| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > bj-indint | GIF version | ||
| Description: The property of being an inductive class is closed under intersections. (Contributed by BJ, 30-Nov-2019.) |
| Ref | Expression |
|---|---|
| bj-indint | ⊢ Ind ∩ {𝑥 ∈ 𝐴 ∣ Ind 𝑥} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-bj-ind 16032 | . . . . 5 ⊢ (Ind 𝑥 ↔ (∅ ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 suc 𝑦 ∈ 𝑥)) | |
| 2 | 1 | simplbi 274 | . . . 4 ⊢ (Ind 𝑥 → ∅ ∈ 𝑥) |
| 3 | 2 | rgenw 2562 | . . 3 ⊢ ∀𝑥 ∈ 𝐴 (Ind 𝑥 → ∅ ∈ 𝑥) |
| 4 | 0ex 4182 | . . . 4 ⊢ ∅ ∈ V | |
| 5 | 4 | elintrab 3906 | . . 3 ⊢ (∅ ∈ ∩ {𝑥 ∈ 𝐴 ∣ Ind 𝑥} ↔ ∀𝑥 ∈ 𝐴 (Ind 𝑥 → ∅ ∈ 𝑥)) |
| 6 | 3, 5 | mpbir 146 | . 2 ⊢ ∅ ∈ ∩ {𝑥 ∈ 𝐴 ∣ Ind 𝑥} |
| 7 | bj-indsuc 16033 | . . . . . 6 ⊢ (Ind 𝑥 → (𝑦 ∈ 𝑥 → suc 𝑦 ∈ 𝑥)) | |
| 8 | 7 | a2i 11 | . . . . 5 ⊢ ((Ind 𝑥 → 𝑦 ∈ 𝑥) → (Ind 𝑥 → suc 𝑦 ∈ 𝑥)) |
| 9 | 8 | ralimi 2570 | . . . 4 ⊢ (∀𝑥 ∈ 𝐴 (Ind 𝑥 → 𝑦 ∈ 𝑥) → ∀𝑥 ∈ 𝐴 (Ind 𝑥 → suc 𝑦 ∈ 𝑥)) |
| 10 | vex 2776 | . . . . 5 ⊢ 𝑦 ∈ V | |
| 11 | 10 | elintrab 3906 | . . . 4 ⊢ (𝑦 ∈ ∩ {𝑥 ∈ 𝐴 ∣ Ind 𝑥} ↔ ∀𝑥 ∈ 𝐴 (Ind 𝑥 → 𝑦 ∈ 𝑥)) |
| 12 | 10 | bj-sucex 16028 | . . . . 5 ⊢ suc 𝑦 ∈ V |
| 13 | 12 | elintrab 3906 | . . . 4 ⊢ (suc 𝑦 ∈ ∩ {𝑥 ∈ 𝐴 ∣ Ind 𝑥} ↔ ∀𝑥 ∈ 𝐴 (Ind 𝑥 → suc 𝑦 ∈ 𝑥)) |
| 14 | 9, 11, 13 | 3imtr4i 201 | . . 3 ⊢ (𝑦 ∈ ∩ {𝑥 ∈ 𝐴 ∣ Ind 𝑥} → suc 𝑦 ∈ ∩ {𝑥 ∈ 𝐴 ∣ Ind 𝑥}) |
| 15 | 14 | rgen 2560 | . 2 ⊢ ∀𝑦 ∈ ∩ {𝑥 ∈ 𝐴 ∣ Ind 𝑥}suc 𝑦 ∈ ∩ {𝑥 ∈ 𝐴 ∣ Ind 𝑥} |
| 16 | df-bj-ind 16032 | . 2 ⊢ (Ind ∩ {𝑥 ∈ 𝐴 ∣ Ind 𝑥} ↔ (∅ ∈ ∩ {𝑥 ∈ 𝐴 ∣ Ind 𝑥} ∧ ∀𝑦 ∈ ∩ {𝑥 ∈ 𝐴 ∣ Ind 𝑥}suc 𝑦 ∈ ∩ {𝑥 ∈ 𝐴 ∣ Ind 𝑥})) | |
| 17 | 6, 15, 16 | mpbir2an 945 | 1 ⊢ Ind ∩ {𝑥 ∈ 𝐴 ∣ Ind 𝑥} |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2177 ∀wral 2485 {crab 2489 ∅c0 3464 ∩ cint 3894 suc csuc 4425 Ind wind 16031 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-nul 4181 ax-pr 4264 ax-un 4493 ax-bd0 15918 ax-bdor 15921 ax-bdex 15924 ax-bdeq 15925 ax-bdel 15926 ax-bdsb 15927 ax-bdsep 15989 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-rab 2494 df-v 2775 df-dif 3172 df-un 3174 df-nul 3465 df-sn 3644 df-pr 3645 df-uni 3860 df-int 3895 df-suc 4431 df-bdc 15946 df-bj-ind 16032 |
| This theorem is referenced by: bj-omind 16039 |
| Copyright terms: Public domain | W3C validator |