| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > adantld | GIF version | ||
| Description: Deduction adding a conjunct to the left of an antecedent. (Contributed by NM, 4-May-1994.) (Proof shortened by Wolf Lammen, 20-Dec-2012.) |
| Ref | Expression |
|---|---|
| adantld.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| Ref | Expression |
|---|---|
| adantld | ⊢ (𝜑 → ((𝜃 ∧ 𝜓) → 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr 110 | . 2 ⊢ ((𝜃 ∧ 𝜓) → 𝜓) | |
| 2 | adantld.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 3 | 1, 2 | syl5 32 | 1 ⊢ (𝜑 → ((𝜃 ∧ 𝜓) → 𝜒)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia2 107 |
| This theorem is referenced by: jaoa 721 dedlema 971 dedlemb 972 prlem1 975 equveli 1773 ifnebibdc 3605 poxp 6299 nnmordi 6583 eroprf 6696 xpdom2 6899 elni2 7398 prarloclemlo 7578 xrlttr 9887 fzen 10135 eluzgtdifelfzo 10290 ssfzo12bi 10318 climuni 11475 mulcn2 11494 serf0 11534 ntrivcvgap 11730 dfgcd2 12206 lcmgcdlem 12270 lcmdvds 12272 qnumdencl 12380 infpnlem1 12553 cnplimcim 14987 dveflem 15046 gausslemma2dlem3 15388 bj-charfundcALT 15539 |
| Copyright terms: Public domain | W3C validator |