ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  adantld GIF version

Theorem adantld 278
Description: Deduction adding a conjunct to the left of an antecedent. (Contributed by NM, 4-May-1994.) (Proof shortened by Wolf Lammen, 20-Dec-2012.)
Hypothesis
Ref Expression
adantld.1 (𝜑 → (𝜓𝜒))
Assertion
Ref Expression
adantld (𝜑 → ((𝜃𝜓) → 𝜒))

Proof of Theorem adantld
StepHypRef Expression
1 simpr 110 . 2 ((𝜃𝜓) → 𝜓)
2 adantld.1 . 2 (𝜑 → (𝜓𝜒))
31, 2syl5 32 1 (𝜑 → ((𝜃𝜓) → 𝜒))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia2 107
This theorem is referenced by:  jaoa  721  dedlema  971  dedlemb  972  prlem1  975  equveli  1770  ifnebibdc  3600  poxp  6285  nnmordi  6569  eroprf  6682  xpdom2  6885  elni2  7374  prarloclemlo  7554  xrlttr  9861  fzen  10109  eluzgtdifelfzo  10264  ssfzo12bi  10292  climuni  11436  mulcn2  11455  serf0  11495  ntrivcvgap  11691  dfgcd2  12151  lcmgcdlem  12215  lcmdvds  12217  qnumdencl  12325  infpnlem1  12497  cnplimcim  14821  dveflem  14872  gausslemma2dlem3  15179  bj-charfundcALT  15301
  Copyright terms: Public domain W3C validator