![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > adantld | GIF version |
Description: Deduction adding a conjunct to the left of an antecedent. (Contributed by NM, 4-May-1994.) (Proof shortened by Wolf Lammen, 20-Dec-2012.) |
Ref | Expression |
---|---|
adantld.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
Ref | Expression |
---|---|
adantld | ⊢ (𝜑 → ((𝜃 ∧ 𝜓) → 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 110 | . 2 ⊢ ((𝜃 ∧ 𝜓) → 𝜓) | |
2 | adantld.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
3 | 1, 2 | syl5 32 | 1 ⊢ (𝜑 → ((𝜃 ∧ 𝜓) → 𝜒)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia2 107 |
This theorem is referenced by: jaoa 721 dedlema 971 dedlemb 972 prlem1 975 equveli 1770 ifnebibdc 3600 poxp 6285 nnmordi 6569 eroprf 6682 xpdom2 6885 elni2 7374 prarloclemlo 7554 xrlttr 9861 fzen 10109 eluzgtdifelfzo 10264 ssfzo12bi 10292 climuni 11436 mulcn2 11455 serf0 11495 ntrivcvgap 11691 dfgcd2 12151 lcmgcdlem 12215 lcmdvds 12217 qnumdencl 12325 infpnlem1 12497 cnplimcim 14821 dveflem 14872 gausslemma2dlem3 15179 bj-charfundcALT 15301 |
Copyright terms: Public domain | W3C validator |