Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > adantld | GIF version |
Description: Deduction adding a conjunct to the left of an antecedent. (Contributed by NM, 4-May-1994.) (Proof shortened by Wolf Lammen, 20-Dec-2012.) |
Ref | Expression |
---|---|
adantld.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
Ref | Expression |
---|---|
adantld | ⊢ (𝜑 → ((𝜃 ∧ 𝜓) → 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 109 | . 2 ⊢ ((𝜃 ∧ 𝜓) → 𝜓) | |
2 | adantld.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
3 | 1, 2 | syl5 32 | 1 ⊢ (𝜑 → ((𝜃 ∧ 𝜓) → 𝜒)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia2 106 |
This theorem is referenced by: jaoa 715 dedlema 964 dedlemb 965 prlem1 968 equveli 1752 poxp 6211 nnmordi 6495 eroprf 6606 xpdom2 6809 elni2 7276 prarloclemlo 7456 xrlttr 9752 fzen 9999 eluzgtdifelfzo 10153 ssfzo12bi 10181 climuni 11256 mulcn2 11275 serf0 11315 ntrivcvgap 11511 dfgcd2 11969 lcmgcdlem 12031 lcmdvds 12033 qnumdencl 12141 infpnlem1 12311 cnplimcim 13430 dveflem 13481 bj-charfundcALT 13844 |
Copyright terms: Public domain | W3C validator |