Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > Mathboxes > bj-bdind | GIF version |
Description: Boundedness of the formula "the setvar 𝑥 is an inductive class". (Contributed by BJ, 30-Nov-2019.) |
Ref | Expression |
---|---|
bj-bdind | ⊢ BOUNDED Ind 𝑥 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bj-bd0el 13750 | . . 3 ⊢ BOUNDED ∅ ∈ 𝑥 | |
2 | bj-bdsucel 13764 | . . . 4 ⊢ BOUNDED suc 𝑦 ∈ 𝑥 | |
3 | 2 | ax-bdal 13700 | . . 3 ⊢ BOUNDED ∀𝑦 ∈ 𝑥 suc 𝑦 ∈ 𝑥 |
4 | 1, 3 | ax-bdan 13697 | . 2 ⊢ BOUNDED (∅ ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 suc 𝑦 ∈ 𝑥) |
5 | df-bj-ind 13809 | . 2 ⊢ (Ind 𝑥 ↔ (∅ ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 suc 𝑦 ∈ 𝑥)) | |
6 | 4, 5 | bd0r 13707 | 1 ⊢ BOUNDED Ind 𝑥 |
Colors of variables: wff set class |
Syntax hints: ∧ wa 103 ∈ wcel 2136 ∀wral 2444 ∅c0 3409 suc csuc 4343 BOUNDED wbd 13694 Ind wind 13808 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 ax-bd0 13695 ax-bdim 13696 ax-bdan 13697 ax-bdor 13698 ax-bdn 13699 ax-bdal 13700 ax-bdex 13701 ax-bdeq 13702 ax-bdel 13703 ax-bdsb 13704 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-sn 3582 df-suc 4349 df-bdc 13723 df-bj-ind 13809 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |