![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > Mathboxes > bj-indeq | GIF version |
Description: Equality property for Ind. (Contributed by BJ, 30-Nov-2019.) |
Ref | Expression |
---|---|
bj-indeq | ⊢ (𝐴 = 𝐵 → (Ind 𝐴 ↔ Ind 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq2 2257 | . . 3 ⊢ (𝐴 = 𝐵 → (∅ ∈ 𝐴 ↔ ∅ ∈ 𝐵)) | |
2 | eleq2 2257 | . . . 4 ⊢ (𝐴 = 𝐵 → (suc 𝑥 ∈ 𝐴 ↔ suc 𝑥 ∈ 𝐵)) | |
3 | 2 | raleqbi1dv 2702 | . . 3 ⊢ (𝐴 = 𝐵 → (∀𝑥 ∈ 𝐴 suc 𝑥 ∈ 𝐴 ↔ ∀𝑥 ∈ 𝐵 suc 𝑥 ∈ 𝐵)) |
4 | 1, 3 | anbi12d 473 | . 2 ⊢ (𝐴 = 𝐵 → ((∅ ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 suc 𝑥 ∈ 𝐴) ↔ (∅ ∈ 𝐵 ∧ ∀𝑥 ∈ 𝐵 suc 𝑥 ∈ 𝐵))) |
5 | df-bj-ind 15419 | . 2 ⊢ (Ind 𝐴 ↔ (∅ ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 suc 𝑥 ∈ 𝐴)) | |
6 | df-bj-ind 15419 | . 2 ⊢ (Ind 𝐵 ↔ (∅ ∈ 𝐵 ∧ ∀𝑥 ∈ 𝐵 suc 𝑥 ∈ 𝐵)) | |
7 | 4, 5, 6 | 3bitr4g 223 | 1 ⊢ (𝐴 = 𝐵 → (Ind 𝐴 ↔ Ind 𝐵)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1364 ∈ wcel 2164 ∀wral 2472 ∅c0 3446 suc csuc 4396 Ind wind 15418 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-bj-ind 15419 |
This theorem is referenced by: bj-omind 15426 bj-omssind 15427 bj-ssom 15428 bj-om 15429 bj-2inf 15430 |
Copyright terms: Public domain | W3C validator |