Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > Mathboxes > bj-bdind | GIF version |
Description: Boundedness of the formula "the setvar 𝑥 is an inductive class". (Contributed by BJ, 30-Nov-2019.) |
Ref | Expression |
---|---|
bj-bdind | ⊢ BOUNDED Ind 𝑥 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bj-bd0el 13903 | . . 3 ⊢ BOUNDED ∅ ∈ 𝑥 | |
2 | bj-bdsucel 13917 | . . . 4 ⊢ BOUNDED suc 𝑦 ∈ 𝑥 | |
3 | 2 | ax-bdal 13853 | . . 3 ⊢ BOUNDED ∀𝑦 ∈ 𝑥 suc 𝑦 ∈ 𝑥 |
4 | 1, 3 | ax-bdan 13850 | . 2 ⊢ BOUNDED (∅ ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 suc 𝑦 ∈ 𝑥) |
5 | df-bj-ind 13962 | . 2 ⊢ (Ind 𝑥 ↔ (∅ ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 suc 𝑦 ∈ 𝑥)) | |
6 | 4, 5 | bd0r 13860 | 1 ⊢ BOUNDED Ind 𝑥 |
Colors of variables: wff set class |
Syntax hints: ∧ wa 103 ∈ wcel 2141 ∀wral 2448 ∅c0 3414 suc csuc 4350 BOUNDED wbd 13847 Ind wind 13961 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 ax-bd0 13848 ax-bdim 13849 ax-bdan 13850 ax-bdor 13851 ax-bdn 13852 ax-bdal 13853 ax-bdex 13854 ax-bdeq 13855 ax-bdel 13856 ax-bdsb 13857 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-sn 3589 df-suc 4356 df-bdc 13876 df-bj-ind 13962 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |