ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-cnfld GIF version

Definition df-cnfld 14191
Description: The field of complex numbers. Other number fields and rings can be constructed by applying the s restriction operator.

The contract of this set is defined entirely by cnfldex 14193, cnfldadd 14196, cnfldmul 14198, cnfldcj 14199, cnfldtset 14200, cnfldle 14201, cnfldds 14202, and cnfldbas 14194. We may add additional members to this in the future. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Thierry Arnoux, 15-Dec-2017.) Use maps-to notation for addition and multiplication. (Revised by GG, 31-Mar-2025.) (New usage is discouraged.)

Assertion
Ref Expression
df-cnfld fld = (({⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 + 𝑦))⟩, ⟨(.r‘ndx), (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))⟩} ∪ {⟨(*𝑟‘ndx), ∗⟩}) ∪ ({⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∪ {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩}))
Distinct variable group:   𝑥,𝑦

Detailed syntax breakdown of Definition df-cnfld
StepHypRef Expression
1 ccnfld 14190 . 2 class fld
2 cnx 12702 . . . . . . 7 class ndx
3 cbs 12705 . . . . . . 7 class Base
42, 3cfv 5259 . . . . . 6 class (Base‘ndx)
5 cc 7896 . . . . . 6 class
64, 5cop 3626 . . . . 5 class ⟨(Base‘ndx), ℂ⟩
7 cplusg 12782 . . . . . . 7 class +g
82, 7cfv 5259 . . . . . 6 class (+g‘ndx)
9 vx . . . . . . 7 setvar 𝑥
10 vy . . . . . . 7 setvar 𝑦
119cv 1363 . . . . . . . 8 class 𝑥
1210cv 1363 . . . . . . . 8 class 𝑦
13 caddc 7901 . . . . . . . 8 class +
1411, 12, 13co 5925 . . . . . . 7 class (𝑥 + 𝑦)
159, 10, 5, 5, 14cmpo 5927 . . . . . 6 class (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 + 𝑦))
168, 15cop 3626 . . . . 5 class ⟨(+g‘ndx), (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 + 𝑦))⟩
17 cmulr 12783 . . . . . . 7 class .r
182, 17cfv 5259 . . . . . 6 class (.r‘ndx)
19 cmul 7903 . . . . . . . 8 class ·
2011, 12, 19co 5925 . . . . . . 7 class (𝑥 · 𝑦)
219, 10, 5, 5, 20cmpo 5927 . . . . . 6 class (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))
2218, 21cop 3626 . . . . 5 class ⟨(.r‘ndx), (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))⟩
236, 16, 22ctp 3625 . . . 4 class {⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 + 𝑦))⟩, ⟨(.r‘ndx), (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))⟩}
24 cstv 12784 . . . . . . 7 class *𝑟
252, 24cfv 5259 . . . . . 6 class (*𝑟‘ndx)
26 ccj 11023 . . . . . 6 class
2725, 26cop 3626 . . . . 5 class ⟨(*𝑟‘ndx), ∗⟩
2827csn 3623 . . . 4 class {⟨(*𝑟‘ndx), ∗⟩}
2923, 28cun 3155 . . 3 class ({⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 + 𝑦))⟩, ⟨(.r‘ndx), (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))⟩} ∪ {⟨(*𝑟‘ndx), ∗⟩})
30 cts 12788 . . . . . . 7 class TopSet
312, 30cfv 5259 . . . . . 6 class (TopSet‘ndx)
32 cabs 11181 . . . . . . . 8 class abs
33 cmin 8216 . . . . . . . 8 class
3432, 33ccom 4668 . . . . . . 7 class (abs ∘ − )
35 cmopn 14175 . . . . . . 7 class MetOpen
3634, 35cfv 5259 . . . . . 6 class (MetOpen‘(abs ∘ − ))
3731, 36cop 3626 . . . . 5 class ⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩
38 cple 12789 . . . . . . 7 class le
392, 38cfv 5259 . . . . . 6 class (le‘ndx)
40 cle 8081 . . . . . 6 class
4139, 40cop 3626 . . . . 5 class ⟨(le‘ndx), ≤ ⟩
42 cds 12791 . . . . . . 7 class dist
432, 42cfv 5259 . . . . . 6 class (dist‘ndx)
4443, 34cop 3626 . . . . 5 class ⟨(dist‘ndx), (abs ∘ − )⟩
4537, 41, 44ctp 3625 . . . 4 class {⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩}
46 cunif 12792 . . . . . . 7 class UnifSet
472, 46cfv 5259 . . . . . 6 class (UnifSet‘ndx)
48 cmetu 14176 . . . . . . 7 class metUnif
4934, 48cfv 5259 . . . . . 6 class (metUnif‘(abs ∘ − ))
5047, 49cop 3626 . . . . 5 class ⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩
5150csn 3623 . . . 4 class {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩}
5245, 51cun 3155 . . 3 class ({⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∪ {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩})
5329, 52cun 3155 . 2 class (({⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 + 𝑦))⟩, ⟨(.r‘ndx), (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))⟩} ∪ {⟨(*𝑟‘ndx), ∗⟩}) ∪ ({⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∪ {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩}))
541, 53wceq 1364 1 wff fld = (({⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 + 𝑦))⟩, ⟨(.r‘ndx), (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))⟩} ∪ {⟨(*𝑟‘ndx), ∗⟩}) ∪ ({⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∪ {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩}))
Colors of variables: wff set class
This definition is referenced by:  cnfldstr  14192  cnfldbas  14194  mpocnfldadd  14195  mpocnfldmul  14197  cnfldcj  14199  cnfldtset  14200  cnfldle  14201  cnfldds  14202
  Copyright terms: Public domain W3C validator