Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > Mathboxes > bj-indsuc | GIF version |
Description: A direct consequence of the definition of Ind. (Contributed by BJ, 30-Nov-2019.) |
Ref | Expression |
---|---|
bj-indsuc | ⊢ (Ind 𝐴 → (𝐵 ∈ 𝐴 → suc 𝐵 ∈ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-bj-ind 14239 | . . 3 ⊢ (Ind 𝐴 ↔ (∅ ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 suc 𝑥 ∈ 𝐴)) | |
2 | 1 | simprbi 275 | . 2 ⊢ (Ind 𝐴 → ∀𝑥 ∈ 𝐴 suc 𝑥 ∈ 𝐴) |
3 | suceq 4396 | . . . 4 ⊢ (𝑥 = 𝐵 → suc 𝑥 = suc 𝐵) | |
4 | 3 | eleq1d 2244 | . . 3 ⊢ (𝑥 = 𝐵 → (suc 𝑥 ∈ 𝐴 ↔ suc 𝐵 ∈ 𝐴)) |
5 | 4 | rspcv 2835 | . 2 ⊢ (𝐵 ∈ 𝐴 → (∀𝑥 ∈ 𝐴 suc 𝑥 ∈ 𝐴 → suc 𝐵 ∈ 𝐴)) |
6 | 2, 5 | syl5com 29 | 1 ⊢ (Ind 𝐴 → (𝐵 ∈ 𝐴 → suc 𝐵 ∈ 𝐴)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1353 ∈ wcel 2146 ∀wral 2453 ∅c0 3420 suc csuc 4359 Ind wind 14238 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-ext 2157 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-nf 1459 df-sb 1761 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ral 2458 df-v 2737 df-un 3131 df-sn 3595 df-suc 4365 df-bj-ind 14239 |
This theorem is referenced by: bj-indint 14243 bj-peano2 14251 bj-inf2vnlem2 14283 |
Copyright terms: Public domain | W3C validator |