9628  modifeq2int  10460  seqf1oglem1  10593  seqf1oglem2  10594  bcval  10823  bcval3  10825  sumrbdclem  11523  fsum3cvg  11524  summodclem2a  11527  sumsplitdc  11578  prodrbdclem  11717  fproddccvg  11718  prodssdc  11735  flodddiv4  12078  gcdn0val  12101  dfgcd2  12154  lcmn0val  12207  pcgcd  12470  pcmptcl  12483  pcmpt  12484  pcmpt2  12485  pcprod  12487  fldivp1  12489  unct  12602  lgsneg  15181  lgsdilem  15184  lgsdir2  15190  lgsdir  15192  lgsdi  15194  lgsne0  15195  gausslemma2dlem1a  15215  2lgslem1c  15247  2lgs  15261
  Copyright terms: Public domain W3C validator