ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-cnfld Unicode version

Definition df-cnfld 14123
Description: The field of complex numbers. Other number fields and rings can be constructed by applying the ↾s restriction operator.

The contract of this set is defined entirely by cnfldex 14125, cnfldadd 14128, cnfldmul 14130, cnfldcj 14131, cnfldtset 14132, cnfldle 14133, cnfldds 14134, and cnfldbas 14126. We may add additional members to this in the future. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Thierry Arnoux, 15-Dec-2017.) Use maps-to notation for addition and multiplication. (Revised by GG, 31-Mar-2025.) (New usage is discouraged.)

Assertion
Ref Expression
df-cnfld  |-fld  =  ( ( { <. ( Base `  ndx ) ,  CC >. ,  <. ( +g  `  ndx ) ,  ( x  e.  CC ,  y  e.  CC  |->  ( x  +  y ) ) >. ,  <. ( .r `  ndx ) ,  ( x  e.  CC ,  y  e.  CC  |->  ( x  x.  y ) )
>. }  u.  { <. ( *r `  ndx ) ,  * >. } )  u.  ( {
<. (TopSet `  ndx ) ,  ( MetOpen `  ( abs  o. 
-  ) ) >. ,  <. ( le `  ndx ) ,  <_  >. ,  <. (
dist `  ndx ) ,  ( abs  o.  -  ) >. }  u.  { <. ( UnifSet `  ndx ) ,  (metUnif `  ( abs  o. 
-  ) ) >. } ) )
Distinct variable group:    x, y

Detailed syntax breakdown of Definition df-cnfld
StepHypRef Expression
1 ccnfld 14122 . 2  classfld
2 cnx 12685 . . . . . . 7  class  ndx
3 cbs 12688 . . . . . . 7  class  Base
42, 3cfv 5259 . . . . . 6  class  ( Base `  ndx )
5 cc 7879 . . . . . 6  class  CC
64, 5cop 3626 . . . . 5  class  <. ( Base `  ndx ) ,  CC >.
7 cplusg 12765 . . . . . . 7  class  +g
82, 7cfv 5259 . . . . . 6  class  ( +g  ` 
ndx )
9 vx . . . . . . 7  setvar  x
10 vy . . . . . . 7  setvar  y
119cv 1363 . . . . . . . 8  class  x
1210cv 1363 . . . . . . . 8  class  y
13 caddc 7884 . . . . . . . 8  class  +
1411, 12, 13co 5923 . . . . . . 7  class  ( x  +  y )
159, 10, 5, 5, 14cmpo 5925 . . . . . 6  class  ( x  e.  CC ,  y  e.  CC  |->  ( x  +  y ) )
168, 15cop 3626 . . . . 5  class  <. ( +g  `  ndx ) ,  ( x  e.  CC ,  y  e.  CC  |->  ( x  +  y
) ) >.
17 cmulr 12766 . . . . . . 7  class  .r
182, 17cfv 5259 . . . . . 6  class  ( .r
`  ndx )
19 cmul 7886 . . . . . . . 8  class  x.
2011, 12, 19co 5923 . . . . . . 7  class  ( x  x.  y )
219, 10, 5, 5, 20cmpo 5925 . . . . . 6  class  ( x  e.  CC ,  y  e.  CC  |->  ( x  x.  y ) )
2218, 21cop 3626 . . . . 5  class  <. ( .r `  ndx ) ,  ( x  e.  CC ,  y  e.  CC  |->  ( x  x.  y
) ) >.
236, 16, 22ctp 3625 . . . 4  class  { <. (
Base `  ndx ) ,  CC >. ,  <. ( +g  `  ndx ) ,  ( x  e.  CC ,  y  e.  CC  |->  ( x  +  y
) ) >. ,  <. ( .r `  ndx ) ,  ( x  e.  CC ,  y  e.  CC  |->  ( x  x.  y ) ) >. }
24 cstv 12767 . . . . . . 7  class  *r
252, 24cfv 5259 . . . . . 6  class  ( *r `  ndx )
26 ccj 11006 . . . . . 6  class  *
2725, 26cop 3626 . . . . 5  class  <. (
*r `  ndx ) ,  * >.
2827csn 3623 . . . 4  class  { <. ( *r `  ndx ) ,  * >. }
2923, 28cun 3155 . . 3  class  ( {
<. ( Base `  ndx ) ,  CC >. ,  <. ( +g  `  ndx ) ,  ( x  e.  CC ,  y  e.  CC  |->  ( x  +  y ) ) >. ,  <. ( .r `  ndx ) ,  ( x  e.  CC ,  y  e.  CC  |->  ( x  x.  y ) )
>. }  u.  { <. ( *r `  ndx ) ,  * >. } )
30 cts 12771 . . . . . . 7  class TopSet
312, 30cfv 5259 . . . . . 6  class  (TopSet `  ndx )
32 cabs 11164 . . . . . . . 8  class  abs
33 cmin 8199 . . . . . . . 8  class  -
3432, 33ccom 4668 . . . . . . 7  class  ( abs 
o.  -  )
35 cmopn 14107 . . . . . . 7  class  MetOpen
3634, 35cfv 5259 . . . . . 6  class  ( MetOpen `  ( abs  o.  -  )
)
3731, 36cop 3626 . . . . 5  class  <. (TopSet ` 
ndx ) ,  (
MetOpen `  ( abs  o.  -  ) ) >.
38 cple 12772 . . . . . . 7  class  le
392, 38cfv 5259 . . . . . 6  class  ( le
`  ndx )
40 cle 8064 . . . . . 6  class  <_
4139, 40cop 3626 . . . . 5  class  <. ( le `  ndx ) ,  <_  >.
42 cds 12774 . . . . . . 7  class  dist
432, 42cfv 5259 . . . . . 6  class  ( dist `  ndx )
4443, 34cop 3626 . . . . 5  class  <. ( dist `  ndx ) ,  ( abs  o.  -  ) >.
4537, 41, 44ctp 3625 . . . 4  class  { <. (TopSet `  ndx ) ,  (
MetOpen `  ( abs  o.  -  ) ) >. ,  <. ( le `  ndx ) ,  <_  >. ,  <. (
dist `  ndx ) ,  ( abs  o.  -  ) >. }
46 cunif 12775 . . . . . . 7  class  UnifSet
472, 46cfv 5259 . . . . . 6  class  ( UnifSet ` 
ndx )
48 cmetu 14108 . . . . . . 7  class metUnif
4934, 48cfv 5259 . . . . . 6  class  (metUnif `  ( abs  o.  -  ) )
5047, 49cop 3626 . . . . 5  class  <. ( UnifSet
`  ndx ) ,  (metUnif `  ( abs  o.  -  ) ) >.
5150csn 3623 . . . 4  class  { <. (
UnifSet `  ndx ) ,  (metUnif `  ( abs  o. 
-  ) ) >. }
5245, 51cun 3155 . . 3  class  ( {
<. (TopSet `  ndx ) ,  ( MetOpen `  ( abs  o. 
-  ) ) >. ,  <. ( le `  ndx ) ,  <_  >. ,  <. (
dist `  ndx ) ,  ( abs  o.  -  ) >. }  u.  { <. ( UnifSet `  ndx ) ,  (metUnif `  ( abs  o. 
-  ) ) >. } )
5329, 52cun 3155 . 2  class  ( ( { <. ( Base `  ndx ) ,  CC >. ,  <. ( +g  `  ndx ) ,  ( x  e.  CC ,  y  e.  CC  |->  ( x  +  y ) ) >. ,  <. ( .r `  ndx ) ,  ( x  e.  CC ,  y  e.  CC  |->  ( x  x.  y ) )
>. }  u.  { <. ( *r `  ndx ) ,  * >. } )  u.  ( {
<. (TopSet `  ndx ) ,  ( MetOpen `  ( abs  o. 
-  ) ) >. ,  <. ( le `  ndx ) ,  <_  >. ,  <. (
dist `  ndx ) ,  ( abs  o.  -  ) >. }  u.  { <. ( UnifSet `  ndx ) ,  (metUnif `  ( abs  o. 
-  ) ) >. } ) )
541, 53wceq 1364 1  wfffld  =  ( ( { <. ( Base `  ndx ) ,  CC >. ,  <. ( +g  `  ndx ) ,  ( x  e.  CC ,  y  e.  CC  |->  ( x  +  y ) ) >. ,  <. ( .r `  ndx ) ,  ( x  e.  CC ,  y  e.  CC  |->  ( x  x.  y ) )
>. }  u.  { <. ( *r `  ndx ) ,  * >. } )  u.  ( {
<. (TopSet `  ndx ) ,  ( MetOpen `  ( abs  o. 
-  ) ) >. ,  <. ( le `  ndx ) ,  <_  >. ,  <. (
dist `  ndx ) ,  ( abs  o.  -  ) >. }  u.  { <. ( UnifSet `  ndx ) ,  (metUnif `  ( abs  o. 
-  ) ) >. } ) )
Colors of variables: wff set class
This definition is referenced by:  cnfldstr  14124  cnfldbas  14126  mpocnfldadd  14127  mpocnfldmul  14129  cnfldcj  14131  cnfldtset  14132  cnfldle  14133  cnfldds  14134
  Copyright terms: Public domain W3C validator