Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-bdind GIF version

Theorem bj-bdind 16251
Description: Boundedness of the formula "the setvar 𝑥 is an inductive class". (Contributed by BJ, 30-Nov-2019.)
Assertion
Ref Expression
bj-bdind BOUNDED Ind 𝑥

Proof of Theorem bj-bdind
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 bj-bd0el 16189 . . 3 BOUNDED ∅ ∈ 𝑥
2 bj-bdsucel 16203 . . . 4 BOUNDED suc 𝑦𝑥
32ax-bdal 16139 . . 3 BOUNDED𝑦𝑥 suc 𝑦𝑥
41, 3ax-bdan 16136 . 2 BOUNDED (∅ ∈ 𝑥 ∧ ∀𝑦𝑥 suc 𝑦𝑥)
5 df-bj-ind 16248 . 2 (Ind 𝑥 ↔ (∅ ∈ 𝑥 ∧ ∀𝑦𝑥 suc 𝑦𝑥))
64, 5bd0r 16146 1 BOUNDED Ind 𝑥
Colors of variables: wff set class
Syntax hints:  wa 104  wcel 2200  wral 2508  c0 3491  suc csuc 4455  BOUNDED wbd 16133  Ind wind 16247
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211  ax-bd0 16134  ax-bdim 16135  ax-bdan 16136  ax-bdor 16137  ax-bdn 16138  ax-bdal 16139  ax-bdex 16140  ax-bdeq 16141  ax-bdel 16142  ax-bdsb 16143
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-sn 3672  df-suc 4461  df-bdc 16162  df-bj-ind 16248
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator