Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-indint GIF version

Theorem bj-indint 15800
Description: The property of being an inductive class is closed under intersections. (Contributed by BJ, 30-Nov-2019.)
Assertion
Ref Expression
bj-indint Ind {𝑥𝐴 ∣ Ind 𝑥}
Distinct variable group:   𝑥,𝐴

Proof of Theorem bj-indint
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 df-bj-ind 15796 . . . . 5 (Ind 𝑥 ↔ (∅ ∈ 𝑥 ∧ ∀𝑦𝑥 suc 𝑦𝑥))
21simplbi 274 . . . 4 (Ind 𝑥 → ∅ ∈ 𝑥)
32rgenw 2560 . . 3 𝑥𝐴 (Ind 𝑥 → ∅ ∈ 𝑥)
4 0ex 4170 . . . 4 ∅ ∈ V
54elintrab 3896 . . 3 (∅ ∈ {𝑥𝐴 ∣ Ind 𝑥} ↔ ∀𝑥𝐴 (Ind 𝑥 → ∅ ∈ 𝑥))
63, 5mpbir 146 . 2 ∅ ∈ {𝑥𝐴 ∣ Ind 𝑥}
7 bj-indsuc 15797 . . . . . 6 (Ind 𝑥 → (𝑦𝑥 → suc 𝑦𝑥))
87a2i 11 . . . . 5 ((Ind 𝑥𝑦𝑥) → (Ind 𝑥 → suc 𝑦𝑥))
98ralimi 2568 . . . 4 (∀𝑥𝐴 (Ind 𝑥𝑦𝑥) → ∀𝑥𝐴 (Ind 𝑥 → suc 𝑦𝑥))
10 vex 2774 . . . . 5 𝑦 ∈ V
1110elintrab 3896 . . . 4 (𝑦 {𝑥𝐴 ∣ Ind 𝑥} ↔ ∀𝑥𝐴 (Ind 𝑥𝑦𝑥))
1210bj-sucex 15792 . . . . 5 suc 𝑦 ∈ V
1312elintrab 3896 . . . 4 (suc 𝑦 {𝑥𝐴 ∣ Ind 𝑥} ↔ ∀𝑥𝐴 (Ind 𝑥 → suc 𝑦𝑥))
149, 11, 133imtr4i 201 . . 3 (𝑦 {𝑥𝐴 ∣ Ind 𝑥} → suc 𝑦 {𝑥𝐴 ∣ Ind 𝑥})
1514rgen 2558 . 2 𝑦 {𝑥𝐴 ∣ Ind 𝑥}suc 𝑦 {𝑥𝐴 ∣ Ind 𝑥}
16 df-bj-ind 15796 . 2 (Ind {𝑥𝐴 ∣ Ind 𝑥} ↔ (∅ ∈ {𝑥𝐴 ∣ Ind 𝑥} ∧ ∀𝑦 {𝑥𝐴 ∣ Ind 𝑥}suc 𝑦 {𝑥𝐴 ∣ Ind 𝑥}))
176, 15, 16mpbir2an 944 1 Ind {𝑥𝐴 ∣ Ind 𝑥}
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2175  wral 2483  {crab 2487  c0 3459   cint 3884  suc csuc 4411  Ind wind 15795
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-nul 4169  ax-pr 4252  ax-un 4479  ax-bd0 15682  ax-bdor 15685  ax-bdex 15688  ax-bdeq 15689  ax-bdel 15690  ax-bdsb 15691  ax-bdsep 15753
This theorem depends on definitions:  df-bi 117  df-tru 1375  df-nf 1483  df-sb 1785  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ral 2488  df-rex 2489  df-rab 2492  df-v 2773  df-dif 3167  df-un 3169  df-nul 3460  df-sn 3638  df-pr 3639  df-uni 3850  df-int 3885  df-suc 4417  df-bdc 15710  df-bj-ind 15796
This theorem is referenced by:  bj-omind  15803
  Copyright terms: Public domain W3C validator