| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > bj-bdind | GIF version | ||
| Description: Boundedness of the formula "the setvar 𝑥 is an inductive class". (Contributed by BJ, 30-Nov-2019.) |
| Ref | Expression |
|---|---|
| bj-bdind | ⊢ BOUNDED Ind 𝑥 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bj-bd0el 15514 | . . 3 ⊢ BOUNDED ∅ ∈ 𝑥 | |
| 2 | bj-bdsucel 15528 | . . . 4 ⊢ BOUNDED suc 𝑦 ∈ 𝑥 | |
| 3 | 2 | ax-bdal 15464 | . . 3 ⊢ BOUNDED ∀𝑦 ∈ 𝑥 suc 𝑦 ∈ 𝑥 |
| 4 | 1, 3 | ax-bdan 15461 | . 2 ⊢ BOUNDED (∅ ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 suc 𝑦 ∈ 𝑥) |
| 5 | df-bj-ind 15573 | . 2 ⊢ (Ind 𝑥 ↔ (∅ ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 suc 𝑦 ∈ 𝑥)) | |
| 6 | 4, 5 | bd0r 15471 | 1 ⊢ BOUNDED Ind 𝑥 |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 ∈ wcel 2167 ∀wral 2475 ∅c0 3450 suc csuc 4400 BOUNDED wbd 15458 Ind wind 15572 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 ax-bd0 15459 ax-bdim 15460 ax-bdan 15461 ax-bdor 15462 ax-bdn 15463 ax-bdal 15464 ax-bdex 15465 ax-bdeq 15466 ax-bdel 15467 ax-bdsb 15468 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-sn 3628 df-suc 4406 df-bdc 15487 df-bj-ind 15573 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |