ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-cnfld Unicode version

Definition df-cnfld 14486
Description: The field of complex numbers. Other number fields and rings can be constructed by applying the ↾s restriction operator.

The contract of this set is defined entirely by cnfldex 14488, cnfldadd 14491, cnfldmul 14493, cnfldcj 14494, cnfldtset 14495, cnfldle 14496, cnfldds 14497, and cnfldbas 14489. We may add additional members to this in the future. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Thierry Arnoux, 15-Dec-2017.) Use maps-to notation for addition and multiplication. (Revised by GG, 31-Mar-2025.) (New usage is discouraged.)

Assertion
Ref Expression
df-cnfld  |-fld  =  ( ( { <. ( Base `  ndx ) ,  CC >. ,  <. ( +g  `  ndx ) ,  ( x  e.  CC ,  y  e.  CC  |->  ( x  +  y ) ) >. ,  <. ( .r `  ndx ) ,  ( x  e.  CC ,  y  e.  CC  |->  ( x  x.  y ) )
>. }  u.  { <. ( *r `  ndx ) ,  * >. } )  u.  ( {
<. (TopSet `  ndx ) ,  ( MetOpen `  ( abs  o. 
-  ) ) >. ,  <. ( le `  ndx ) ,  <_  >. ,  <. (
dist `  ndx ) ,  ( abs  o.  -  ) >. }  u.  { <. ( UnifSet `  ndx ) ,  (metUnif `  ( abs  o. 
-  ) ) >. } ) )
Distinct variable group:    x, y

Detailed syntax breakdown of Definition df-cnfld
StepHypRef Expression
1 ccnfld 14485 . 2  classfld
2 cnx 12995 . . . . . . 7  class  ndx
3 cbs 12998 . . . . . . 7  class  Base
42, 3cfv 5294 . . . . . 6  class  ( Base `  ndx )
5 cc 7965 . . . . . 6  class  CC
64, 5cop 3649 . . . . 5  class  <. ( Base `  ndx ) ,  CC >.
7 cplusg 13076 . . . . . . 7  class  +g
82, 7cfv 5294 . . . . . 6  class  ( +g  ` 
ndx )
9 vx . . . . . . 7  setvar  x
10 vy . . . . . . 7  setvar  y
119cv 1374 . . . . . . . 8  class  x
1210cv 1374 . . . . . . . 8  class  y
13 caddc 7970 . . . . . . . 8  class  +
1411, 12, 13co 5974 . . . . . . 7  class  ( x  +  y )
159, 10, 5, 5, 14cmpo 5976 . . . . . 6  class  ( x  e.  CC ,  y  e.  CC  |->  ( x  +  y ) )
168, 15cop 3649 . . . . 5  class  <. ( +g  `  ndx ) ,  ( x  e.  CC ,  y  e.  CC  |->  ( x  +  y
) ) >.
17 cmulr 13077 . . . . . . 7  class  .r
182, 17cfv 5294 . . . . . 6  class  ( .r
`  ndx )
19 cmul 7972 . . . . . . . 8  class  x.
2011, 12, 19co 5974 . . . . . . 7  class  ( x  x.  y )
219, 10, 5, 5, 20cmpo 5976 . . . . . 6  class  ( x  e.  CC ,  y  e.  CC  |->  ( x  x.  y ) )
2218, 21cop 3649 . . . . 5  class  <. ( .r `  ndx ) ,  ( x  e.  CC ,  y  e.  CC  |->  ( x  x.  y
) ) >.
236, 16, 22ctp 3648 . . . 4  class  { <. (
Base `  ndx ) ,  CC >. ,  <. ( +g  `  ndx ) ,  ( x  e.  CC ,  y  e.  CC  |->  ( x  +  y
) ) >. ,  <. ( .r `  ndx ) ,  ( x  e.  CC ,  y  e.  CC  |->  ( x  x.  y ) ) >. }
24 cstv 13078 . . . . . . 7  class  *r
252, 24cfv 5294 . . . . . 6  class  ( *r `  ndx )
26 ccj 11316 . . . . . 6  class  *
2725, 26cop 3649 . . . . 5  class  <. (
*r `  ndx ) ,  * >.
2827csn 3646 . . . 4  class  { <. ( *r `  ndx ) ,  * >. }
2923, 28cun 3175 . . 3  class  ( {
<. ( Base `  ndx ) ,  CC >. ,  <. ( +g  `  ndx ) ,  ( x  e.  CC ,  y  e.  CC  |->  ( x  +  y ) ) >. ,  <. ( .r `  ndx ) ,  ( x  e.  CC ,  y  e.  CC  |->  ( x  x.  y ) )
>. }  u.  { <. ( *r `  ndx ) ,  * >. } )
30 cts 13082 . . . . . . 7  class TopSet
312, 30cfv 5294 . . . . . 6  class  (TopSet `  ndx )
32 cabs 11474 . . . . . . . 8  class  abs
33 cmin 8285 . . . . . . . 8  class  -
3432, 33ccom 4700 . . . . . . 7  class  ( abs 
o.  -  )
35 cmopn 14470 . . . . . . 7  class  MetOpen
3634, 35cfv 5294 . . . . . 6  class  ( MetOpen `  ( abs  o.  -  )
)
3731, 36cop 3649 . . . . 5  class  <. (TopSet ` 
ndx ) ,  (
MetOpen `  ( abs  o.  -  ) ) >.
38 cple 13083 . . . . . . 7  class  le
392, 38cfv 5294 . . . . . 6  class  ( le
`  ndx )
40 cle 8150 . . . . . 6  class  <_
4139, 40cop 3649 . . . . 5  class  <. ( le `  ndx ) ,  <_  >.
42 cds 13085 . . . . . . 7  class  dist
432, 42cfv 5294 . . . . . 6  class  ( dist `  ndx )
4443, 34cop 3649 . . . . 5  class  <. ( dist `  ndx ) ,  ( abs  o.  -  ) >.
4537, 41, 44ctp 3648 . . . 4  class  { <. (TopSet `  ndx ) ,  (
MetOpen `  ( abs  o.  -  ) ) >. ,  <. ( le `  ndx ) ,  <_  >. ,  <. (
dist `  ndx ) ,  ( abs  o.  -  ) >. }
46 cunif 13086 . . . . . . 7  class  UnifSet
472, 46cfv 5294 . . . . . 6  class  ( UnifSet ` 
ndx )
48 cmetu 14471 . . . . . . 7  class metUnif
4934, 48cfv 5294 . . . . . 6  class  (metUnif `  ( abs  o.  -  ) )
5047, 49cop 3649 . . . . 5  class  <. ( UnifSet
`  ndx ) ,  (metUnif `  ( abs  o.  -  ) ) >.
5150csn 3646 . . . 4  class  { <. (
UnifSet `  ndx ) ,  (metUnif `  ( abs  o. 
-  ) ) >. }
5245, 51cun 3175 . . 3  class  ( {
<. (TopSet `  ndx ) ,  ( MetOpen `  ( abs  o. 
-  ) ) >. ,  <. ( le `  ndx ) ,  <_  >. ,  <. (
dist `  ndx ) ,  ( abs  o.  -  ) >. }  u.  { <. ( UnifSet `  ndx ) ,  (metUnif `  ( abs  o. 
-  ) ) >. } )
5329, 52cun 3175 . 2  class  ( ( { <. ( Base `  ndx ) ,  CC >. ,  <. ( +g  `  ndx ) ,  ( x  e.  CC ,  y  e.  CC  |->  ( x  +  y ) ) >. ,  <. ( .r `  ndx ) ,  ( x  e.  CC ,  y  e.  CC  |->  ( x  x.  y ) )
>. }  u.  { <. ( *r `  ndx ) ,  * >. } )  u.  ( {
<. (TopSet `  ndx ) ,  ( MetOpen `  ( abs  o. 
-  ) ) >. ,  <. ( le `  ndx ) ,  <_  >. ,  <. (
dist `  ndx ) ,  ( abs  o.  -  ) >. }  u.  { <. ( UnifSet `  ndx ) ,  (metUnif `  ( abs  o. 
-  ) ) >. } ) )
541, 53wceq 1375 1  wfffld  =  ( ( { <. ( Base `  ndx ) ,  CC >. ,  <. ( +g  `  ndx ) ,  ( x  e.  CC ,  y  e.  CC  |->  ( x  +  y ) ) >. ,  <. ( .r `  ndx ) ,  ( x  e.  CC ,  y  e.  CC  |->  ( x  x.  y ) )
>. }  u.  { <. ( *r `  ndx ) ,  * >. } )  u.  ( {
<. (TopSet `  ndx ) ,  ( MetOpen `  ( abs  o. 
-  ) ) >. ,  <. ( le `  ndx ) ,  <_  >. ,  <. (
dist `  ndx ) ,  ( abs  o.  -  ) >. }  u.  { <. ( UnifSet `  ndx ) ,  (metUnif `  ( abs  o. 
-  ) ) >. } ) )
Colors of variables: wff set class
This definition is referenced by:  cnfldstr  14487  cnfldbas  14489  mpocnfldadd  14490  mpocnfldmul  14492  cnfldcj  14494  cnfldtset  14495  cnfldle  14496  cnfldds  14497
  Copyright terms: Public domain W3C validator