ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-cnfld GIF version

Definition df-cnfld 14363
Description: The field of complex numbers. Other number fields and rings can be constructed by applying the s restriction operator.

The contract of this set is defined entirely by cnfldex 14365, cnfldadd 14368, cnfldmul 14370, cnfldcj 14371, cnfldtset 14372, cnfldle 14373, cnfldds 14374, and cnfldbas 14366. We may add additional members to this in the future. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Thierry Arnoux, 15-Dec-2017.) Use maps-to notation for addition and multiplication. (Revised by GG, 31-Mar-2025.) (New usage is discouraged.)

Assertion
Ref Expression
df-cnfld fld = (({⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 + 𝑦))⟩, ⟨(.r‘ndx), (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))⟩} ∪ {⟨(*𝑟‘ndx), ∗⟩}) ∪ ({⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∪ {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩}))
Distinct variable group:   𝑥,𝑦

Detailed syntax breakdown of Definition df-cnfld
StepHypRef Expression
1 ccnfld 14362 . 2 class fld
2 cnx 12873 . . . . . . 7 class ndx
3 cbs 12876 . . . . . . 7 class Base
42, 3cfv 5276 . . . . . 6 class (Base‘ndx)
5 cc 7930 . . . . . 6 class
64, 5cop 3637 . . . . 5 class ⟨(Base‘ndx), ℂ⟩
7 cplusg 12953 . . . . . . 7 class +g
82, 7cfv 5276 . . . . . 6 class (+g‘ndx)
9 vx . . . . . . 7 setvar 𝑥
10 vy . . . . . . 7 setvar 𝑦
119cv 1372 . . . . . . . 8 class 𝑥
1210cv 1372 . . . . . . . 8 class 𝑦
13 caddc 7935 . . . . . . . 8 class +
1411, 12, 13co 5951 . . . . . . 7 class (𝑥 + 𝑦)
159, 10, 5, 5, 14cmpo 5953 . . . . . 6 class (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 + 𝑦))
168, 15cop 3637 . . . . 5 class ⟨(+g‘ndx), (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 + 𝑦))⟩
17 cmulr 12954 . . . . . . 7 class .r
182, 17cfv 5276 . . . . . 6 class (.r‘ndx)
19 cmul 7937 . . . . . . . 8 class ·
2011, 12, 19co 5951 . . . . . . 7 class (𝑥 · 𝑦)
219, 10, 5, 5, 20cmpo 5953 . . . . . 6 class (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))
2218, 21cop 3637 . . . . 5 class ⟨(.r‘ndx), (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))⟩
236, 16, 22ctp 3636 . . . 4 class {⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 + 𝑦))⟩, ⟨(.r‘ndx), (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))⟩}
24 cstv 12955 . . . . . . 7 class *𝑟
252, 24cfv 5276 . . . . . 6 class (*𝑟‘ndx)
26 ccj 11194 . . . . . 6 class
2725, 26cop 3637 . . . . 5 class ⟨(*𝑟‘ndx), ∗⟩
2827csn 3634 . . . 4 class {⟨(*𝑟‘ndx), ∗⟩}
2923, 28cun 3165 . . 3 class ({⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 + 𝑦))⟩, ⟨(.r‘ndx), (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))⟩} ∪ {⟨(*𝑟‘ndx), ∗⟩})
30 cts 12959 . . . . . . 7 class TopSet
312, 30cfv 5276 . . . . . 6 class (TopSet‘ndx)
32 cabs 11352 . . . . . . . 8 class abs
33 cmin 8250 . . . . . . . 8 class
3432, 33ccom 4683 . . . . . . 7 class (abs ∘ − )
35 cmopn 14347 . . . . . . 7 class MetOpen
3634, 35cfv 5276 . . . . . 6 class (MetOpen‘(abs ∘ − ))
3731, 36cop 3637 . . . . 5 class ⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩
38 cple 12960 . . . . . . 7 class le
392, 38cfv 5276 . . . . . 6 class (le‘ndx)
40 cle 8115 . . . . . 6 class
4139, 40cop 3637 . . . . 5 class ⟨(le‘ndx), ≤ ⟩
42 cds 12962 . . . . . . 7 class dist
432, 42cfv 5276 . . . . . 6 class (dist‘ndx)
4443, 34cop 3637 . . . . 5 class ⟨(dist‘ndx), (abs ∘ − )⟩
4537, 41, 44ctp 3636 . . . 4 class {⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩}
46 cunif 12963 . . . . . . 7 class UnifSet
472, 46cfv 5276 . . . . . 6 class (UnifSet‘ndx)
48 cmetu 14348 . . . . . . 7 class metUnif
4934, 48cfv 5276 . . . . . 6 class (metUnif‘(abs ∘ − ))
5047, 49cop 3637 . . . . 5 class ⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩
5150csn 3634 . . . 4 class {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩}
5245, 51cun 3165 . . 3 class ({⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∪ {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩})
5329, 52cun 3165 . 2 class (({⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 + 𝑦))⟩, ⟨(.r‘ndx), (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))⟩} ∪ {⟨(*𝑟‘ndx), ∗⟩}) ∪ ({⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∪ {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩}))
541, 53wceq 1373 1 wff fld = (({⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 + 𝑦))⟩, ⟨(.r‘ndx), (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))⟩} ∪ {⟨(*𝑟‘ndx), ∗⟩}) ∪ ({⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∪ {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩}))
Colors of variables: wff set class
This definition is referenced by:  cnfldstr  14364  cnfldbas  14366  mpocnfldadd  14367  mpocnfldmul  14369  cnfldcj  14371  cnfldtset  14372  cnfldle  14373  cnfldds  14374
  Copyright terms: Public domain W3C validator