Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > adantld | GIF version |
Description: Deduction adding a conjunct to the left of an antecedent. (Contributed by NM, 4-May-1994.) (Proof shortened by Wolf Lammen, 20-Dec-2012.) |
Ref | Expression |
---|---|
adantld.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
Ref | Expression |
---|---|
adantld | ⊢ (𝜑 → ((𝜃 ∧ 𝜓) → 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 109 | . 2 ⊢ ((𝜃 ∧ 𝜓) → 𝜓) | |
2 | adantld.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
3 | 1, 2 | syl5 32 | 1 ⊢ (𝜑 → ((𝜃 ∧ 𝜓) → 𝜒)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia2 106 |
This theorem is referenced by: jaoa 710 dedlema 959 dedlemb 960 prlem1 963 equveli 1747 poxp 6200 nnmordi 6484 eroprf 6594 xpdom2 6797 elni2 7255 prarloclemlo 7435 xrlttr 9731 fzen 9978 eluzgtdifelfzo 10132 ssfzo12bi 10160 climuni 11234 mulcn2 11253 serf0 11293 ntrivcvgap 11489 dfgcd2 11947 lcmgcdlem 12009 lcmdvds 12011 qnumdencl 12119 infpnlem1 12289 cnplimcim 13286 dveflem 13337 bj-charfundcALT 13701 |
Copyright terms: Public domain | W3C validator |