| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > df-bj-ind | GIF version | ||
| Description: Define the property of being an inductive class. (Contributed by BJ, 30-Nov-2019.) |
| Ref | Expression |
|---|---|
| df-bj-ind | ⊢ (Ind 𝐴 ↔ (∅ ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 suc 𝑥 ∈ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cA | . . 3 class 𝐴 | |
| 2 | 1 | wind 15572 | . 2 wff Ind 𝐴 |
| 3 | c0 3450 | . . . 4 class ∅ | |
| 4 | 3, 1 | wcel 2167 | . . 3 wff ∅ ∈ 𝐴 |
| 5 | vx | . . . . . . 7 setvar 𝑥 | |
| 6 | 5 | cv 1363 | . . . . . 6 class 𝑥 |
| 7 | 6 | csuc 4400 | . . . . 5 class suc 𝑥 |
| 8 | 7, 1 | wcel 2167 | . . . 4 wff suc 𝑥 ∈ 𝐴 |
| 9 | 8, 5, 1 | wral 2475 | . . 3 wff ∀𝑥 ∈ 𝐴 suc 𝑥 ∈ 𝐴 |
| 10 | 4, 9 | wa 104 | . 2 wff (∅ ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 suc 𝑥 ∈ 𝐴) |
| 11 | 2, 10 | wb 105 | 1 wff (Ind 𝐴 ↔ (∅ ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 suc 𝑥 ∈ 𝐴)) |
| Colors of variables: wff set class |
| This definition is referenced by: bj-indsuc 15574 bj-indeq 15575 bj-bdind 15576 bj-indint 15577 bj-indind 15578 bj-dfom 15579 bj-inf2vnlem1 15616 bj-inf2vnlem2 15617 |
| Copyright terms: Public domain | W3C validator |