Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-indsuc GIF version

Theorem bj-indsuc 15574
Description: A direct consequence of the definition of Ind. (Contributed by BJ, 30-Nov-2019.)
Assertion
Ref Expression
bj-indsuc (Ind 𝐴 → (𝐵𝐴 → suc 𝐵𝐴))

Proof of Theorem bj-indsuc
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 df-bj-ind 15573 . . 3 (Ind 𝐴 ↔ (∅ ∈ 𝐴 ∧ ∀𝑥𝐴 suc 𝑥𝐴))
21simprbi 275 . 2 (Ind 𝐴 → ∀𝑥𝐴 suc 𝑥𝐴)
3 suceq 4437 . . . 4 (𝑥 = 𝐵 → suc 𝑥 = suc 𝐵)
43eleq1d 2265 . . 3 (𝑥 = 𝐵 → (suc 𝑥𝐴 ↔ suc 𝐵𝐴))
54rspcv 2864 . 2 (𝐵𝐴 → (∀𝑥𝐴 suc 𝑥𝐴 → suc 𝐵𝐴))
62, 5syl5com 29 1 (Ind 𝐴 → (𝐵𝐴 → suc 𝐵𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1364  wcel 2167  wral 2475  c0 3450  suc csuc 4400  Ind wind 15572
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-v 2765  df-un 3161  df-sn 3628  df-suc 4406  df-bj-ind 15573
This theorem is referenced by:  bj-indint  15577  bj-peano2  15585  bj-inf2vnlem2  15617
  Copyright terms: Public domain W3C validator