| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > adantld | GIF version | ||
| Description: Deduction adding a conjunct to the left of an antecedent. (Contributed by NM, 4-May-1994.) (Proof shortened by Wolf Lammen, 20-Dec-2012.) |
| Ref | Expression |
|---|---|
| adantld.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| Ref | Expression |
|---|---|
| adantld | ⊢ (𝜑 → ((𝜃 ∧ 𝜓) → 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr 110 | . 2 ⊢ ((𝜃 ∧ 𝜓) → 𝜓) | |
| 2 | adantld.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 3 | 1, 2 | syl5 32 | 1 ⊢ (𝜑 → ((𝜃 ∧ 𝜓) → 𝜒)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia2 107 |
| This theorem is referenced by: jaoa 721 dedlema 971 dedlemb 972 prlem1 975 equveli 1773 ifnebibdc 3605 poxp 6299 nnmordi 6583 eroprf 6696 xpdom2 6899 elni2 7400 prarloclemlo 7580 xrlttr 9889 fzen 10137 eluzgtdifelfzo 10292 ssfzo12bi 10320 climuni 11477 mulcn2 11496 serf0 11536 ntrivcvgap 11732 dfgcd2 12208 lcmgcdlem 12272 lcmdvds 12274 qnumdencl 12382 infpnlem1 12555 cnplimcim 15011 dveflem 15070 gausslemma2dlem3 15412 bj-charfundcALT 15563 |
| Copyright terms: Public domain | W3C validator |