Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-indeq GIF version

Theorem bj-indeq 15421
Description: Equality property for Ind. (Contributed by BJ, 30-Nov-2019.)
Assertion
Ref Expression
bj-indeq (𝐴 = 𝐵 → (Ind 𝐴 ↔ Ind 𝐵))

Proof of Theorem bj-indeq
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eleq2 2257 . . 3 (𝐴 = 𝐵 → (∅ ∈ 𝐴 ↔ ∅ ∈ 𝐵))
2 eleq2 2257 . . . 4 (𝐴 = 𝐵 → (suc 𝑥𝐴 ↔ suc 𝑥𝐵))
32raleqbi1dv 2702 . . 3 (𝐴 = 𝐵 → (∀𝑥𝐴 suc 𝑥𝐴 ↔ ∀𝑥𝐵 suc 𝑥𝐵))
41, 3anbi12d 473 . 2 (𝐴 = 𝐵 → ((∅ ∈ 𝐴 ∧ ∀𝑥𝐴 suc 𝑥𝐴) ↔ (∅ ∈ 𝐵 ∧ ∀𝑥𝐵 suc 𝑥𝐵)))
5 df-bj-ind 15419 . 2 (Ind 𝐴 ↔ (∅ ∈ 𝐴 ∧ ∀𝑥𝐴 suc 𝑥𝐴))
6 df-bj-ind 15419 . 2 (Ind 𝐵 ↔ (∅ ∈ 𝐵 ∧ ∀𝑥𝐵 suc 𝑥𝐵))
74, 5, 63bitr4g 223 1 (𝐴 = 𝐵 → (Ind 𝐴 ↔ Ind 𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1364  wcel 2164  wral 2472  c0 3446  suc csuc 4396  Ind wind 15418
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-bj-ind 15419
This theorem is referenced by:  bj-omind  15426  bj-omssind  15427  bj-ssom  15428  bj-om  15429  bj-2inf  15430
  Copyright terms: Public domain W3C validator