Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-indeq GIF version

Theorem bj-indeq 13964
Description: Equality property for Ind. (Contributed by BJ, 30-Nov-2019.)
Assertion
Ref Expression
bj-indeq (𝐴 = 𝐵 → (Ind 𝐴 ↔ Ind 𝐵))

Proof of Theorem bj-indeq
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eleq2 2234 . . 3 (𝐴 = 𝐵 → (∅ ∈ 𝐴 ↔ ∅ ∈ 𝐵))
2 eleq2 2234 . . . 4 (𝐴 = 𝐵 → (suc 𝑥𝐴 ↔ suc 𝑥𝐵))
32raleqbi1dv 2673 . . 3 (𝐴 = 𝐵 → (∀𝑥𝐴 suc 𝑥𝐴 ↔ ∀𝑥𝐵 suc 𝑥𝐵))
41, 3anbi12d 470 . 2 (𝐴 = 𝐵 → ((∅ ∈ 𝐴 ∧ ∀𝑥𝐴 suc 𝑥𝐴) ↔ (∅ ∈ 𝐵 ∧ ∀𝑥𝐵 suc 𝑥𝐵)))
5 df-bj-ind 13962 . 2 (Ind 𝐴 ↔ (∅ ∈ 𝐴 ∧ ∀𝑥𝐴 suc 𝑥𝐴))
6 df-bj-ind 13962 . 2 (Ind 𝐵 ↔ (∅ ∈ 𝐵 ∧ ∀𝑥𝐵 suc 𝑥𝐵))
74, 5, 63bitr4g 222 1 (𝐴 = 𝐵 → (Ind 𝐴 ↔ Ind 𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1348  wcel 2141  wral 2448  c0 3414  suc csuc 4350  Ind wind 13961
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-bj-ind 13962
This theorem is referenced by:  bj-omind  13969  bj-omssind  13970  bj-ssom  13971  bj-om  13972  bj-2inf  13973
  Copyright terms: Public domain W3C validator