ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  adantld GIF version

Theorem adantld 278
Description: Deduction adding a conjunct to the left of an antecedent. (Contributed by NM, 4-May-1994.) (Proof shortened by Wolf Lammen, 20-Dec-2012.)
Hypothesis
Ref Expression
adantld.1 (𝜑 → (𝜓𝜒))
Assertion
Ref Expression
adantld (𝜑 → ((𝜃𝜓) → 𝜒))

Proof of Theorem adantld
StepHypRef Expression
1 simpr 110 . 2 ((𝜃𝜓) → 𝜓)
2 adantld.1 . 2 (𝜑 → (𝜓𝜒))
31, 2syl5 32 1 (𝜑 → ((𝜃𝜓) → 𝜒))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia2 107
This theorem is referenced by:  jaoa  722  dedlema  972  dedlemb  973  prlem1  976  equveli  1783  ifnebibdc  3620  poxp  6331  nnmordi  6615  eroprf  6728  xpdom2  6941  elni2  7447  prarloclemlo  7627  xrlttr  9937  fzen  10185  eluzgtdifelfzo  10348  ssfzo12bi  10376  climuni  11679  mulcn2  11698  serf0  11738  ntrivcvgap  11934  dfgcd2  12410  lcmgcdlem  12474  lcmdvds  12476  qnumdencl  12584  infpnlem1  12757  cnplimcim  15214  dveflem  15273  gausslemma2dlem3  15615  bj-charfundcALT  15883
  Copyright terms: Public domain W3C validator