Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-bdind GIF version

Theorem bj-bdind 15799
Description: Boundedness of the formula "the setvar 𝑥 is an inductive class". (Contributed by BJ, 30-Nov-2019.)
Assertion
Ref Expression
bj-bdind BOUNDED Ind 𝑥

Proof of Theorem bj-bdind
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 bj-bd0el 15737 . . 3 BOUNDED ∅ ∈ 𝑥
2 bj-bdsucel 15751 . . . 4 BOUNDED suc 𝑦𝑥
32ax-bdal 15687 . . 3 BOUNDED𝑦𝑥 suc 𝑦𝑥
41, 3ax-bdan 15684 . 2 BOUNDED (∅ ∈ 𝑥 ∧ ∀𝑦𝑥 suc 𝑦𝑥)
5 df-bj-ind 15796 . 2 (Ind 𝑥 ↔ (∅ ∈ 𝑥 ∧ ∀𝑦𝑥 suc 𝑦𝑥))
64, 5bd0r 15694 1 BOUNDED Ind 𝑥
Colors of variables: wff set class
Syntax hints:  wa 104  wcel 2175  wral 2483  c0 3459  suc csuc 4411  BOUNDED wbd 15681  Ind wind 15795
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-ext 2186  ax-bd0 15682  ax-bdim 15683  ax-bdan 15684  ax-bdor 15685  ax-bdn 15686  ax-bdal 15687  ax-bdex 15688  ax-bdeq 15689  ax-bdel 15690  ax-bdsb 15691
This theorem depends on definitions:  df-bi 117  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ral 2488  df-rex 2489  df-v 2773  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-sn 3638  df-suc 4417  df-bdc 15710  df-bj-ind 15796
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator