| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > bj-bdind | GIF version | ||
| Description: Boundedness of the formula "the setvar 𝑥 is an inductive class". (Contributed by BJ, 30-Nov-2019.) |
| Ref | Expression |
|---|---|
| bj-bdind | ⊢ BOUNDED Ind 𝑥 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bj-bd0el 15973 | . . 3 ⊢ BOUNDED ∅ ∈ 𝑥 | |
| 2 | bj-bdsucel 15987 | . . . 4 ⊢ BOUNDED suc 𝑦 ∈ 𝑥 | |
| 3 | 2 | ax-bdal 15923 | . . 3 ⊢ BOUNDED ∀𝑦 ∈ 𝑥 suc 𝑦 ∈ 𝑥 |
| 4 | 1, 3 | ax-bdan 15920 | . 2 ⊢ BOUNDED (∅ ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 suc 𝑦 ∈ 𝑥) |
| 5 | df-bj-ind 16032 | . 2 ⊢ (Ind 𝑥 ↔ (∅ ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 suc 𝑦 ∈ 𝑥)) | |
| 6 | 4, 5 | bd0r 15930 | 1 ⊢ BOUNDED Ind 𝑥 |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 ∈ wcel 2177 ∀wral 2485 ∅c0 3464 suc csuc 4425 BOUNDED wbd 15917 Ind wind 16031 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 ax-bd0 15918 ax-bdim 15919 ax-bdan 15920 ax-bdor 15921 ax-bdn 15922 ax-bdal 15923 ax-bdex 15924 ax-bdeq 15925 ax-bdel 15926 ax-bdsb 15927 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-v 2775 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-nul 3465 df-sn 3644 df-suc 4431 df-bdc 15946 df-bj-ind 16032 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |