ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  adantld GIF version

Theorem adantld 278
Description: Deduction adding a conjunct to the left of an antecedent. (Contributed by NM, 4-May-1994.) (Proof shortened by Wolf Lammen, 20-Dec-2012.)
Hypothesis
Ref Expression
adantld.1 (𝜑 → (𝜓𝜒))
Assertion
Ref Expression
adantld (𝜑 → ((𝜃𝜓) → 𝜒))

Proof of Theorem adantld
StepHypRef Expression
1 simpr 110 . 2 ((𝜃𝜓) → 𝜓)
2 adantld.1 . 2 (𝜑 → (𝜓𝜒))
31, 2syl5 32 1 (𝜑 → ((𝜃𝜓) → 𝜒))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia2 107
This theorem is referenced by:  jaoa  721  dedlema  971  dedlemb  972  prlem1  975  equveli  1773  ifnebibdc  3604  poxp  6290  nnmordi  6574  eroprf  6687  xpdom2  6890  elni2  7381  prarloclemlo  7561  xrlttr  9870  fzen  10118  eluzgtdifelfzo  10273  ssfzo12bi  10301  climuni  11458  mulcn2  11477  serf0  11517  ntrivcvgap  11713  dfgcd2  12181  lcmgcdlem  12245  lcmdvds  12247  qnumdencl  12355  infpnlem1  12528  cnplimcim  14903  dveflem  14962  gausslemma2dlem3  15304  bj-charfundcALT  15455
  Copyright terms: Public domain W3C validator