| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > bj-bdind | GIF version | ||
| Description: Boundedness of the formula "the setvar 𝑥 is an inductive class". (Contributed by BJ, 30-Nov-2019.) |
| Ref | Expression |
|---|---|
| bj-bdind | ⊢ BOUNDED Ind 𝑥 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bj-bd0el 15737 | . . 3 ⊢ BOUNDED ∅ ∈ 𝑥 | |
| 2 | bj-bdsucel 15751 | . . . 4 ⊢ BOUNDED suc 𝑦 ∈ 𝑥 | |
| 3 | 2 | ax-bdal 15687 | . . 3 ⊢ BOUNDED ∀𝑦 ∈ 𝑥 suc 𝑦 ∈ 𝑥 |
| 4 | 1, 3 | ax-bdan 15684 | . 2 ⊢ BOUNDED (∅ ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 suc 𝑦 ∈ 𝑥) |
| 5 | df-bj-ind 15796 | . 2 ⊢ (Ind 𝑥 ↔ (∅ ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 suc 𝑦 ∈ 𝑥)) | |
| 6 | 4, 5 | bd0r 15694 | 1 ⊢ BOUNDED Ind 𝑥 |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 ∈ wcel 2175 ∀wral 2483 ∅c0 3459 suc csuc 4411 BOUNDED wbd 15681 Ind wind 15795 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 ax-bd0 15682 ax-bdim 15683 ax-bdan 15684 ax-bdor 15685 ax-bdn 15686 ax-bdal 15687 ax-bdex 15688 ax-bdeq 15689 ax-bdel 15690 ax-bdsb 15691 |
| This theorem depends on definitions: df-bi 117 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ral 2488 df-rex 2489 df-v 2773 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-nul 3460 df-sn 3638 df-suc 4417 df-bdc 15710 df-bj-ind 15796 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |