ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-cnfld Unicode version

Definition df-cnfld 14113
Description: The field of complex numbers. Other number fields and rings can be constructed by applying the ↾s restriction operator.

The contract of this set is defined entirely by cnfldex 14115, cnfldadd 14118, cnfldmul 14120, cnfldcj 14121, cnfldtset 14122, cnfldle 14123, cnfldds 14124, and cnfldbas 14116. We may add additional members to this in the future. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Thierry Arnoux, 15-Dec-2017.) Use maps-to notation for addition and multiplication. (Revised by GG, 31-Mar-2025.) (New usage is discouraged.)

Assertion
Ref Expression
df-cnfld  |-fld  =  ( ( { <. ( Base `  ndx ) ,  CC >. ,  <. ( +g  `  ndx ) ,  ( x  e.  CC ,  y  e.  CC  |->  ( x  +  y ) ) >. ,  <. ( .r `  ndx ) ,  ( x  e.  CC ,  y  e.  CC  |->  ( x  x.  y ) )
>. }  u.  { <. ( *r `  ndx ) ,  * >. } )  u.  ( {
<. (TopSet `  ndx ) ,  ( MetOpen `  ( abs  o. 
-  ) ) >. ,  <. ( le `  ndx ) ,  <_  >. ,  <. (
dist `  ndx ) ,  ( abs  o.  -  ) >. }  u.  { <. ( UnifSet `  ndx ) ,  (metUnif `  ( abs  o. 
-  ) ) >. } ) )
Distinct variable group:    x, y

Detailed syntax breakdown of Definition df-cnfld
StepHypRef Expression
1 ccnfld 14112 . 2  classfld
2 cnx 12675 . . . . . . 7  class  ndx
3 cbs 12678 . . . . . . 7  class  Base
42, 3cfv 5258 . . . . . 6  class  ( Base `  ndx )
5 cc 7877 . . . . . 6  class  CC
64, 5cop 3625 . . . . 5  class  <. ( Base `  ndx ) ,  CC >.
7 cplusg 12755 . . . . . . 7  class  +g
82, 7cfv 5258 . . . . . 6  class  ( +g  ` 
ndx )
9 vx . . . . . . 7  setvar  x
10 vy . . . . . . 7  setvar  y
119cv 1363 . . . . . . . 8  class  x
1210cv 1363 . . . . . . . 8  class  y
13 caddc 7882 . . . . . . . 8  class  +
1411, 12, 13co 5922 . . . . . . 7  class  ( x  +  y )
159, 10, 5, 5, 14cmpo 5924 . . . . . 6  class  ( x  e.  CC ,  y  e.  CC  |->  ( x  +  y ) )
168, 15cop 3625 . . . . 5  class  <. ( +g  `  ndx ) ,  ( x  e.  CC ,  y  e.  CC  |->  ( x  +  y
) ) >.
17 cmulr 12756 . . . . . . 7  class  .r
182, 17cfv 5258 . . . . . 6  class  ( .r
`  ndx )
19 cmul 7884 . . . . . . . 8  class  x.
2011, 12, 19co 5922 . . . . . . 7  class  ( x  x.  y )
219, 10, 5, 5, 20cmpo 5924 . . . . . 6  class  ( x  e.  CC ,  y  e.  CC  |->  ( x  x.  y ) )
2218, 21cop 3625 . . . . 5  class  <. ( .r `  ndx ) ,  ( x  e.  CC ,  y  e.  CC  |->  ( x  x.  y
) ) >.
236, 16, 22ctp 3624 . . . 4  class  { <. (
Base `  ndx ) ,  CC >. ,  <. ( +g  `  ndx ) ,  ( x  e.  CC ,  y  e.  CC  |->  ( x  +  y
) ) >. ,  <. ( .r `  ndx ) ,  ( x  e.  CC ,  y  e.  CC  |->  ( x  x.  y ) ) >. }
24 cstv 12757 . . . . . . 7  class  *r
252, 24cfv 5258 . . . . . 6  class  ( *r `  ndx )
26 ccj 11004 . . . . . 6  class  *
2725, 26cop 3625 . . . . 5  class  <. (
*r `  ndx ) ,  * >.
2827csn 3622 . . . 4  class  { <. ( *r `  ndx ) ,  * >. }
2923, 28cun 3155 . . 3  class  ( {
<. ( Base `  ndx ) ,  CC >. ,  <. ( +g  `  ndx ) ,  ( x  e.  CC ,  y  e.  CC  |->  ( x  +  y ) ) >. ,  <. ( .r `  ndx ) ,  ( x  e.  CC ,  y  e.  CC  |->  ( x  x.  y ) )
>. }  u.  { <. ( *r `  ndx ) ,  * >. } )
30 cts 12761 . . . . . . 7  class TopSet
312, 30cfv 5258 . . . . . 6  class  (TopSet `  ndx )
32 cabs 11162 . . . . . . . 8  class  abs
33 cmin 8197 . . . . . . . 8  class  -
3432, 33ccom 4667 . . . . . . 7  class  ( abs 
o.  -  )
35 cmopn 14097 . . . . . . 7  class  MetOpen
3634, 35cfv 5258 . . . . . 6  class  ( MetOpen `  ( abs  o.  -  )
)
3731, 36cop 3625 . . . . 5  class  <. (TopSet ` 
ndx ) ,  (
MetOpen `  ( abs  o.  -  ) ) >.
38 cple 12762 . . . . . . 7  class  le
392, 38cfv 5258 . . . . . 6  class  ( le
`  ndx )
40 cle 8062 . . . . . 6  class  <_
4139, 40cop 3625 . . . . 5  class  <. ( le `  ndx ) ,  <_  >.
42 cds 12764 . . . . . . 7  class  dist
432, 42cfv 5258 . . . . . 6  class  ( dist `  ndx )
4443, 34cop 3625 . . . . 5  class  <. ( dist `  ndx ) ,  ( abs  o.  -  ) >.
4537, 41, 44ctp 3624 . . . 4  class  { <. (TopSet `  ndx ) ,  (
MetOpen `  ( abs  o.  -  ) ) >. ,  <. ( le `  ndx ) ,  <_  >. ,  <. (
dist `  ndx ) ,  ( abs  o.  -  ) >. }
46 cunif 12765 . . . . . . 7  class  UnifSet
472, 46cfv 5258 . . . . . 6  class  ( UnifSet ` 
ndx )
48 cmetu 14098 . . . . . . 7  class metUnif
4934, 48cfv 5258 . . . . . 6  class  (metUnif `  ( abs  o.  -  ) )
5047, 49cop 3625 . . . . 5  class  <. ( UnifSet
`  ndx ) ,  (metUnif `  ( abs  o.  -  ) ) >.
5150csn 3622 . . . 4  class  { <. (
UnifSet `  ndx ) ,  (metUnif `  ( abs  o. 
-  ) ) >. }
5245, 51cun 3155 . . 3  class  ( {
<. (TopSet `  ndx ) ,  ( MetOpen `  ( abs  o. 
-  ) ) >. ,  <. ( le `  ndx ) ,  <_  >. ,  <. (
dist `  ndx ) ,  ( abs  o.  -  ) >. }  u.  { <. ( UnifSet `  ndx ) ,  (metUnif `  ( abs  o. 
-  ) ) >. } )
5329, 52cun 3155 . 2  class  ( ( { <. ( Base `  ndx ) ,  CC >. ,  <. ( +g  `  ndx ) ,  ( x  e.  CC ,  y  e.  CC  |->  ( x  +  y ) ) >. ,  <. ( .r `  ndx ) ,  ( x  e.  CC ,  y  e.  CC  |->  ( x  x.  y ) )
>. }  u.  { <. ( *r `  ndx ) ,  * >. } )  u.  ( {
<. (TopSet `  ndx ) ,  ( MetOpen `  ( abs  o. 
-  ) ) >. ,  <. ( le `  ndx ) ,  <_  >. ,  <. (
dist `  ndx ) ,  ( abs  o.  -  ) >. }  u.  { <. ( UnifSet `  ndx ) ,  (metUnif `  ( abs  o. 
-  ) ) >. } ) )
541, 53wceq 1364 1  wfffld  =  ( ( { <. ( Base `  ndx ) ,  CC >. ,  <. ( +g  `  ndx ) ,  ( x  e.  CC ,  y  e.  CC  |->  ( x  +  y ) ) >. ,  <. ( .r `  ndx ) ,  ( x  e.  CC ,  y  e.  CC  |->  ( x  x.  y ) )
>. }  u.  { <. ( *r `  ndx ) ,  * >. } )  u.  ( {
<. (TopSet `  ndx ) ,  ( MetOpen `  ( abs  o. 
-  ) ) >. ,  <. ( le `  ndx ) ,  <_  >. ,  <. (
dist `  ndx ) ,  ( abs  o.  -  ) >. }  u.  { <. ( UnifSet `  ndx ) ,  (metUnif `  ( abs  o. 
-  ) ) >. } ) )
Colors of variables: wff set class
This definition is referenced by:  cnfldstr  14114  cnfldbas  14116  mpocnfldadd  14117  mpocnfldmul  14119  cnfldcj  14121  cnfldtset  14122  cnfldle  14123  cnfldds  14124
  Copyright terms: Public domain W3C validator