Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-bdind GIF version

Theorem bj-bdind 15576
Description: Boundedness of the formula "the setvar 𝑥 is an inductive class". (Contributed by BJ, 30-Nov-2019.)
Assertion
Ref Expression
bj-bdind BOUNDED Ind 𝑥

Proof of Theorem bj-bdind
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 bj-bd0el 15514 . . 3 BOUNDED ∅ ∈ 𝑥
2 bj-bdsucel 15528 . . . 4 BOUNDED suc 𝑦𝑥
32ax-bdal 15464 . . 3 BOUNDED𝑦𝑥 suc 𝑦𝑥
41, 3ax-bdan 15461 . 2 BOUNDED (∅ ∈ 𝑥 ∧ ∀𝑦𝑥 suc 𝑦𝑥)
5 df-bj-ind 15573 . 2 (Ind 𝑥 ↔ (∅ ∈ 𝑥 ∧ ∀𝑦𝑥 suc 𝑦𝑥))
64, 5bd0r 15471 1 BOUNDED Ind 𝑥
Colors of variables: wff set class
Syntax hints:  wa 104  wcel 2167  wral 2475  c0 3450  suc csuc 4400  BOUNDED wbd 15458  Ind wind 15572
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178  ax-bd0 15459  ax-bdim 15460  ax-bdan 15461  ax-bdor 15462  ax-bdn 15463  ax-bdal 15464  ax-bdex 15465  ax-bdeq 15466  ax-bdel 15467  ax-bdsb 15468
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-sn 3628  df-suc 4406  df-bdc 15487  df-bj-ind 15573
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator