| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > adantld | GIF version | ||
| Description: Deduction adding a conjunct to the left of an antecedent. (Contributed by NM, 4-May-1994.) (Proof shortened by Wolf Lammen, 20-Dec-2012.) |
| Ref | Expression |
|---|---|
| adantld.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| Ref | Expression |
|---|---|
| adantld | ⊢ (𝜑 → ((𝜃 ∧ 𝜓) → 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr 110 | . 2 ⊢ ((𝜃 ∧ 𝜓) → 𝜓) | |
| 2 | adantld.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 3 | 1, 2 | syl5 32 | 1 ⊢ (𝜑 → ((𝜃 ∧ 𝜓) → 𝜒)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia2 107 |
| This theorem is referenced by: jaoa 721 dedlema 971 dedlemb 972 prlem1 975 equveli 1773 ifnebibdc 3604 poxp 6290 nnmordi 6574 eroprf 6687 xpdom2 6890 elni2 7381 prarloclemlo 7561 xrlttr 9870 fzen 10118 eluzgtdifelfzo 10273 ssfzo12bi 10301 climuni 11458 mulcn2 11477 serf0 11517 ntrivcvgap 11713 dfgcd2 12181 lcmgcdlem 12245 lcmdvds 12247 qnumdencl 12355 infpnlem1 12528 cnplimcim 14903 dveflem 14962 gausslemma2dlem3 15304 bj-charfundcALT 15455 |
| Copyright terms: Public domain | W3C validator |