![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > adantld | GIF version |
Description: Deduction adding a conjunct to the left of an antecedent. (Contributed by NM, 4-May-1994.) (Proof shortened by Wolf Lammen, 20-Dec-2012.) |
Ref | Expression |
---|---|
adantld.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
Ref | Expression |
---|---|
adantld | ⊢ (𝜑 → ((𝜃 ∧ 𝜓) → 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 110 | . 2 ⊢ ((𝜃 ∧ 𝜓) → 𝜓) | |
2 | adantld.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
3 | 1, 2 | syl5 32 | 1 ⊢ (𝜑 → ((𝜃 ∧ 𝜓) → 𝜒)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia2 107 |
This theorem is referenced by: jaoa 720 dedlema 969 dedlemb 970 prlem1 973 equveli 1759 poxp 6235 nnmordi 6519 eroprf 6630 xpdom2 6833 elni2 7315 prarloclemlo 7495 xrlttr 9797 fzen 10045 eluzgtdifelfzo 10199 ssfzo12bi 10227 climuni 11303 mulcn2 11322 serf0 11362 ntrivcvgap 11558 dfgcd2 12017 lcmgcdlem 12079 lcmdvds 12081 qnumdencl 12189 infpnlem1 12359 cnplimcim 14221 dveflem 14272 bj-charfundcALT 14646 |
Copyright terms: Public domain | W3C validator |