![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > Mathboxes > bj-indsuc | GIF version |
Description: A direct consequence of the definition of Ind. (Contributed by BJ, 30-Nov-2019.) |
Ref | Expression |
---|---|
bj-indsuc | ⊢ (Ind 𝐴 → (𝐵 ∈ 𝐴 → suc 𝐵 ∈ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-bj-ind 14764 | . . 3 ⊢ (Ind 𝐴 ↔ (∅ ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 suc 𝑥 ∈ 𝐴)) | |
2 | 1 | simprbi 275 | . 2 ⊢ (Ind 𝐴 → ∀𝑥 ∈ 𝐴 suc 𝑥 ∈ 𝐴) |
3 | suceq 4404 | . . . 4 ⊢ (𝑥 = 𝐵 → suc 𝑥 = suc 𝐵) | |
4 | 3 | eleq1d 2246 | . . 3 ⊢ (𝑥 = 𝐵 → (suc 𝑥 ∈ 𝐴 ↔ suc 𝐵 ∈ 𝐴)) |
5 | 4 | rspcv 2839 | . 2 ⊢ (𝐵 ∈ 𝐴 → (∀𝑥 ∈ 𝐴 suc 𝑥 ∈ 𝐴 → suc 𝐵 ∈ 𝐴)) |
6 | 2, 5 | syl5com 29 | 1 ⊢ (Ind 𝐴 → (𝐵 ∈ 𝐴 → suc 𝐵 ∈ 𝐴)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1353 ∈ wcel 2148 ∀wral 2455 ∅c0 3424 suc csuc 4367 Ind wind 14763 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-ext 2159 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ral 2460 df-v 2741 df-un 3135 df-sn 3600 df-suc 4373 df-bj-ind 14764 |
This theorem is referenced by: bj-indint 14768 bj-peano2 14776 bj-inf2vnlem2 14808 |
Copyright terms: Public domain | W3C validator |