![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > Mathboxes > df-bj-ind | GIF version |
Description: Define the property of being an inductive class. (Contributed by BJ, 30-Nov-2019.) |
Ref | Expression |
---|---|
df-bj-ind | ⊢ (Ind 𝐴 ↔ (∅ ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 suc 𝑥 ∈ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cA | . . 3 class 𝐴 | |
2 | 1 | wind 15418 | . 2 wff Ind 𝐴 |
3 | c0 3446 | . . . 4 class ∅ | |
4 | 3, 1 | wcel 2164 | . . 3 wff ∅ ∈ 𝐴 |
5 | vx | . . . . . . 7 setvar 𝑥 | |
6 | 5 | cv 1363 | . . . . . 6 class 𝑥 |
7 | 6 | csuc 4396 | . . . . 5 class suc 𝑥 |
8 | 7, 1 | wcel 2164 | . . . 4 wff suc 𝑥 ∈ 𝐴 |
9 | 8, 5, 1 | wral 2472 | . . 3 wff ∀𝑥 ∈ 𝐴 suc 𝑥 ∈ 𝐴 |
10 | 4, 9 | wa 104 | . 2 wff (∅ ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 suc 𝑥 ∈ 𝐴) |
11 | 2, 10 | wb 105 | 1 wff (Ind 𝐴 ↔ (∅ ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 suc 𝑥 ∈ 𝐴)) |
Colors of variables: wff set class |
This definition is referenced by: bj-indsuc 15420 bj-indeq 15421 bj-bdind 15422 bj-indint 15423 bj-indind 15424 bj-dfom 15425 bj-inf2vnlem1 15462 bj-inf2vnlem2 15463 |
Copyright terms: Public domain | W3C validator |