Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-indsuc GIF version

Theorem bj-indsuc 15864
Description: A direct consequence of the definition of Ind. (Contributed by BJ, 30-Nov-2019.)
Assertion
Ref Expression
bj-indsuc (Ind 𝐴 → (𝐵𝐴 → suc 𝐵𝐴))

Proof of Theorem bj-indsuc
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 df-bj-ind 15863 . . 3 (Ind 𝐴 ↔ (∅ ∈ 𝐴 ∧ ∀𝑥𝐴 suc 𝑥𝐴))
21simprbi 275 . 2 (Ind 𝐴 → ∀𝑥𝐴 suc 𝑥𝐴)
3 suceq 4449 . . . 4 (𝑥 = 𝐵 → suc 𝑥 = suc 𝐵)
43eleq1d 2274 . . 3 (𝑥 = 𝐵 → (suc 𝑥𝐴 ↔ suc 𝐵𝐴))
54rspcv 2873 . 2 (𝐵𝐴 → (∀𝑥𝐴 suc 𝑥𝐴 → suc 𝐵𝐴))
62, 5syl5com 29 1 (Ind 𝐴 → (𝐵𝐴 → suc 𝐵𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1373  wcel 2176  wral 2484  c0 3460  suc csuc 4412  Ind wind 15862
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-v 2774  df-un 3170  df-sn 3639  df-suc 4418  df-bj-ind 15863
This theorem is referenced by:  bj-indint  15867  bj-peano2  15875  bj-inf2vnlem2  15907
  Copyright terms: Public domain W3C validator