ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-if GIF version

Definition df-if 3537
Description: Define the conditional operator. Read if(𝜑, 𝐴, 𝐵) as "if 𝜑 then 𝐴 else 𝐵". See iftrue 3541 and iffalse 3544 for its values. In mathematical literature, this operator is rarely defined formally but is implicit in informal definitions such as "let f(x)=0 if x=0 and 1/x otherwise."

In the absence of excluded middle, this will tend to be useful where 𝜑 is decidable (in the sense of df-dc 835). (Contributed by NM, 15-May-1999.)

Assertion
Ref Expression
df-if if(𝜑, 𝐴, 𝐵) = {𝑥 ∣ ((𝑥𝐴𝜑) ∨ (𝑥𝐵 ∧ ¬ 𝜑))}
Distinct variable groups:   𝜑,𝑥   𝑥,𝐴   𝑥,𝐵

Detailed syntax breakdown of Definition df-if
StepHypRef Expression
1 wph . . 3 wff 𝜑
2 cA . . 3 class 𝐴
3 cB . . 3 class 𝐵
41, 2, 3cif 3536 . 2 class if(𝜑, 𝐴, 𝐵)
5 vx . . . . . . 7 setvar 𝑥
65cv 1352 . . . . . 6 class 𝑥
76, 2wcel 2148 . . . . 5 wff 𝑥𝐴
87, 1wa 104 . . . 4 wff (𝑥𝐴𝜑)
96, 3wcel 2148 . . . . 5 wff 𝑥𝐵
101wn 3 . . . . 5 wff ¬ 𝜑
119, 10wa 104 . . . 4 wff (𝑥𝐵 ∧ ¬ 𝜑)
128, 11wo 708 . . 3 wff ((𝑥𝐴𝜑) ∨ (𝑥𝐵 ∧ ¬ 𝜑))
1312, 5cab 2163 . 2 class {𝑥 ∣ ((𝑥𝐴𝜑) ∨ (𝑥𝐵 ∧ ¬ 𝜑))}
144, 13wceq 1353 1 wff if(𝜑, 𝐴, 𝐵) = {𝑥 ∣ ((𝑥𝐴𝜑) ∨ (𝑥𝐵 ∧ ¬ 𝜑))}
Colors of variables: wff set class
This definition is referenced by:  dfif6  3538  iftrue  3541  iffalse  3544  ifbi  3556  nfifd  3563  ifmdc  3576  if0ab  14596
  Copyright terms: Public domain W3C validator