ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  adantld GIF version

Theorem adantld 278
Description: Deduction adding a conjunct to the left of an antecedent. (Contributed by NM, 4-May-1994.) (Proof shortened by Wolf Lammen, 20-Dec-2012.)
Hypothesis
Ref Expression
adantld.1 (𝜑 → (𝜓𝜒))
Assertion
Ref Expression
adantld (𝜑 → ((𝜃𝜓) → 𝜒))

Proof of Theorem adantld
StepHypRef Expression
1 simpr 110 . 2 ((𝜃𝜓) → 𝜓)
2 adantld.1 . 2 (𝜑 → (𝜓𝜒))
31, 2syl5 32 1 (𝜑 → ((𝜃𝜓) → 𝜒))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia2 107
This theorem is referenced by:  jaoa  725  dedlema  975  dedlemb  976  prlem1  979  equveli  1805  ifnebibdc  3648  poxp  6376  nnmordi  6660  eroprf  6773  xpdom2  6986  elni2  7497  prarloclemlo  7677  xrlttr  9987  fzen  10235  eluzgtdifelfzo  10398  ssfzo12bi  10426  climuni  11799  mulcn2  11818  serf0  11858  ntrivcvgap  12054  dfgcd2  12530  lcmgcdlem  12594  lcmdvds  12596  qnumdencl  12704  infpnlem1  12877  cnplimcim  15335  dveflem  15394  gausslemma2dlem3  15736  uhgr2edg  15998  ushgredgedg  16018  ushgredgedgloop  16020  bj-charfundcALT  16130
  Copyright terms: Public domain W3C validator