| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > bj-indeq | GIF version | ||
| Description: Equality property for Ind. (Contributed by BJ, 30-Nov-2019.) |
| Ref | Expression |
|---|---|
| bj-indeq | ⊢ (𝐴 = 𝐵 → (Ind 𝐴 ↔ Ind 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq2 2271 | . . 3 ⊢ (𝐴 = 𝐵 → (∅ ∈ 𝐴 ↔ ∅ ∈ 𝐵)) | |
| 2 | eleq2 2271 | . . . 4 ⊢ (𝐴 = 𝐵 → (suc 𝑥 ∈ 𝐴 ↔ suc 𝑥 ∈ 𝐵)) | |
| 3 | 2 | raleqbi1dv 2717 | . . 3 ⊢ (𝐴 = 𝐵 → (∀𝑥 ∈ 𝐴 suc 𝑥 ∈ 𝐴 ↔ ∀𝑥 ∈ 𝐵 suc 𝑥 ∈ 𝐵)) |
| 4 | 1, 3 | anbi12d 473 | . 2 ⊢ (𝐴 = 𝐵 → ((∅ ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 suc 𝑥 ∈ 𝐴) ↔ (∅ ∈ 𝐵 ∧ ∀𝑥 ∈ 𝐵 suc 𝑥 ∈ 𝐵))) |
| 5 | df-bj-ind 16062 | . 2 ⊢ (Ind 𝐴 ↔ (∅ ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 suc 𝑥 ∈ 𝐴)) | |
| 6 | df-bj-ind 16062 | . 2 ⊢ (Ind 𝐵 ↔ (∅ ∈ 𝐵 ∧ ∀𝑥 ∈ 𝐵 suc 𝑥 ∈ 𝐵)) | |
| 7 | 4, 5, 6 | 3bitr4g 223 | 1 ⊢ (𝐴 = 𝐵 → (Ind 𝐴 ↔ Ind 𝐵)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1373 ∈ wcel 2178 ∀wral 2486 ∅c0 3468 suc csuc 4430 Ind wind 16061 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-bj-ind 16062 |
| This theorem is referenced by: bj-omind 16069 bj-omssind 16070 bj-ssom 16071 bj-om 16072 bj-2inf 16073 |
| Copyright terms: Public domain | W3C validator |