| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > bj-indsuc | GIF version | ||
| Description: A direct consequence of the definition of Ind. (Contributed by BJ, 30-Nov-2019.) |
| Ref | Expression |
|---|---|
| bj-indsuc | ⊢ (Ind 𝐴 → (𝐵 ∈ 𝐴 → suc 𝐵 ∈ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-bj-ind 15867 | . . 3 ⊢ (Ind 𝐴 ↔ (∅ ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 suc 𝑥 ∈ 𝐴)) | |
| 2 | 1 | simprbi 275 | . 2 ⊢ (Ind 𝐴 → ∀𝑥 ∈ 𝐴 suc 𝑥 ∈ 𝐴) |
| 3 | suceq 4449 | . . . 4 ⊢ (𝑥 = 𝐵 → suc 𝑥 = suc 𝐵) | |
| 4 | 3 | eleq1d 2274 | . . 3 ⊢ (𝑥 = 𝐵 → (suc 𝑥 ∈ 𝐴 ↔ suc 𝐵 ∈ 𝐴)) |
| 5 | 4 | rspcv 2873 | . 2 ⊢ (𝐵 ∈ 𝐴 → (∀𝑥 ∈ 𝐴 suc 𝑥 ∈ 𝐴 → suc 𝐵 ∈ 𝐴)) |
| 6 | 2, 5 | syl5com 29 | 1 ⊢ (Ind 𝐴 → (𝐵 ∈ 𝐴 → suc 𝐵 ∈ 𝐴)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1373 ∈ wcel 2176 ∀wral 2484 ∅c0 3460 suc csuc 4412 Ind wind 15866 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-v 2774 df-un 3170 df-sn 3639 df-suc 4418 df-bj-ind 15867 |
| This theorem is referenced by: bj-indint 15871 bj-peano2 15879 bj-inf2vnlem2 15911 |
| Copyright terms: Public domain | W3C validator |