ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  adantld GIF version

Theorem adantld 276
Description: Deduction adding a conjunct to the left of an antecedent. (Contributed by NM, 4-May-1994.) (Proof shortened by Wolf Lammen, 20-Dec-2012.)
Hypothesis
Ref Expression
adantld.1 (𝜑 → (𝜓𝜒))
Assertion
Ref Expression
adantld (𝜑 → ((𝜃𝜓) → 𝜒))

Proof of Theorem adantld
StepHypRef Expression
1 simpr 109 . 2 ((𝜃𝜓) → 𝜓)
2 adantld.1 . 2 (𝜑 → (𝜓𝜒))
31, 2syl5 32 1 (𝜑 → ((𝜃𝜓) → 𝜒))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia2 106
This theorem is referenced by:  jaoa  710  dedlema  959  dedlemb  960  prlem1  963  equveli  1747  poxp  6200  nnmordi  6484  eroprf  6594  xpdom2  6797  elni2  7255  prarloclemlo  7435  xrlttr  9731  fzen  9978  eluzgtdifelfzo  10132  ssfzo12bi  10160  climuni  11234  mulcn2  11253  serf0  11293  ntrivcvgap  11489  dfgcd2  11947  lcmgcdlem  12009  lcmdvds  12011  qnumdencl  12119  infpnlem1  12289  cnplimcim  13286  dveflem  13337  bj-charfundcALT  13701
  Copyright terms: Public domain W3C validator