Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-bdind GIF version

Theorem bj-bdind 16035
Description: Boundedness of the formula "the setvar 𝑥 is an inductive class". (Contributed by BJ, 30-Nov-2019.)
Assertion
Ref Expression
bj-bdind BOUNDED Ind 𝑥

Proof of Theorem bj-bdind
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 bj-bd0el 15973 . . 3 BOUNDED ∅ ∈ 𝑥
2 bj-bdsucel 15987 . . . 4 BOUNDED suc 𝑦𝑥
32ax-bdal 15923 . . 3 BOUNDED𝑦𝑥 suc 𝑦𝑥
41, 3ax-bdan 15920 . 2 BOUNDED (∅ ∈ 𝑥 ∧ ∀𝑦𝑥 suc 𝑦𝑥)
5 df-bj-ind 16032 . 2 (Ind 𝑥 ↔ (∅ ∈ 𝑥 ∧ ∀𝑦𝑥 suc 𝑦𝑥))
64, 5bd0r 15930 1 BOUNDED Ind 𝑥
Colors of variables: wff set class
Syntax hints:  wa 104  wcel 2177  wral 2485  c0 3464  suc csuc 4425  BOUNDED wbd 15917  Ind wind 16031
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188  ax-bd0 15918  ax-bdim 15919  ax-bdan 15920  ax-bdor 15921  ax-bdn 15922  ax-bdal 15923  ax-bdex 15924  ax-bdeq 15925  ax-bdel 15926  ax-bdsb 15927
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-v 2775  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-sn 3644  df-suc 4431  df-bdc 15946  df-bj-ind 16032
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator