Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-indsuc GIF version

Theorem bj-indsuc 14765
Description: A direct consequence of the definition of Ind. (Contributed by BJ, 30-Nov-2019.)
Assertion
Ref Expression
bj-indsuc (Ind 𝐴 → (𝐵𝐴 → suc 𝐵𝐴))

Proof of Theorem bj-indsuc
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 df-bj-ind 14764 . . 3 (Ind 𝐴 ↔ (∅ ∈ 𝐴 ∧ ∀𝑥𝐴 suc 𝑥𝐴))
21simprbi 275 . 2 (Ind 𝐴 → ∀𝑥𝐴 suc 𝑥𝐴)
3 suceq 4404 . . . 4 (𝑥 = 𝐵 → suc 𝑥 = suc 𝐵)
43eleq1d 2246 . . 3 (𝑥 = 𝐵 → (suc 𝑥𝐴 ↔ suc 𝐵𝐴))
54rspcv 2839 . 2 (𝐵𝐴 → (∀𝑥𝐴 suc 𝑥𝐴 → suc 𝐵𝐴))
62, 5syl5com 29 1 (Ind 𝐴 → (𝐵𝐴 → suc 𝐵𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1353  wcel 2148  wral 2455  c0 3424  suc csuc 4367  Ind wind 14763
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-v 2741  df-un 3135  df-sn 3600  df-suc 4373  df-bj-ind 14764
This theorem is referenced by:  bj-indint  14768  bj-peano2  14776  bj-inf2vnlem2  14808
  Copyright terms: Public domain W3C validator