Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  df-bj-ind GIF version

Definition df-bj-ind 15863
Description: Define the property of being an inductive class. (Contributed by BJ, 30-Nov-2019.)
Assertion
Ref Expression
df-bj-ind (Ind 𝐴 ↔ (∅ ∈ 𝐴 ∧ ∀𝑥𝐴 suc 𝑥𝐴))
Distinct variable group:   𝑥,𝐴

Detailed syntax breakdown of Definition df-bj-ind
StepHypRef Expression
1 cA . . 3 class 𝐴
21wind 15862 . 2 wff Ind 𝐴
3 c0 3460 . . . 4 class
43, 1wcel 2176 . . 3 wff ∅ ∈ 𝐴
5 vx . . . . . . 7 setvar 𝑥
65cv 1372 . . . . . 6 class 𝑥
76csuc 4412 . . . . 5 class suc 𝑥
87, 1wcel 2176 . . . 4 wff suc 𝑥𝐴
98, 5, 1wral 2484 . . 3 wff 𝑥𝐴 suc 𝑥𝐴
104, 9wa 104 . 2 wff (∅ ∈ 𝐴 ∧ ∀𝑥𝐴 suc 𝑥𝐴)
112, 10wb 105 1 wff (Ind 𝐴 ↔ (∅ ∈ 𝐴 ∧ ∀𝑥𝐴 suc 𝑥𝐴))
Colors of variables: wff set class
This definition is referenced by:  bj-indsuc  15864  bj-indeq  15865  bj-bdind  15866  bj-indint  15867  bj-indind  15868  bj-dfom  15869  bj-inf2vnlem1  15906  bj-inf2vnlem2  15907
  Copyright terms: Public domain W3C validator