Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > Mathboxes > bj-bdind | GIF version |
Description: Boundedness of the formula "the setvar 𝑥 is an inductive class". (Contributed by BJ, 30-Nov-2019.) |
Ref | Expression |
---|---|
bj-bdind | ⊢ BOUNDED Ind 𝑥 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bj-bd0el 14189 | . . 3 ⊢ BOUNDED ∅ ∈ 𝑥 | |
2 | bj-bdsucel 14203 | . . . 4 ⊢ BOUNDED suc 𝑦 ∈ 𝑥 | |
3 | 2 | ax-bdal 14139 | . . 3 ⊢ BOUNDED ∀𝑦 ∈ 𝑥 suc 𝑦 ∈ 𝑥 |
4 | 1, 3 | ax-bdan 14136 | . 2 ⊢ BOUNDED (∅ ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 suc 𝑦 ∈ 𝑥) |
5 | df-bj-ind 14248 | . 2 ⊢ (Ind 𝑥 ↔ (∅ ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 suc 𝑦 ∈ 𝑥)) | |
6 | 4, 5 | bd0r 14146 | 1 ⊢ BOUNDED Ind 𝑥 |
Colors of variables: wff set class |
Syntax hints: ∧ wa 104 ∈ wcel 2146 ∀wral 2453 ∅c0 3420 suc csuc 4359 BOUNDED wbd 14133 Ind wind 14247 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-ext 2157 ax-bd0 14134 ax-bdim 14135 ax-bdan 14136 ax-bdor 14137 ax-bdn 14138 ax-bdal 14139 ax-bdex 14140 ax-bdeq 14141 ax-bdel 14142 ax-bdsb 14143 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-fal 1359 df-nf 1459 df-sb 1761 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ral 2458 df-rex 2459 df-v 2737 df-dif 3129 df-un 3131 df-in 3133 df-ss 3140 df-nul 3421 df-sn 3595 df-suc 4365 df-bdc 14162 df-bj-ind 14248 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |