Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > Mathboxes > bj-indsuc | GIF version |
Description: A direct consequence of the definition of Ind. (Contributed by BJ, 30-Nov-2019.) |
Ref | Expression |
---|---|
bj-indsuc | ⊢ (Ind 𝐴 → (𝐵 ∈ 𝐴 → suc 𝐵 ∈ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-bj-ind 13962 | . . 3 ⊢ (Ind 𝐴 ↔ (∅ ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 suc 𝑥 ∈ 𝐴)) | |
2 | 1 | simprbi 273 | . 2 ⊢ (Ind 𝐴 → ∀𝑥 ∈ 𝐴 suc 𝑥 ∈ 𝐴) |
3 | suceq 4387 | . . . 4 ⊢ (𝑥 = 𝐵 → suc 𝑥 = suc 𝐵) | |
4 | 3 | eleq1d 2239 | . . 3 ⊢ (𝑥 = 𝐵 → (suc 𝑥 ∈ 𝐴 ↔ suc 𝐵 ∈ 𝐴)) |
5 | 4 | rspcv 2830 | . 2 ⊢ (𝐵 ∈ 𝐴 → (∀𝑥 ∈ 𝐴 suc 𝑥 ∈ 𝐴 → suc 𝐵 ∈ 𝐴)) |
6 | 2, 5 | syl5com 29 | 1 ⊢ (Ind 𝐴 → (𝐵 ∈ 𝐴 → suc 𝐵 ∈ 𝐴)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1348 ∈ wcel 2141 ∀wral 2448 ∅c0 3414 suc csuc 4350 Ind wind 13961 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-v 2732 df-un 3125 df-sn 3589 df-suc 4356 df-bj-ind 13962 |
This theorem is referenced by: bj-indint 13966 bj-peano2 13974 bj-inf2vnlem2 14006 |
Copyright terms: Public domain | W3C validator |