| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > cnfldle | GIF version | ||
| Description: The ordering of the field of complex numbers. Note that this is not actually an ordering on ℂ, but we put it in the structure anyway because restricting to ℝ does not affect this component, so that (ℂfld ↾s ℝ) is an ordered field even though ℂfld itself is not. (Contributed by Mario Carneiro, 14-Aug-2015.) (Revised by Mario Carneiro, 6-Oct-2015.) (Revised by Thierry Arnoux, 17-Dec-2017.) Revise df-cnfld 14529. (Revised by GG, 31-Mar-2025.) |
| Ref | Expression |
|---|---|
| cnfldle | ⊢ ≤ = (le‘ℂfld) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xrex 10060 | . . . 4 ⊢ ℝ* ∈ V | |
| 2 | 1, 1 | xpex 4834 | . . 3 ⊢ (ℝ* × ℝ*) ∈ V |
| 3 | lerelxr 8217 | . . 3 ⊢ ≤ ⊆ (ℝ* × ℝ*) | |
| 4 | 2, 3 | ssexi 4222 | . 2 ⊢ ≤ ∈ V |
| 5 | cnfldstr 14530 | . . 3 ⊢ ℂfld Struct 〈1, ;13〉 | |
| 6 | pleslid 13243 | . . 3 ⊢ (le = Slot (le‘ndx) ∧ (le‘ndx) ∈ ℕ) | |
| 7 | snsstp2 3819 | . . . 4 ⊢ {〈(le‘ndx), ≤ 〉} ⊆ {〈(TopSet‘ndx), (MetOpen‘(abs ∘ − ))〉, 〈(le‘ndx), ≤ 〉, 〈(dist‘ndx), (abs ∘ − )〉} | |
| 8 | ssun1 3367 | . . . . 5 ⊢ {〈(TopSet‘ndx), (MetOpen‘(abs ∘ − ))〉, 〈(le‘ndx), ≤ 〉, 〈(dist‘ndx), (abs ∘ − )〉} ⊆ ({〈(TopSet‘ndx), (MetOpen‘(abs ∘ − ))〉, 〈(le‘ndx), ≤ 〉, 〈(dist‘ndx), (abs ∘ − )〉} ∪ {〈(UnifSet‘ndx), (metUnif‘(abs ∘ − ))〉}) | |
| 9 | ssun2 3368 | . . . . . 6 ⊢ ({〈(TopSet‘ndx), (MetOpen‘(abs ∘ − ))〉, 〈(le‘ndx), ≤ 〉, 〈(dist‘ndx), (abs ∘ − )〉} ∪ {〈(UnifSet‘ndx), (metUnif‘(abs ∘ − ))〉}) ⊆ (({〈(Base‘ndx), ℂ〉, 〈(+g‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 + 𝑣))〉, 〈(.r‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))〉} ∪ {〈(*𝑟‘ndx), ∗〉}) ∪ ({〈(TopSet‘ndx), (MetOpen‘(abs ∘ − ))〉, 〈(le‘ndx), ≤ 〉, 〈(dist‘ndx), (abs ∘ − )〉} ∪ {〈(UnifSet‘ndx), (metUnif‘(abs ∘ − ))〉})) | |
| 10 | df-cnfld 14529 | . . . . . 6 ⊢ ℂfld = (({〈(Base‘ndx), ℂ〉, 〈(+g‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 + 𝑣))〉, 〈(.r‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))〉} ∪ {〈(*𝑟‘ndx), ∗〉}) ∪ ({〈(TopSet‘ndx), (MetOpen‘(abs ∘ − ))〉, 〈(le‘ndx), ≤ 〉, 〈(dist‘ndx), (abs ∘ − )〉} ∪ {〈(UnifSet‘ndx), (metUnif‘(abs ∘ − ))〉})) | |
| 11 | 9, 10 | sseqtrri 3259 | . . . . 5 ⊢ ({〈(TopSet‘ndx), (MetOpen‘(abs ∘ − ))〉, 〈(le‘ndx), ≤ 〉, 〈(dist‘ndx), (abs ∘ − )〉} ∪ {〈(UnifSet‘ndx), (metUnif‘(abs ∘ − ))〉}) ⊆ ℂfld |
| 12 | 8, 11 | sstri 3233 | . . . 4 ⊢ {〈(TopSet‘ndx), (MetOpen‘(abs ∘ − ))〉, 〈(le‘ndx), ≤ 〉, 〈(dist‘ndx), (abs ∘ − )〉} ⊆ ℂfld |
| 13 | 7, 12 | sstri 3233 | . . 3 ⊢ {〈(le‘ndx), ≤ 〉} ⊆ ℂfld |
| 14 | 5, 6, 13 | strslfv 13085 | . 2 ⊢ ( ≤ ∈ V → ≤ = (le‘ℂfld)) |
| 15 | 4, 14 | ax-mp 5 | 1 ⊢ ≤ = (le‘ℂfld) |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1395 ∈ wcel 2200 Vcvv 2799 ∪ cun 3195 {csn 3666 {ctp 3668 〈cop 3669 × cxp 4717 ∘ ccom 4723 ‘cfv 5318 (class class class)co 6007 ∈ cmpo 6009 ℂcc 8005 1c1 8008 + caddc 8010 · cmul 8012 ℝ*cxr 8188 ≤ cle 8190 − cmin 8325 3c3 9170 ;cdc 9586 ∗ccj 11358 abscabs 11516 ndxcnx 13037 Basecbs 13040 +gcplusg 13118 .rcmulr 13119 *𝑟cstv 13120 TopSetcts 13124 lecple 13125 distcds 13127 UnifSetcunif 13128 MetOpencmopn 14513 metUnifcmetu 14514 ℂfldccnfld 14528 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4199 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-cnex 8098 ax-resscn 8099 ax-1cn 8100 ax-1re 8101 ax-icn 8102 ax-addcl 8103 ax-addrcl 8104 ax-mulcl 8105 ax-mulrcl 8106 ax-addcom 8107 ax-mulcom 8108 ax-addass 8109 ax-mulass 8110 ax-distr 8111 ax-i2m1 8112 ax-0lt1 8113 ax-1rid 8114 ax-0id 8115 ax-rnegex 8116 ax-precex 8117 ax-cnre 8118 ax-pre-ltirr 8119 ax-pre-ltwlin 8120 ax-pre-lttrn 8121 ax-pre-apti 8122 ax-pre-ltadd 8123 ax-pre-mulgt0 8124 |
| This theorem depends on definitions: df-bi 117 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-tp 3674 df-op 3675 df-uni 3889 df-int 3924 df-iun 3967 df-br 4084 df-opab 4146 df-mpt 4147 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-fv 5326 df-riota 5960 df-ov 6010 df-oprab 6011 df-mpo 6012 df-1st 6292 df-2nd 6293 df-pnf 8191 df-mnf 8192 df-xr 8193 df-ltxr 8194 df-le 8195 df-sub 8327 df-neg 8328 df-reap 8730 df-inn 9119 df-2 9177 df-3 9178 df-4 9179 df-5 9180 df-6 9181 df-7 9182 df-8 9183 df-9 9184 df-n0 9378 df-z 9455 df-dec 9587 df-uz 9731 df-rp 9858 df-fz 10213 df-cj 11361 df-abs 11518 df-struct 13042 df-ndx 13043 df-slot 13044 df-base 13046 df-plusg 13131 df-mulr 13132 df-starv 13133 df-tset 13137 df-ple 13138 df-ds 13140 df-unif 13141 df-topgen 13301 df-bl 14518 df-mopn 14519 df-fg 14521 df-metu 14522 df-cnfld 14529 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |