ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-cnfld GIF version

Definition df-cnfld 14529
Description: The field of complex numbers. Other number fields and rings can be constructed by applying the s restriction operator.

The contract of this set is defined entirely by cnfldex 14531, cnfldadd 14534, cnfldmul 14536, cnfldcj 14537, cnfldtset 14538, cnfldle 14539, cnfldds 14540, and cnfldbas 14532. We may add additional members to this in the future. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Thierry Arnoux, 15-Dec-2017.) Use maps-to notation for addition and multiplication. (Revised by GG, 31-Mar-2025.) (New usage is discouraged.)

Assertion
Ref Expression
df-cnfld fld = (({⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 + 𝑦))⟩, ⟨(.r‘ndx), (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))⟩} ∪ {⟨(*𝑟‘ndx), ∗⟩}) ∪ ({⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∪ {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩}))
Distinct variable group:   𝑥,𝑦

Detailed syntax breakdown of Definition df-cnfld
StepHypRef Expression
1 ccnfld 14528 . 2 class fld
2 cnx 13037 . . . . . . 7 class ndx
3 cbs 13040 . . . . . . 7 class Base
42, 3cfv 5318 . . . . . 6 class (Base‘ndx)
5 cc 8005 . . . . . 6 class
64, 5cop 3669 . . . . 5 class ⟨(Base‘ndx), ℂ⟩
7 cplusg 13118 . . . . . . 7 class +g
82, 7cfv 5318 . . . . . 6 class (+g‘ndx)
9 vx . . . . . . 7 setvar 𝑥
10 vy . . . . . . 7 setvar 𝑦
119cv 1394 . . . . . . . 8 class 𝑥
1210cv 1394 . . . . . . . 8 class 𝑦
13 caddc 8010 . . . . . . . 8 class +
1411, 12, 13co 6007 . . . . . . 7 class (𝑥 + 𝑦)
159, 10, 5, 5, 14cmpo 6009 . . . . . 6 class (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 + 𝑦))
168, 15cop 3669 . . . . 5 class ⟨(+g‘ndx), (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 + 𝑦))⟩
17 cmulr 13119 . . . . . . 7 class .r
182, 17cfv 5318 . . . . . 6 class (.r‘ndx)
19 cmul 8012 . . . . . . . 8 class ·
2011, 12, 19co 6007 . . . . . . 7 class (𝑥 · 𝑦)
219, 10, 5, 5, 20cmpo 6009 . . . . . 6 class (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))
2218, 21cop 3669 . . . . 5 class ⟨(.r‘ndx), (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))⟩
236, 16, 22ctp 3668 . . . 4 class {⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 + 𝑦))⟩, ⟨(.r‘ndx), (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))⟩}
24 cstv 13120 . . . . . . 7 class *𝑟
252, 24cfv 5318 . . . . . 6 class (*𝑟‘ndx)
26 ccj 11358 . . . . . 6 class
2725, 26cop 3669 . . . . 5 class ⟨(*𝑟‘ndx), ∗⟩
2827csn 3666 . . . 4 class {⟨(*𝑟‘ndx), ∗⟩}
2923, 28cun 3195 . . 3 class ({⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 + 𝑦))⟩, ⟨(.r‘ndx), (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))⟩} ∪ {⟨(*𝑟‘ndx), ∗⟩})
30 cts 13124 . . . . . . 7 class TopSet
312, 30cfv 5318 . . . . . 6 class (TopSet‘ndx)
32 cabs 11516 . . . . . . . 8 class abs
33 cmin 8325 . . . . . . . 8 class
3432, 33ccom 4723 . . . . . . 7 class (abs ∘ − )
35 cmopn 14513 . . . . . . 7 class MetOpen
3634, 35cfv 5318 . . . . . 6 class (MetOpen‘(abs ∘ − ))
3731, 36cop 3669 . . . . 5 class ⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩
38 cple 13125 . . . . . . 7 class le
392, 38cfv 5318 . . . . . 6 class (le‘ndx)
40 cle 8190 . . . . . 6 class
4139, 40cop 3669 . . . . 5 class ⟨(le‘ndx), ≤ ⟩
42 cds 13127 . . . . . . 7 class dist
432, 42cfv 5318 . . . . . 6 class (dist‘ndx)
4443, 34cop 3669 . . . . 5 class ⟨(dist‘ndx), (abs ∘ − )⟩
4537, 41, 44ctp 3668 . . . 4 class {⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩}
46 cunif 13128 . . . . . . 7 class UnifSet
472, 46cfv 5318 . . . . . 6 class (UnifSet‘ndx)
48 cmetu 14514 . . . . . . 7 class metUnif
4934, 48cfv 5318 . . . . . 6 class (metUnif‘(abs ∘ − ))
5047, 49cop 3669 . . . . 5 class ⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩
5150csn 3666 . . . 4 class {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩}
5245, 51cun 3195 . . 3 class ({⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∪ {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩})
5329, 52cun 3195 . 2 class (({⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 + 𝑦))⟩, ⟨(.r‘ndx), (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))⟩} ∪ {⟨(*𝑟‘ndx), ∗⟩}) ∪ ({⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∪ {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩}))
541, 53wceq 1395 1 wff fld = (({⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 + 𝑦))⟩, ⟨(.r‘ndx), (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))⟩} ∪ {⟨(*𝑟‘ndx), ∗⟩}) ∪ ({⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∪ {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩}))
Colors of variables: wff set class
This definition is referenced by:  cnfldstr  14530  cnfldbas  14532  mpocnfldadd  14533  mpocnfldmul  14535  cnfldcj  14537  cnfldtset  14538  cnfldle  14539  cnfldds  14540
  Copyright terms: Public domain W3C validator