| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > df-if | GIF version | ||
| Description: Define the conditional
operator. Read if(𝜑, 𝐴, 𝐵) as "if
𝜑 then 𝐴 else 𝐵".
See iftrue 3567 and iffalse 3570 for its
values. In mathematical literature, this operator is rarely defined
formally but is implicit in informal definitions such as "let
f(x)=0 if
x=0 and 1/x otherwise."
In the absence of excluded middle, this will tend to be useful where 𝜑 is decidable (in the sense of df-dc 836). (Contributed by NM, 15-May-1999.) |
| Ref | Expression |
|---|---|
| df-if | ⊢ if(𝜑, 𝐴, 𝐵) = {𝑥 ∣ ((𝑥 ∈ 𝐴 ∧ 𝜑) ∨ (𝑥 ∈ 𝐵 ∧ ¬ 𝜑))} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wph | . . 3 wff 𝜑 | |
| 2 | cA | . . 3 class 𝐴 | |
| 3 | cB | . . 3 class 𝐵 | |
| 4 | 1, 2, 3 | cif 3562 | . 2 class if(𝜑, 𝐴, 𝐵) |
| 5 | vx | . . . . . . 7 setvar 𝑥 | |
| 6 | 5 | cv 1363 | . . . . . 6 class 𝑥 |
| 7 | 6, 2 | wcel 2167 | . . . . 5 wff 𝑥 ∈ 𝐴 |
| 8 | 7, 1 | wa 104 | . . . 4 wff (𝑥 ∈ 𝐴 ∧ 𝜑) |
| 9 | 6, 3 | wcel 2167 | . . . . 5 wff 𝑥 ∈ 𝐵 |
| 10 | 1 | wn 3 | . . . . 5 wff ¬ 𝜑 |
| 11 | 9, 10 | wa 104 | . . . 4 wff (𝑥 ∈ 𝐵 ∧ ¬ 𝜑) |
| 12 | 8, 11 | wo 709 | . . 3 wff ((𝑥 ∈ 𝐴 ∧ 𝜑) ∨ (𝑥 ∈ 𝐵 ∧ ¬ 𝜑)) |
| 13 | 12, 5 | cab 2182 | . 2 class {𝑥 ∣ ((𝑥 ∈ 𝐴 ∧ 𝜑) ∨ (𝑥 ∈ 𝐵 ∧ ¬ 𝜑))} |
| 14 | 4, 13 | wceq 1364 | 1 wff if(𝜑, 𝐴, 𝐵) = {𝑥 ∣ ((𝑥 ∈ 𝐴 ∧ 𝜑) ∨ (𝑥 ∈ 𝐵 ∧ ¬ 𝜑))} |
| Colors of variables: wff set class |
| This definition is referenced by: dfif6 3564 iftrue 3567 iffalse 3570 ifbi 3582 nfifd 3589 ifmdc 3602 if0ab 15535 |
| Copyright terms: Public domain | W3C validator |