Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > Mathboxes > bj-indeq | GIF version |
Description: Equality property for Ind. (Contributed by BJ, 30-Nov-2019.) |
Ref | Expression |
---|---|
bj-indeq | ⊢ (𝐴 = 𝐵 → (Ind 𝐴 ↔ Ind 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq2 2230 | . . 3 ⊢ (𝐴 = 𝐵 → (∅ ∈ 𝐴 ↔ ∅ ∈ 𝐵)) | |
2 | eleq2 2230 | . . . 4 ⊢ (𝐴 = 𝐵 → (suc 𝑥 ∈ 𝐴 ↔ suc 𝑥 ∈ 𝐵)) | |
3 | 2 | raleqbi1dv 2669 | . . 3 ⊢ (𝐴 = 𝐵 → (∀𝑥 ∈ 𝐴 suc 𝑥 ∈ 𝐴 ↔ ∀𝑥 ∈ 𝐵 suc 𝑥 ∈ 𝐵)) |
4 | 1, 3 | anbi12d 465 | . 2 ⊢ (𝐴 = 𝐵 → ((∅ ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 suc 𝑥 ∈ 𝐴) ↔ (∅ ∈ 𝐵 ∧ ∀𝑥 ∈ 𝐵 suc 𝑥 ∈ 𝐵))) |
5 | df-bj-ind 13809 | . 2 ⊢ (Ind 𝐴 ↔ (∅ ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 suc 𝑥 ∈ 𝐴)) | |
6 | df-bj-ind 13809 | . 2 ⊢ (Ind 𝐵 ↔ (∅ ∈ 𝐵 ∧ ∀𝑥 ∈ 𝐵 suc 𝑥 ∈ 𝐵)) | |
7 | 4, 5, 6 | 3bitr4g 222 | 1 ⊢ (𝐴 = 𝐵 → (Ind 𝐴 ↔ Ind 𝐵)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 = wceq 1343 ∈ wcel 2136 ∀wral 2444 ∅c0 3409 suc csuc 4343 Ind wind 13808 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-bj-ind 13809 |
This theorem is referenced by: bj-omind 13816 bj-omssind 13817 bj-ssom 13818 bj-om 13819 bj-2inf 13820 |
Copyright terms: Public domain | W3C validator |