| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > bj-bdind | GIF version | ||
| Description: Boundedness of the formula "the setvar 𝑥 is an inductive class". (Contributed by BJ, 30-Nov-2019.) |
| Ref | Expression |
|---|---|
| bj-bdind | ⊢ BOUNDED Ind 𝑥 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bj-bd0el 16189 | . . 3 ⊢ BOUNDED ∅ ∈ 𝑥 | |
| 2 | bj-bdsucel 16203 | . . . 4 ⊢ BOUNDED suc 𝑦 ∈ 𝑥 | |
| 3 | 2 | ax-bdal 16139 | . . 3 ⊢ BOUNDED ∀𝑦 ∈ 𝑥 suc 𝑦 ∈ 𝑥 |
| 4 | 1, 3 | ax-bdan 16136 | . 2 ⊢ BOUNDED (∅ ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 suc 𝑦 ∈ 𝑥) |
| 5 | df-bj-ind 16248 | . 2 ⊢ (Ind 𝑥 ↔ (∅ ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 suc 𝑦 ∈ 𝑥)) | |
| 6 | 4, 5 | bd0r 16146 | 1 ⊢ BOUNDED Ind 𝑥 |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 ∈ wcel 2200 ∀wral 2508 ∅c0 3491 suc csuc 4455 BOUNDED wbd 16133 Ind wind 16247 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 ax-bd0 16134 ax-bdim 16135 ax-bdan 16136 ax-bdor 16137 ax-bdn 16138 ax-bdal 16139 ax-bdex 16140 ax-bdeq 16141 ax-bdel 16142 ax-bdsb 16143 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-sn 3672 df-suc 4461 df-bdc 16162 df-bj-ind 16248 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |