Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > Mathboxes > bj-indint | GIF version |
Description: The property of being an inductive class is closed under intersections. (Contributed by BJ, 30-Nov-2019.) |
Ref | Expression |
---|---|
bj-indint | ⊢ Ind ∩ {𝑥 ∈ 𝐴 ∣ Ind 𝑥} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-bj-ind 14219 | . . . . 5 ⊢ (Ind 𝑥 ↔ (∅ ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 suc 𝑦 ∈ 𝑥)) | |
2 | 1 | simplbi 274 | . . . 4 ⊢ (Ind 𝑥 → ∅ ∈ 𝑥) |
3 | 2 | rgenw 2530 | . . 3 ⊢ ∀𝑥 ∈ 𝐴 (Ind 𝑥 → ∅ ∈ 𝑥) |
4 | 0ex 4125 | . . . 4 ⊢ ∅ ∈ V | |
5 | 4 | elintrab 3852 | . . 3 ⊢ (∅ ∈ ∩ {𝑥 ∈ 𝐴 ∣ Ind 𝑥} ↔ ∀𝑥 ∈ 𝐴 (Ind 𝑥 → ∅ ∈ 𝑥)) |
6 | 3, 5 | mpbir 146 | . 2 ⊢ ∅ ∈ ∩ {𝑥 ∈ 𝐴 ∣ Ind 𝑥} |
7 | bj-indsuc 14220 | . . . . . 6 ⊢ (Ind 𝑥 → (𝑦 ∈ 𝑥 → suc 𝑦 ∈ 𝑥)) | |
8 | 7 | a2i 11 | . . . . 5 ⊢ ((Ind 𝑥 → 𝑦 ∈ 𝑥) → (Ind 𝑥 → suc 𝑦 ∈ 𝑥)) |
9 | 8 | ralimi 2538 | . . . 4 ⊢ (∀𝑥 ∈ 𝐴 (Ind 𝑥 → 𝑦 ∈ 𝑥) → ∀𝑥 ∈ 𝐴 (Ind 𝑥 → suc 𝑦 ∈ 𝑥)) |
10 | vex 2738 | . . . . 5 ⊢ 𝑦 ∈ V | |
11 | 10 | elintrab 3852 | . . . 4 ⊢ (𝑦 ∈ ∩ {𝑥 ∈ 𝐴 ∣ Ind 𝑥} ↔ ∀𝑥 ∈ 𝐴 (Ind 𝑥 → 𝑦 ∈ 𝑥)) |
12 | 10 | bj-sucex 14215 | . . . . 5 ⊢ suc 𝑦 ∈ V |
13 | 12 | elintrab 3852 | . . . 4 ⊢ (suc 𝑦 ∈ ∩ {𝑥 ∈ 𝐴 ∣ Ind 𝑥} ↔ ∀𝑥 ∈ 𝐴 (Ind 𝑥 → suc 𝑦 ∈ 𝑥)) |
14 | 9, 11, 13 | 3imtr4i 201 | . . 3 ⊢ (𝑦 ∈ ∩ {𝑥 ∈ 𝐴 ∣ Ind 𝑥} → suc 𝑦 ∈ ∩ {𝑥 ∈ 𝐴 ∣ Ind 𝑥}) |
15 | 14 | rgen 2528 | . 2 ⊢ ∀𝑦 ∈ ∩ {𝑥 ∈ 𝐴 ∣ Ind 𝑥}suc 𝑦 ∈ ∩ {𝑥 ∈ 𝐴 ∣ Ind 𝑥} |
16 | df-bj-ind 14219 | . 2 ⊢ (Ind ∩ {𝑥 ∈ 𝐴 ∣ Ind 𝑥} ↔ (∅ ∈ ∩ {𝑥 ∈ 𝐴 ∣ Ind 𝑥} ∧ ∀𝑦 ∈ ∩ {𝑥 ∈ 𝐴 ∣ Ind 𝑥}suc 𝑦 ∈ ∩ {𝑥 ∈ 𝐴 ∣ Ind 𝑥})) | |
17 | 6, 15, 16 | mpbir2an 942 | 1 ⊢ Ind ∩ {𝑥 ∈ 𝐴 ∣ Ind 𝑥} |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2146 ∀wral 2453 {crab 2457 ∅c0 3420 ∩ cint 3840 suc csuc 4359 Ind wind 14218 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-13 2148 ax-14 2149 ax-ext 2157 ax-nul 4124 ax-pr 4203 ax-un 4427 ax-bd0 14105 ax-bdor 14108 ax-bdex 14111 ax-bdeq 14112 ax-bdel 14113 ax-bdsb 14114 ax-bdsep 14176 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-nf 1459 df-sb 1761 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ral 2458 df-rex 2459 df-rab 2462 df-v 2737 df-dif 3129 df-un 3131 df-nul 3421 df-sn 3595 df-pr 3596 df-uni 3806 df-int 3841 df-suc 4365 df-bdc 14133 df-bj-ind 14219 |
This theorem is referenced by: bj-omind 14226 |
Copyright terms: Public domain | W3C validator |