| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > adantld | GIF version | ||
| Description: Deduction adding a conjunct to the left of an antecedent. (Contributed by NM, 4-May-1994.) (Proof shortened by Wolf Lammen, 20-Dec-2012.) |
| Ref | Expression |
|---|---|
| adantld.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| Ref | Expression |
|---|---|
| adantld | ⊢ (𝜑 → ((𝜃 ∧ 𝜓) → 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr 110 | . 2 ⊢ ((𝜃 ∧ 𝜓) → 𝜓) | |
| 2 | adantld.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 3 | 1, 2 | syl5 32 | 1 ⊢ (𝜑 → ((𝜃 ∧ 𝜓) → 𝜒)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia2 107 |
| This theorem is referenced by: jaoa 722 dedlema 972 dedlemb 973 prlem1 976 equveli 1783 ifnebibdc 3620 poxp 6331 nnmordi 6615 eroprf 6728 xpdom2 6941 elni2 7447 prarloclemlo 7627 xrlttr 9937 fzen 10185 eluzgtdifelfzo 10348 ssfzo12bi 10376 climuni 11679 mulcn2 11698 serf0 11738 ntrivcvgap 11934 dfgcd2 12410 lcmgcdlem 12474 lcmdvds 12476 qnumdencl 12584 infpnlem1 12757 cnplimcim 15214 dveflem 15273 gausslemma2dlem3 15615 bj-charfundcALT 15883 |
| Copyright terms: Public domain | W3C validator |