| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > adantld | GIF version | ||
| Description: Deduction adding a conjunct to the left of an antecedent. (Contributed by NM, 4-May-1994.) (Proof shortened by Wolf Lammen, 20-Dec-2012.) |
| Ref | Expression |
|---|---|
| adantld.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| Ref | Expression |
|---|---|
| adantld | ⊢ (𝜑 → ((𝜃 ∧ 𝜓) → 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr 110 | . 2 ⊢ ((𝜃 ∧ 𝜓) → 𝜓) | |
| 2 | adantld.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 3 | 1, 2 | syl5 32 | 1 ⊢ (𝜑 → ((𝜃 ∧ 𝜓) → 𝜒)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia2 107 |
| This theorem is referenced by: jaoa 725 dedlema 975 dedlemb 976 prlem1 979 equveli 1805 ifnebibdc 3648 poxp 6376 nnmordi 6660 eroprf 6773 xpdom2 6986 elni2 7497 prarloclemlo 7677 xrlttr 9987 fzen 10235 eluzgtdifelfzo 10398 ssfzo12bi 10426 climuni 11799 mulcn2 11818 serf0 11858 ntrivcvgap 12054 dfgcd2 12530 lcmgcdlem 12594 lcmdvds 12596 qnumdencl 12704 infpnlem1 12877 cnplimcim 15335 dveflem 15394 gausslemma2dlem3 15736 uhgr2edg 15998 ushgredgedg 16018 ushgredgedgloop 16020 bj-charfundcALT 16130 |
| Copyright terms: Public domain | W3C validator |