Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-indint GIF version

Theorem bj-indint 16252
Description: The property of being an inductive class is closed under intersections. (Contributed by BJ, 30-Nov-2019.)
Assertion
Ref Expression
bj-indint Ind {𝑥𝐴 ∣ Ind 𝑥}
Distinct variable group:   𝑥,𝐴

Proof of Theorem bj-indint
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 df-bj-ind 16248 . . . . 5 (Ind 𝑥 ↔ (∅ ∈ 𝑥 ∧ ∀𝑦𝑥 suc 𝑦𝑥))
21simplbi 274 . . . 4 (Ind 𝑥 → ∅ ∈ 𝑥)
32rgenw 2585 . . 3 𝑥𝐴 (Ind 𝑥 → ∅ ∈ 𝑥)
4 0ex 4210 . . . 4 ∅ ∈ V
54elintrab 3934 . . 3 (∅ ∈ {𝑥𝐴 ∣ Ind 𝑥} ↔ ∀𝑥𝐴 (Ind 𝑥 → ∅ ∈ 𝑥))
63, 5mpbir 146 . 2 ∅ ∈ {𝑥𝐴 ∣ Ind 𝑥}
7 bj-indsuc 16249 . . . . . 6 (Ind 𝑥 → (𝑦𝑥 → suc 𝑦𝑥))
87a2i 11 . . . . 5 ((Ind 𝑥𝑦𝑥) → (Ind 𝑥 → suc 𝑦𝑥))
98ralimi 2593 . . . 4 (∀𝑥𝐴 (Ind 𝑥𝑦𝑥) → ∀𝑥𝐴 (Ind 𝑥 → suc 𝑦𝑥))
10 vex 2802 . . . . 5 𝑦 ∈ V
1110elintrab 3934 . . . 4 (𝑦 {𝑥𝐴 ∣ Ind 𝑥} ↔ ∀𝑥𝐴 (Ind 𝑥𝑦𝑥))
1210bj-sucex 16244 . . . . 5 suc 𝑦 ∈ V
1312elintrab 3934 . . . 4 (suc 𝑦 {𝑥𝐴 ∣ Ind 𝑥} ↔ ∀𝑥𝐴 (Ind 𝑥 → suc 𝑦𝑥))
149, 11, 133imtr4i 201 . . 3 (𝑦 {𝑥𝐴 ∣ Ind 𝑥} → suc 𝑦 {𝑥𝐴 ∣ Ind 𝑥})
1514rgen 2583 . 2 𝑦 {𝑥𝐴 ∣ Ind 𝑥}suc 𝑦 {𝑥𝐴 ∣ Ind 𝑥}
16 df-bj-ind 16248 . 2 (Ind {𝑥𝐴 ∣ Ind 𝑥} ↔ (∅ ∈ {𝑥𝐴 ∣ Ind 𝑥} ∧ ∀𝑦 {𝑥𝐴 ∣ Ind 𝑥}suc 𝑦 {𝑥𝐴 ∣ Ind 𝑥}))
176, 15, 16mpbir2an 948 1 Ind {𝑥𝐴 ∣ Ind 𝑥}
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2200  wral 2508  {crab 2512  c0 3491   cint 3922  suc csuc 4455  Ind wind 16247
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-nul 4209  ax-pr 4292  ax-un 4523  ax-bd0 16134  ax-bdor 16137  ax-bdex 16140  ax-bdeq 16141  ax-bdel 16142  ax-bdsb 16143  ax-bdsep 16205
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-dif 3199  df-un 3201  df-nul 3492  df-sn 3672  df-pr 3673  df-uni 3888  df-int 3923  df-suc 4461  df-bdc 16162  df-bj-ind 16248
This theorem is referenced by:  bj-omind  16255
  Copyright terms: Public domain W3C validator