Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-indint GIF version

Theorem bj-indint 13966
Description: The property of being an inductive class is closed under intersections. (Contributed by BJ, 30-Nov-2019.)
Assertion
Ref Expression
bj-indint Ind {𝑥𝐴 ∣ Ind 𝑥}
Distinct variable group:   𝑥,𝐴

Proof of Theorem bj-indint
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 df-bj-ind 13962 . . . . 5 (Ind 𝑥 ↔ (∅ ∈ 𝑥 ∧ ∀𝑦𝑥 suc 𝑦𝑥))
21simplbi 272 . . . 4 (Ind 𝑥 → ∅ ∈ 𝑥)
32rgenw 2525 . . 3 𝑥𝐴 (Ind 𝑥 → ∅ ∈ 𝑥)
4 0ex 4116 . . . 4 ∅ ∈ V
54elintrab 3843 . . 3 (∅ ∈ {𝑥𝐴 ∣ Ind 𝑥} ↔ ∀𝑥𝐴 (Ind 𝑥 → ∅ ∈ 𝑥))
63, 5mpbir 145 . 2 ∅ ∈ {𝑥𝐴 ∣ Ind 𝑥}
7 bj-indsuc 13963 . . . . . 6 (Ind 𝑥 → (𝑦𝑥 → suc 𝑦𝑥))
87a2i 11 . . . . 5 ((Ind 𝑥𝑦𝑥) → (Ind 𝑥 → suc 𝑦𝑥))
98ralimi 2533 . . . 4 (∀𝑥𝐴 (Ind 𝑥𝑦𝑥) → ∀𝑥𝐴 (Ind 𝑥 → suc 𝑦𝑥))
10 vex 2733 . . . . 5 𝑦 ∈ V
1110elintrab 3843 . . . 4 (𝑦 {𝑥𝐴 ∣ Ind 𝑥} ↔ ∀𝑥𝐴 (Ind 𝑥𝑦𝑥))
1210bj-sucex 13958 . . . . 5 suc 𝑦 ∈ V
1312elintrab 3843 . . . 4 (suc 𝑦 {𝑥𝐴 ∣ Ind 𝑥} ↔ ∀𝑥𝐴 (Ind 𝑥 → suc 𝑦𝑥))
149, 11, 133imtr4i 200 . . 3 (𝑦 {𝑥𝐴 ∣ Ind 𝑥} → suc 𝑦 {𝑥𝐴 ∣ Ind 𝑥})
1514rgen 2523 . 2 𝑦 {𝑥𝐴 ∣ Ind 𝑥}suc 𝑦 {𝑥𝐴 ∣ Ind 𝑥}
16 df-bj-ind 13962 . 2 (Ind {𝑥𝐴 ∣ Ind 𝑥} ↔ (∅ ∈ {𝑥𝐴 ∣ Ind 𝑥} ∧ ∀𝑦 {𝑥𝐴 ∣ Ind 𝑥}suc 𝑦 {𝑥𝐴 ∣ Ind 𝑥}))
176, 15, 16mpbir2an 937 1 Ind {𝑥𝐴 ∣ Ind 𝑥}
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2141  wral 2448  {crab 2452  c0 3414   cint 3831  suc csuc 4350  Ind wind 13961
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-nul 4115  ax-pr 4194  ax-un 4418  ax-bd0 13848  ax-bdor 13851  ax-bdex 13854  ax-bdeq 13855  ax-bdel 13856  ax-bdsb 13857  ax-bdsep 13919
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-rab 2457  df-v 2732  df-dif 3123  df-un 3125  df-nul 3415  df-sn 3589  df-pr 3590  df-uni 3797  df-int 3832  df-suc 4356  df-bdc 13876  df-bj-ind 13962
This theorem is referenced by:  bj-omind  13969
  Copyright terms: Public domain W3C validator