ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-cnfld GIF version

Definition df-cnfld 14056
Description: The field of complex numbers. Other number fields and rings can be constructed by applying the s restriction operator.

The contract of this set is defined entirely by cnfldex 14058, cnfldadd 14061, cnfldmul 14063, cnfldcj 14064, cnfldtset 14065, cnfldle 14066, cnfldds 14067, and cnfldbas 14059. We may add additional members to this in the future. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Thierry Arnoux, 15-Dec-2017.) Use maps-to notation for addition and multiplication. (Revised by GG, 31-Mar-2025.) (New usage is discouraged.)

Assertion
Ref Expression
df-cnfld fld = (({⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 + 𝑦))⟩, ⟨(.r‘ndx), (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))⟩} ∪ {⟨(*𝑟‘ndx), ∗⟩}) ∪ ({⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∪ {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩}))
Distinct variable group:   𝑥,𝑦

Detailed syntax breakdown of Definition df-cnfld
StepHypRef Expression
1 ccnfld 14055 . 2 class fld
2 cnx 12618 . . . . . . 7 class ndx
3 cbs 12621 . . . . . . 7 class Base
42, 3cfv 5255 . . . . . 6 class (Base‘ndx)
5 cc 7872 . . . . . 6 class
64, 5cop 3622 . . . . 5 class ⟨(Base‘ndx), ℂ⟩
7 cplusg 12698 . . . . . . 7 class +g
82, 7cfv 5255 . . . . . 6 class (+g‘ndx)
9 vx . . . . . . 7 setvar 𝑥
10 vy . . . . . . 7 setvar 𝑦
119cv 1363 . . . . . . . 8 class 𝑥
1210cv 1363 . . . . . . . 8 class 𝑦
13 caddc 7877 . . . . . . . 8 class +
1411, 12, 13co 5919 . . . . . . 7 class (𝑥 + 𝑦)
159, 10, 5, 5, 14cmpo 5921 . . . . . 6 class (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 + 𝑦))
168, 15cop 3622 . . . . 5 class ⟨(+g‘ndx), (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 + 𝑦))⟩
17 cmulr 12699 . . . . . . 7 class .r
182, 17cfv 5255 . . . . . 6 class (.r‘ndx)
19 cmul 7879 . . . . . . . 8 class ·
2011, 12, 19co 5919 . . . . . . 7 class (𝑥 · 𝑦)
219, 10, 5, 5, 20cmpo 5921 . . . . . 6 class (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))
2218, 21cop 3622 . . . . 5 class ⟨(.r‘ndx), (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))⟩
236, 16, 22ctp 3621 . . . 4 class {⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 + 𝑦))⟩, ⟨(.r‘ndx), (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))⟩}
24 cstv 12700 . . . . . . 7 class *𝑟
252, 24cfv 5255 . . . . . 6 class (*𝑟‘ndx)
26 ccj 10986 . . . . . 6 class
2725, 26cop 3622 . . . . 5 class ⟨(*𝑟‘ndx), ∗⟩
2827csn 3619 . . . 4 class {⟨(*𝑟‘ndx), ∗⟩}
2923, 28cun 3152 . . 3 class ({⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 + 𝑦))⟩, ⟨(.r‘ndx), (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))⟩} ∪ {⟨(*𝑟‘ndx), ∗⟩})
30 cts 12704 . . . . . . 7 class TopSet
312, 30cfv 5255 . . . . . 6 class (TopSet‘ndx)
32 cabs 11144 . . . . . . . 8 class abs
33 cmin 8192 . . . . . . . 8 class
3432, 33ccom 4664 . . . . . . 7 class (abs ∘ − )
35 cmopn 14040 . . . . . . 7 class MetOpen
3634, 35cfv 5255 . . . . . 6 class (MetOpen‘(abs ∘ − ))
3731, 36cop 3622 . . . . 5 class ⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩
38 cple 12705 . . . . . . 7 class le
392, 38cfv 5255 . . . . . 6 class (le‘ndx)
40 cle 8057 . . . . . 6 class
4139, 40cop 3622 . . . . 5 class ⟨(le‘ndx), ≤ ⟩
42 cds 12707 . . . . . . 7 class dist
432, 42cfv 5255 . . . . . 6 class (dist‘ndx)
4443, 34cop 3622 . . . . 5 class ⟨(dist‘ndx), (abs ∘ − )⟩
4537, 41, 44ctp 3621 . . . 4 class {⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩}
46 cunif 12708 . . . . . . 7 class UnifSet
472, 46cfv 5255 . . . . . 6 class (UnifSet‘ndx)
48 cmetu 14041 . . . . . . 7 class metUnif
4934, 48cfv 5255 . . . . . 6 class (metUnif‘(abs ∘ − ))
5047, 49cop 3622 . . . . 5 class ⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩
5150csn 3619 . . . 4 class {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩}
5245, 51cun 3152 . . 3 class ({⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∪ {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩})
5329, 52cun 3152 . 2 class (({⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 + 𝑦))⟩, ⟨(.r‘ndx), (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))⟩} ∪ {⟨(*𝑟‘ndx), ∗⟩}) ∪ ({⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∪ {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩}))
541, 53wceq 1364 1 wff fld = (({⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 + 𝑦))⟩, ⟨(.r‘ndx), (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))⟩} ∪ {⟨(*𝑟‘ndx), ∗⟩}) ∪ ({⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∪ {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩}))
Colors of variables: wff set class
This definition is referenced by:  cnfldstr  14057  cnfldbas  14059  mpocnfldadd  14060  mpocnfldmul  14062  cnfldcj  14064  cnfldtset  14065  cnfldle  14066  cnfldds  14067
  Copyright terms: Public domain W3C validator