Proof of Theorem bj-indind
Step | Hyp | Ref
| Expression |
1 | | df-bj-ind 13440 |
. . . 4
⊢ (Ind
𝐴 ↔ (∅ ∈
𝐴 ∧ ∀𝑥 ∈ 𝐴 suc 𝑥 ∈ 𝐴)) |
2 | | id 19 |
. . . . 5
⊢
(((∅ ∈ 𝐴
∧ ∅ ∈ 𝐵)
∧ (∀𝑥 ∈
𝐴 suc 𝑥 ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝑥 ∈ 𝐵 → suc 𝑥 ∈ 𝐵))) → ((∅ ∈ 𝐴 ∧ ∅ ∈ 𝐵) ∧ (∀𝑥 ∈ 𝐴 suc 𝑥 ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝑥 ∈ 𝐵 → suc 𝑥 ∈ 𝐵)))) |
3 | 2 | an4s 578 |
. . . 4
⊢
(((∅ ∈ 𝐴
∧ ∀𝑥 ∈
𝐴 suc 𝑥 ∈ 𝐴) ∧ (∅ ∈ 𝐵 ∧ ∀𝑥 ∈ 𝐴 (𝑥 ∈ 𝐵 → suc 𝑥 ∈ 𝐵))) → ((∅ ∈ 𝐴 ∧ ∅ ∈ 𝐵) ∧ (∀𝑥 ∈ 𝐴 suc 𝑥 ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝑥 ∈ 𝐵 → suc 𝑥 ∈ 𝐵)))) |
4 | 1, 3 | sylanb 282 |
. . 3
⊢ ((Ind
𝐴 ∧ (∅ ∈
𝐵 ∧ ∀𝑥 ∈ 𝐴 (𝑥 ∈ 𝐵 → suc 𝑥 ∈ 𝐵))) → ((∅ ∈ 𝐴 ∧ ∅ ∈ 𝐵) ∧ (∀𝑥 ∈ 𝐴 suc 𝑥 ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝑥 ∈ 𝐵 → suc 𝑥 ∈ 𝐵)))) |
5 | | elin 3286 |
. . . . 5
⊢ (∅
∈ (𝐴 ∩ 𝐵) ↔ (∅ ∈ 𝐴 ∧ ∅ ∈ 𝐵)) |
6 | 5 | biimpri 132 |
. . . 4
⊢ ((∅
∈ 𝐴 ∧ ∅
∈ 𝐵) → ∅
∈ (𝐴 ∩ 𝐵)) |
7 | | r19.26 2580 |
. . . . . . . 8
⊢
(∀𝑥 ∈
𝐴 (suc 𝑥 ∈ 𝐴 ∧ (𝑥 ∈ 𝐵 → suc 𝑥 ∈ 𝐵)) ↔ (∀𝑥 ∈ 𝐴 suc 𝑥 ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝑥 ∈ 𝐵 → suc 𝑥 ∈ 𝐵))) |
8 | 7 | biimpri 132 |
. . . . . . 7
⊢
((∀𝑥 ∈
𝐴 suc 𝑥 ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝑥 ∈ 𝐵 → suc 𝑥 ∈ 𝐵)) → ∀𝑥 ∈ 𝐴 (suc 𝑥 ∈ 𝐴 ∧ (𝑥 ∈ 𝐵 → suc 𝑥 ∈ 𝐵))) |
9 | | simpl 108 |
. . . . . . . . 9
⊢ ((suc
𝑥 ∈ 𝐴 ∧ (𝑥 ∈ 𝐵 → suc 𝑥 ∈ 𝐵)) → suc 𝑥 ∈ 𝐴) |
10 | | simpr 109 |
. . . . . . . . 9
⊢ ((suc
𝑥 ∈ 𝐴 ∧ (𝑥 ∈ 𝐵 → suc 𝑥 ∈ 𝐵)) → (𝑥 ∈ 𝐵 → suc 𝑥 ∈ 𝐵)) |
11 | | elin 3286 |
. . . . . . . . . 10
⊢ (suc
𝑥 ∈ (𝐴 ∩ 𝐵) ↔ (suc 𝑥 ∈ 𝐴 ∧ suc 𝑥 ∈ 𝐵)) |
12 | 11 | biimpri 132 |
. . . . . . . . 9
⊢ ((suc
𝑥 ∈ 𝐴 ∧ suc 𝑥 ∈ 𝐵) → suc 𝑥 ∈ (𝐴 ∩ 𝐵)) |
13 | 9, 10, 12 | syl6an 1411 |
. . . . . . . 8
⊢ ((suc
𝑥 ∈ 𝐴 ∧ (𝑥 ∈ 𝐵 → suc 𝑥 ∈ 𝐵)) → (𝑥 ∈ 𝐵 → suc 𝑥 ∈ (𝐴 ∩ 𝐵))) |
14 | 13 | ralimi 2517 |
. . . . . . 7
⊢
(∀𝑥 ∈
𝐴 (suc 𝑥 ∈ 𝐴 ∧ (𝑥 ∈ 𝐵 → suc 𝑥 ∈ 𝐵)) → ∀𝑥 ∈ 𝐴 (𝑥 ∈ 𝐵 → suc 𝑥 ∈ (𝐴 ∩ 𝐵))) |
15 | 8, 14 | syl 14 |
. . . . . 6
⊢
((∀𝑥 ∈
𝐴 suc 𝑥 ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝑥 ∈ 𝐵 → suc 𝑥 ∈ 𝐵)) → ∀𝑥 ∈ 𝐴 (𝑥 ∈ 𝐵 → suc 𝑥 ∈ (𝐴 ∩ 𝐵))) |
16 | | df-ral 2437 |
. . . . . . 7
⊢
(∀𝑥 ∈
𝐴 (𝑥 ∈ 𝐵 → suc 𝑥 ∈ (𝐴 ∩ 𝐵)) ↔ ∀𝑥(𝑥 ∈ 𝐴 → (𝑥 ∈ 𝐵 → suc 𝑥 ∈ (𝐴 ∩ 𝐵)))) |
17 | | elin 3286 |
. . . . . . . . 9
⊢ (𝑥 ∈ (𝐴 ∩ 𝐵) ↔ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)) |
18 | | pm3.31 260 |
. . . . . . . . 9
⊢ ((𝑥 ∈ 𝐴 → (𝑥 ∈ 𝐵 → suc 𝑥 ∈ (𝐴 ∩ 𝐵))) → ((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵) → suc 𝑥 ∈ (𝐴 ∩ 𝐵))) |
19 | 17, 18 | syl5bi 151 |
. . . . . . . 8
⊢ ((𝑥 ∈ 𝐴 → (𝑥 ∈ 𝐵 → suc 𝑥 ∈ (𝐴 ∩ 𝐵))) → (𝑥 ∈ (𝐴 ∩ 𝐵) → suc 𝑥 ∈ (𝐴 ∩ 𝐵))) |
20 | 19 | alimi 1432 |
. . . . . . 7
⊢
(∀𝑥(𝑥 ∈ 𝐴 → (𝑥 ∈ 𝐵 → suc 𝑥 ∈ (𝐴 ∩ 𝐵))) → ∀𝑥(𝑥 ∈ (𝐴 ∩ 𝐵) → suc 𝑥 ∈ (𝐴 ∩ 𝐵))) |
21 | 16, 20 | sylbi 120 |
. . . . . 6
⊢
(∀𝑥 ∈
𝐴 (𝑥 ∈ 𝐵 → suc 𝑥 ∈ (𝐴 ∩ 𝐵)) → ∀𝑥(𝑥 ∈ (𝐴 ∩ 𝐵) → suc 𝑥 ∈ (𝐴 ∩ 𝐵))) |
22 | 15, 21 | syl 14 |
. . . . 5
⊢
((∀𝑥 ∈
𝐴 suc 𝑥 ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝑥 ∈ 𝐵 → suc 𝑥 ∈ 𝐵)) → ∀𝑥(𝑥 ∈ (𝐴 ∩ 𝐵) → suc 𝑥 ∈ (𝐴 ∩ 𝐵))) |
23 | | df-ral 2437 |
. . . . 5
⊢
(∀𝑥 ∈
(𝐴 ∩ 𝐵)suc 𝑥 ∈ (𝐴 ∩ 𝐵) ↔ ∀𝑥(𝑥 ∈ (𝐴 ∩ 𝐵) → suc 𝑥 ∈ (𝐴 ∩ 𝐵))) |
24 | 22, 23 | sylibr 133 |
. . . 4
⊢
((∀𝑥 ∈
𝐴 suc 𝑥 ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝑥 ∈ 𝐵 → suc 𝑥 ∈ 𝐵)) → ∀𝑥 ∈ (𝐴 ∩ 𝐵)suc 𝑥 ∈ (𝐴 ∩ 𝐵)) |
25 | 6, 24 | anim12i 336 |
. . 3
⊢
(((∅ ∈ 𝐴
∧ ∅ ∈ 𝐵)
∧ (∀𝑥 ∈
𝐴 suc 𝑥 ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝑥 ∈ 𝐵 → suc 𝑥 ∈ 𝐵))) → (∅ ∈ (𝐴 ∩ 𝐵) ∧ ∀𝑥 ∈ (𝐴 ∩ 𝐵)suc 𝑥 ∈ (𝐴 ∩ 𝐵))) |
26 | 4, 25 | syl 14 |
. 2
⊢ ((Ind
𝐴 ∧ (∅ ∈
𝐵 ∧ ∀𝑥 ∈ 𝐴 (𝑥 ∈ 𝐵 → suc 𝑥 ∈ 𝐵))) → (∅ ∈ (𝐴 ∩ 𝐵) ∧ ∀𝑥 ∈ (𝐴 ∩ 𝐵)suc 𝑥 ∈ (𝐴 ∩ 𝐵))) |
27 | | df-bj-ind 13440 |
. 2
⊢ (Ind
(𝐴 ∩ 𝐵) ↔ (∅ ∈ (𝐴 ∩ 𝐵) ∧ ∀𝑥 ∈ (𝐴 ∩ 𝐵)suc 𝑥 ∈ (𝐴 ∩ 𝐵))) |
28 | 26, 27 | sylibr 133 |
1
⊢ ((Ind
𝐴 ∧ (∅ ∈
𝐵 ∧ ∀𝑥 ∈ 𝐴 (𝑥 ∈ 𝐵 → suc 𝑥 ∈ 𝐵))) → Ind (𝐴 ∩ 𝐵)) |