| Mathbox for BJ | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > bj-indint | GIF version | ||
| Description: The property of being an inductive class is closed under intersections. (Contributed by BJ, 30-Nov-2019.) | 
| Ref | Expression | 
|---|---|
| bj-indint | ⊢ Ind ∩ {𝑥 ∈ 𝐴 ∣ Ind 𝑥} | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | df-bj-ind 15573 | . . . . 5 ⊢ (Ind 𝑥 ↔ (∅ ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 suc 𝑦 ∈ 𝑥)) | |
| 2 | 1 | simplbi 274 | . . . 4 ⊢ (Ind 𝑥 → ∅ ∈ 𝑥) | 
| 3 | 2 | rgenw 2552 | . . 3 ⊢ ∀𝑥 ∈ 𝐴 (Ind 𝑥 → ∅ ∈ 𝑥) | 
| 4 | 0ex 4160 | . . . 4 ⊢ ∅ ∈ V | |
| 5 | 4 | elintrab 3886 | . . 3 ⊢ (∅ ∈ ∩ {𝑥 ∈ 𝐴 ∣ Ind 𝑥} ↔ ∀𝑥 ∈ 𝐴 (Ind 𝑥 → ∅ ∈ 𝑥)) | 
| 6 | 3, 5 | mpbir 146 | . 2 ⊢ ∅ ∈ ∩ {𝑥 ∈ 𝐴 ∣ Ind 𝑥} | 
| 7 | bj-indsuc 15574 | . . . . . 6 ⊢ (Ind 𝑥 → (𝑦 ∈ 𝑥 → suc 𝑦 ∈ 𝑥)) | |
| 8 | 7 | a2i 11 | . . . . 5 ⊢ ((Ind 𝑥 → 𝑦 ∈ 𝑥) → (Ind 𝑥 → suc 𝑦 ∈ 𝑥)) | 
| 9 | 8 | ralimi 2560 | . . . 4 ⊢ (∀𝑥 ∈ 𝐴 (Ind 𝑥 → 𝑦 ∈ 𝑥) → ∀𝑥 ∈ 𝐴 (Ind 𝑥 → suc 𝑦 ∈ 𝑥)) | 
| 10 | vex 2766 | . . . . 5 ⊢ 𝑦 ∈ V | |
| 11 | 10 | elintrab 3886 | . . . 4 ⊢ (𝑦 ∈ ∩ {𝑥 ∈ 𝐴 ∣ Ind 𝑥} ↔ ∀𝑥 ∈ 𝐴 (Ind 𝑥 → 𝑦 ∈ 𝑥)) | 
| 12 | 10 | bj-sucex 15569 | . . . . 5 ⊢ suc 𝑦 ∈ V | 
| 13 | 12 | elintrab 3886 | . . . 4 ⊢ (suc 𝑦 ∈ ∩ {𝑥 ∈ 𝐴 ∣ Ind 𝑥} ↔ ∀𝑥 ∈ 𝐴 (Ind 𝑥 → suc 𝑦 ∈ 𝑥)) | 
| 14 | 9, 11, 13 | 3imtr4i 201 | . . 3 ⊢ (𝑦 ∈ ∩ {𝑥 ∈ 𝐴 ∣ Ind 𝑥} → suc 𝑦 ∈ ∩ {𝑥 ∈ 𝐴 ∣ Ind 𝑥}) | 
| 15 | 14 | rgen 2550 | . 2 ⊢ ∀𝑦 ∈ ∩ {𝑥 ∈ 𝐴 ∣ Ind 𝑥}suc 𝑦 ∈ ∩ {𝑥 ∈ 𝐴 ∣ Ind 𝑥} | 
| 16 | df-bj-ind 15573 | . 2 ⊢ (Ind ∩ {𝑥 ∈ 𝐴 ∣ Ind 𝑥} ↔ (∅ ∈ ∩ {𝑥 ∈ 𝐴 ∣ Ind 𝑥} ∧ ∀𝑦 ∈ ∩ {𝑥 ∈ 𝐴 ∣ Ind 𝑥}suc 𝑦 ∈ ∩ {𝑥 ∈ 𝐴 ∣ Ind 𝑥})) | |
| 17 | 6, 15, 16 | mpbir2an 944 | 1 ⊢ Ind ∩ {𝑥 ∈ 𝐴 ∣ Ind 𝑥} | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ∈ wcel 2167 ∀wral 2475 {crab 2479 ∅c0 3450 ∩ cint 3874 suc csuc 4400 Ind wind 15572 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-nul 4159 ax-pr 4242 ax-un 4468 ax-bd0 15459 ax-bdor 15462 ax-bdex 15465 ax-bdeq 15466 ax-bdel 15467 ax-bdsb 15468 ax-bdsep 15530 | 
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-dif 3159 df-un 3161 df-nul 3451 df-sn 3628 df-pr 3629 df-uni 3840 df-int 3875 df-suc 4406 df-bdc 15487 df-bj-ind 15573 | 
| This theorem is referenced by: bj-omind 15580 | 
| Copyright terms: Public domain | W3C validator |