| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > bj-indint | GIF version | ||
| Description: The property of being an inductive class is closed under intersections. (Contributed by BJ, 30-Nov-2019.) |
| Ref | Expression |
|---|---|
| bj-indint | ⊢ Ind ∩ {𝑥 ∈ 𝐴 ∣ Ind 𝑥} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-bj-ind 16248 | . . . . 5 ⊢ (Ind 𝑥 ↔ (∅ ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 suc 𝑦 ∈ 𝑥)) | |
| 2 | 1 | simplbi 274 | . . . 4 ⊢ (Ind 𝑥 → ∅ ∈ 𝑥) |
| 3 | 2 | rgenw 2585 | . . 3 ⊢ ∀𝑥 ∈ 𝐴 (Ind 𝑥 → ∅ ∈ 𝑥) |
| 4 | 0ex 4210 | . . . 4 ⊢ ∅ ∈ V | |
| 5 | 4 | elintrab 3934 | . . 3 ⊢ (∅ ∈ ∩ {𝑥 ∈ 𝐴 ∣ Ind 𝑥} ↔ ∀𝑥 ∈ 𝐴 (Ind 𝑥 → ∅ ∈ 𝑥)) |
| 6 | 3, 5 | mpbir 146 | . 2 ⊢ ∅ ∈ ∩ {𝑥 ∈ 𝐴 ∣ Ind 𝑥} |
| 7 | bj-indsuc 16249 | . . . . . 6 ⊢ (Ind 𝑥 → (𝑦 ∈ 𝑥 → suc 𝑦 ∈ 𝑥)) | |
| 8 | 7 | a2i 11 | . . . . 5 ⊢ ((Ind 𝑥 → 𝑦 ∈ 𝑥) → (Ind 𝑥 → suc 𝑦 ∈ 𝑥)) |
| 9 | 8 | ralimi 2593 | . . . 4 ⊢ (∀𝑥 ∈ 𝐴 (Ind 𝑥 → 𝑦 ∈ 𝑥) → ∀𝑥 ∈ 𝐴 (Ind 𝑥 → suc 𝑦 ∈ 𝑥)) |
| 10 | vex 2802 | . . . . 5 ⊢ 𝑦 ∈ V | |
| 11 | 10 | elintrab 3934 | . . . 4 ⊢ (𝑦 ∈ ∩ {𝑥 ∈ 𝐴 ∣ Ind 𝑥} ↔ ∀𝑥 ∈ 𝐴 (Ind 𝑥 → 𝑦 ∈ 𝑥)) |
| 12 | 10 | bj-sucex 16244 | . . . . 5 ⊢ suc 𝑦 ∈ V |
| 13 | 12 | elintrab 3934 | . . . 4 ⊢ (suc 𝑦 ∈ ∩ {𝑥 ∈ 𝐴 ∣ Ind 𝑥} ↔ ∀𝑥 ∈ 𝐴 (Ind 𝑥 → suc 𝑦 ∈ 𝑥)) |
| 14 | 9, 11, 13 | 3imtr4i 201 | . . 3 ⊢ (𝑦 ∈ ∩ {𝑥 ∈ 𝐴 ∣ Ind 𝑥} → suc 𝑦 ∈ ∩ {𝑥 ∈ 𝐴 ∣ Ind 𝑥}) |
| 15 | 14 | rgen 2583 | . 2 ⊢ ∀𝑦 ∈ ∩ {𝑥 ∈ 𝐴 ∣ Ind 𝑥}suc 𝑦 ∈ ∩ {𝑥 ∈ 𝐴 ∣ Ind 𝑥} |
| 16 | df-bj-ind 16248 | . 2 ⊢ (Ind ∩ {𝑥 ∈ 𝐴 ∣ Ind 𝑥} ↔ (∅ ∈ ∩ {𝑥 ∈ 𝐴 ∣ Ind 𝑥} ∧ ∀𝑦 ∈ ∩ {𝑥 ∈ 𝐴 ∣ Ind 𝑥}suc 𝑦 ∈ ∩ {𝑥 ∈ 𝐴 ∣ Ind 𝑥})) | |
| 17 | 6, 15, 16 | mpbir2an 948 | 1 ⊢ Ind ∩ {𝑥 ∈ 𝐴 ∣ Ind 𝑥} |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2200 ∀wral 2508 {crab 2512 ∅c0 3491 ∩ cint 3922 suc csuc 4455 Ind wind 16247 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-nul 4209 ax-pr 4292 ax-un 4523 ax-bd0 16134 ax-bdor 16137 ax-bdex 16140 ax-bdeq 16141 ax-bdel 16142 ax-bdsb 16143 ax-bdsep 16205 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-dif 3199 df-un 3201 df-nul 3492 df-sn 3672 df-pr 3673 df-uni 3888 df-int 3923 df-suc 4461 df-bdc 16162 df-bj-ind 16248 |
| This theorem is referenced by: bj-omind 16255 |
| Copyright terms: Public domain | W3C validator |