Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-indsuc GIF version

Theorem bj-indsuc 13963
Description: A direct consequence of the definition of Ind. (Contributed by BJ, 30-Nov-2019.)
Assertion
Ref Expression
bj-indsuc (Ind 𝐴 → (𝐵𝐴 → suc 𝐵𝐴))

Proof of Theorem bj-indsuc
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 df-bj-ind 13962 . . 3 (Ind 𝐴 ↔ (∅ ∈ 𝐴 ∧ ∀𝑥𝐴 suc 𝑥𝐴))
21simprbi 273 . 2 (Ind 𝐴 → ∀𝑥𝐴 suc 𝑥𝐴)
3 suceq 4387 . . . 4 (𝑥 = 𝐵 → suc 𝑥 = suc 𝐵)
43eleq1d 2239 . . 3 (𝑥 = 𝐵 → (suc 𝑥𝐴 ↔ suc 𝐵𝐴))
54rspcv 2830 . 2 (𝐵𝐴 → (∀𝑥𝐴 suc 𝑥𝐴 → suc 𝐵𝐴))
62, 5syl5com 29 1 (Ind 𝐴 → (𝐵𝐴 → suc 𝐵𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1348  wcel 2141  wral 2448  c0 3414  suc csuc 4350  Ind wind 13961
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-v 2732  df-un 3125  df-sn 3589  df-suc 4356  df-bj-ind 13962
This theorem is referenced by:  bj-indint  13966  bj-peano2  13974  bj-inf2vnlem2  14006
  Copyright terms: Public domain W3C validator