ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-cnfld GIF version

Definition df-cnfld 14189
Description: The field of complex numbers. Other number fields and rings can be constructed by applying the s restriction operator.

The contract of this set is defined entirely by cnfldex 14191, cnfldadd 14194, cnfldmul 14196, cnfldcj 14197, cnfldtset 14198, cnfldle 14199, cnfldds 14200, and cnfldbas 14192. We may add additional members to this in the future. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Thierry Arnoux, 15-Dec-2017.) Use maps-to notation for addition and multiplication. (Revised by GG, 31-Mar-2025.) (New usage is discouraged.)

Assertion
Ref Expression
df-cnfld fld = (({⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 + 𝑦))⟩, ⟨(.r‘ndx), (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))⟩} ∪ {⟨(*𝑟‘ndx), ∗⟩}) ∪ ({⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∪ {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩}))
Distinct variable group:   𝑥,𝑦

Detailed syntax breakdown of Definition df-cnfld
StepHypRef Expression
1 ccnfld 14188 . 2 class fld
2 cnx 12700 . . . . . . 7 class ndx
3 cbs 12703 . . . . . . 7 class Base
42, 3cfv 5259 . . . . . 6 class (Base‘ndx)
5 cc 7894 . . . . . 6 class
64, 5cop 3626 . . . . 5 class ⟨(Base‘ndx), ℂ⟩
7 cplusg 12780 . . . . . . 7 class +g
82, 7cfv 5259 . . . . . 6 class (+g‘ndx)
9 vx . . . . . . 7 setvar 𝑥
10 vy . . . . . . 7 setvar 𝑦
119cv 1363 . . . . . . . 8 class 𝑥
1210cv 1363 . . . . . . . 8 class 𝑦
13 caddc 7899 . . . . . . . 8 class +
1411, 12, 13co 5925 . . . . . . 7 class (𝑥 + 𝑦)
159, 10, 5, 5, 14cmpo 5927 . . . . . 6 class (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 + 𝑦))
168, 15cop 3626 . . . . 5 class ⟨(+g‘ndx), (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 + 𝑦))⟩
17 cmulr 12781 . . . . . . 7 class .r
182, 17cfv 5259 . . . . . 6 class (.r‘ndx)
19 cmul 7901 . . . . . . . 8 class ·
2011, 12, 19co 5925 . . . . . . 7 class (𝑥 · 𝑦)
219, 10, 5, 5, 20cmpo 5927 . . . . . 6 class (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))
2218, 21cop 3626 . . . . 5 class ⟨(.r‘ndx), (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))⟩
236, 16, 22ctp 3625 . . . 4 class {⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 + 𝑦))⟩, ⟨(.r‘ndx), (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))⟩}
24 cstv 12782 . . . . . . 7 class *𝑟
252, 24cfv 5259 . . . . . 6 class (*𝑟‘ndx)
26 ccj 11021 . . . . . 6 class
2725, 26cop 3626 . . . . 5 class ⟨(*𝑟‘ndx), ∗⟩
2827csn 3623 . . . 4 class {⟨(*𝑟‘ndx), ∗⟩}
2923, 28cun 3155 . . 3 class ({⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 + 𝑦))⟩, ⟨(.r‘ndx), (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))⟩} ∪ {⟨(*𝑟‘ndx), ∗⟩})
30 cts 12786 . . . . . . 7 class TopSet
312, 30cfv 5259 . . . . . 6 class (TopSet‘ndx)
32 cabs 11179 . . . . . . . 8 class abs
33 cmin 8214 . . . . . . . 8 class
3432, 33ccom 4668 . . . . . . 7 class (abs ∘ − )
35 cmopn 14173 . . . . . . 7 class MetOpen
3634, 35cfv 5259 . . . . . 6 class (MetOpen‘(abs ∘ − ))
3731, 36cop 3626 . . . . 5 class ⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩
38 cple 12787 . . . . . . 7 class le
392, 38cfv 5259 . . . . . 6 class (le‘ndx)
40 cle 8079 . . . . . 6 class
4139, 40cop 3626 . . . . 5 class ⟨(le‘ndx), ≤ ⟩
42 cds 12789 . . . . . . 7 class dist
432, 42cfv 5259 . . . . . 6 class (dist‘ndx)
4443, 34cop 3626 . . . . 5 class ⟨(dist‘ndx), (abs ∘ − )⟩
4537, 41, 44ctp 3625 . . . 4 class {⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩}
46 cunif 12790 . . . . . . 7 class UnifSet
472, 46cfv 5259 . . . . . 6 class (UnifSet‘ndx)
48 cmetu 14174 . . . . . . 7 class metUnif
4934, 48cfv 5259 . . . . . 6 class (metUnif‘(abs ∘ − ))
5047, 49cop 3626 . . . . 5 class ⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩
5150csn 3623 . . . 4 class {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩}
5245, 51cun 3155 . . 3 class ({⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∪ {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩})
5329, 52cun 3155 . 2 class (({⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 + 𝑦))⟩, ⟨(.r‘ndx), (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))⟩} ∪ {⟨(*𝑟‘ndx), ∗⟩}) ∪ ({⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∪ {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩}))
541, 53wceq 1364 1 wff fld = (({⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 + 𝑦))⟩, ⟨(.r‘ndx), (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))⟩} ∪ {⟨(*𝑟‘ndx), ∗⟩}) ∪ ({⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∪ {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩}))
Colors of variables: wff set class
This definition is referenced by:  cnfldstr  14190  cnfldbas  14192  mpocnfldadd  14193  mpocnfldmul  14195  cnfldcj  14197  cnfldtset  14198  cnfldle  14199  cnfldds  14200
  Copyright terms: Public domain W3C validator