Home | Intuitionistic Logic Explorer Theorem List (p. 36 of 142) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > ILE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | r19.2m 3501* | Theorem 19.2 of [Margaris] p. 89 with restricted quantifiers (compare 19.2 1631). The restricted version is valid only when the domain of quantification is inhabited. (Contributed by Jim Kingdon, 5-Aug-2018.) (Revised by Jim Kingdon, 7-Apr-2023.) |
⊢ ((∃𝑦 𝑦 ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 𝜑) → ∃𝑥 ∈ 𝐴 𝜑) | ||
Theorem | r19.2mOLD 3502* | Theorem 19.2 of [Margaris] p. 89 with restricted quantifiers (compare 19.2 1631). The restricted version is valid only when the domain of quantification is inhabited. (Contributed by Jim Kingdon, 5-Aug-2018.) Obsolete version of r19.2m 3501 as of 7-Apr-2023. (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ((∃𝑥 𝑥 ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 𝜑) → ∃𝑥 ∈ 𝐴 𝜑) | ||
Theorem | r19.3rm 3503* | Restricted quantification of wff not containing quantified variable. (Contributed by Jim Kingdon, 19-Dec-2018.) |
⊢ Ⅎ𝑥𝜑 ⇒ ⊢ (∃𝑦 𝑦 ∈ 𝐴 → (𝜑 ↔ ∀𝑥 ∈ 𝐴 𝜑)) | ||
Theorem | r19.28m 3504* | Restricted quantifier version of Theorem 19.28 of [Margaris] p. 90. It is valid only when the domain of quantification is inhabited. (Contributed by Jim Kingdon, 5-Aug-2018.) |
⊢ Ⅎ𝑥𝜑 ⇒ ⊢ (∃𝑥 𝑥 ∈ 𝐴 → (∀𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓) ↔ (𝜑 ∧ ∀𝑥 ∈ 𝐴 𝜓))) | ||
Theorem | r19.3rmv 3505* | Restricted quantification of wff not containing quantified variable. (Contributed by Jim Kingdon, 6-Aug-2018.) |
⊢ (∃𝑦 𝑦 ∈ 𝐴 → (𝜑 ↔ ∀𝑥 ∈ 𝐴 𝜑)) | ||
Theorem | r19.9rmv 3506* | Restricted quantification of wff not containing quantified variable. (Contributed by Jim Kingdon, 5-Aug-2018.) |
⊢ (∃𝑦 𝑦 ∈ 𝐴 → (𝜑 ↔ ∃𝑥 ∈ 𝐴 𝜑)) | ||
Theorem | r19.28mv 3507* | Restricted quantifier version of Theorem 19.28 of [Margaris] p. 90. It is valid only when the domain of quantification is inhabited. (Contributed by Jim Kingdon, 6-Aug-2018.) |
⊢ (∃𝑥 𝑥 ∈ 𝐴 → (∀𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓) ↔ (𝜑 ∧ ∀𝑥 ∈ 𝐴 𝜓))) | ||
Theorem | r19.45mv 3508* | Restricted version of Theorem 19.45 of [Margaris] p. 90. (Contributed by NM, 27-May-1998.) |
⊢ (∃𝑥 𝑥 ∈ 𝐴 → (∃𝑥 ∈ 𝐴 (𝜑 ∨ 𝜓) ↔ (𝜑 ∨ ∃𝑥 ∈ 𝐴 𝜓))) | ||
Theorem | r19.44mv 3509* | Restricted version of Theorem 19.44 of [Margaris] p. 90. (Contributed by NM, 27-May-1998.) |
⊢ (∃𝑦 𝑦 ∈ 𝐴 → (∃𝑥 ∈ 𝐴 (𝜑 ∨ 𝜓) ↔ (∃𝑥 ∈ 𝐴 𝜑 ∨ 𝜓))) | ||
Theorem | r19.27m 3510* | Restricted quantifier version of Theorem 19.27 of [Margaris] p. 90. It is valid only when the domain of quantification is inhabited. (Contributed by Jim Kingdon, 5-Aug-2018.) |
⊢ Ⅎ𝑥𝜓 ⇒ ⊢ (∃𝑥 𝑥 ∈ 𝐴 → (∀𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓) ↔ (∀𝑥 ∈ 𝐴 𝜑 ∧ 𝜓))) | ||
Theorem | r19.27mv 3511* | Restricted quantifier version of Theorem 19.27 of [Margaris] p. 90. It is valid only when the domain of quantification is inhabited. (Contributed by Jim Kingdon, 5-Aug-2018.) |
⊢ (∃𝑥 𝑥 ∈ 𝐴 → (∀𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓) ↔ (∀𝑥 ∈ 𝐴 𝜑 ∧ 𝜓))) | ||
Theorem | rzal 3512* | Vacuous quantification is always true. (Contributed by NM, 11-Mar-1997.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
⊢ (𝐴 = ∅ → ∀𝑥 ∈ 𝐴 𝜑) | ||
Theorem | rexn0 3513* | Restricted existential quantification implies its restriction is nonempty (it is also inhabited as shown in rexm 3514). (Contributed by Szymon Jaroszewicz, 3-Apr-2007.) |
⊢ (∃𝑥 ∈ 𝐴 𝜑 → 𝐴 ≠ ∅) | ||
Theorem | rexm 3514* | Restricted existential quantification implies its restriction is inhabited. (Contributed by Jim Kingdon, 16-Oct-2018.) |
⊢ (∃𝑥 ∈ 𝐴 𝜑 → ∃𝑥 𝑥 ∈ 𝐴) | ||
Theorem | ralidm 3515* | Idempotent law for restricted quantifier. (Contributed by NM, 28-Mar-1997.) |
⊢ (∀𝑥 ∈ 𝐴 ∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥 ∈ 𝐴 𝜑) | ||
Theorem | ral0 3516 | Vacuous universal quantification is always true. (Contributed by NM, 20-Oct-2005.) |
⊢ ∀𝑥 ∈ ∅ 𝜑 | ||
Theorem | rgenm 3517* | Generalization rule that eliminates an inhabited class requirement. (Contributed by Jim Kingdon, 5-Aug-2018.) |
⊢ ((∃𝑥 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴) → 𝜑) ⇒ ⊢ ∀𝑥 ∈ 𝐴 𝜑 | ||
Theorem | ralf0 3518* | The quantification of a falsehood is vacuous when true. (Contributed by NM, 26-Nov-2005.) |
⊢ ¬ 𝜑 ⇒ ⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ 𝐴 = ∅) | ||
Theorem | ralm 3519 | Inhabited classes and restricted quantification. (Contributed by Jim Kingdon, 6-Aug-2018.) |
⊢ ((∃𝑥 𝑥 ∈ 𝐴 → ∀𝑥 ∈ 𝐴 𝜑) ↔ ∀𝑥 ∈ 𝐴 𝜑) | ||
Theorem | raaanlem 3520* | Special case of raaan 3521 where 𝐴 is inhabited. (Contributed by Jim Kingdon, 6-Aug-2018.) |
⊢ Ⅎ𝑦𝜑 & ⊢ Ⅎ𝑥𝜓 ⇒ ⊢ (∃𝑥 𝑥 ∈ 𝐴 → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝜑 ∧ 𝜓) ↔ (∀𝑥 ∈ 𝐴 𝜑 ∧ ∀𝑦 ∈ 𝐴 𝜓))) | ||
Theorem | raaan 3521* | Rearrange restricted quantifiers. (Contributed by NM, 26-Oct-2010.) |
⊢ Ⅎ𝑦𝜑 & ⊢ Ⅎ𝑥𝜓 ⇒ ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝜑 ∧ 𝜓) ↔ (∀𝑥 ∈ 𝐴 𝜑 ∧ ∀𝑦 ∈ 𝐴 𝜓)) | ||
Theorem | raaanv 3522* | Rearrange restricted quantifiers. (Contributed by NM, 11-Mar-1997.) |
⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝜑 ∧ 𝜓) ↔ (∀𝑥 ∈ 𝐴 𝜑 ∧ ∀𝑦 ∈ 𝐴 𝜓)) | ||
Theorem | sbss 3523* | Set substitution into the first argument of a subset relation. (Contributed by Rodolfo Medina, 7-Jul-2010.) (Proof shortened by Mario Carneiro, 14-Nov-2016.) |
⊢ ([𝑦 / 𝑥]𝑥 ⊆ 𝐴 ↔ 𝑦 ⊆ 𝐴) | ||
Theorem | sbcssg 3524 | Distribute proper substitution through a subclass relation. (Contributed by Alan Sare, 22-Jul-2012.) (Proof shortened by Alexander van der Vekens, 23-Jul-2017.) |
⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]𝐵 ⊆ 𝐶 ↔ ⦋𝐴 / 𝑥⦌𝐵 ⊆ ⦋𝐴 / 𝑥⦌𝐶)) | ||
Theorem | dcun 3525 | The union of two decidable classes is decidable. (Contributed by Jim Kingdon, 5-Oct-2022.) |
⊢ (𝜑 → DECID 𝑘 ∈ 𝐴) & ⊢ (𝜑 → DECID 𝑘 ∈ 𝐵) ⇒ ⊢ (𝜑 → DECID 𝑘 ∈ (𝐴 ∪ 𝐵)) | ||
Syntax | cif 3526 | Extend class notation to include the conditional operator. See df-if 3527 for a description. (In older databases this was denoted "ded".) |
class if(𝜑, 𝐴, 𝐵) | ||
Definition | df-if 3527* |
Define the conditional operator. Read if(𝜑, 𝐴, 𝐵) as "if
𝜑 then 𝐴 else 𝐵".
See iftrue 3531 and iffalse 3534 for its
values. In mathematical literature, this operator is rarely defined
formally but is implicit in informal definitions such as "let
f(x)=0 if
x=0 and 1/x otherwise."
In the absence of excluded middle, this will tend to be useful where 𝜑 is decidable (in the sense of df-dc 830). (Contributed by NM, 15-May-1999.) |
⊢ if(𝜑, 𝐴, 𝐵) = {𝑥 ∣ ((𝑥 ∈ 𝐴 ∧ 𝜑) ∨ (𝑥 ∈ 𝐵 ∧ ¬ 𝜑))} | ||
Theorem | dfif6 3528* | An alternate definition of the conditional operator df-if 3527 as a simple class abstraction. (Contributed by Mario Carneiro, 8-Sep-2013.) |
⊢ if(𝜑, 𝐴, 𝐵) = ({𝑥 ∈ 𝐴 ∣ 𝜑} ∪ {𝑥 ∈ 𝐵 ∣ ¬ 𝜑}) | ||
Theorem | ifeq1 3529 | Equality theorem for conditional operator. (Contributed by NM, 1-Sep-2004.) (Revised by Mario Carneiro, 8-Sep-2013.) |
⊢ (𝐴 = 𝐵 → if(𝜑, 𝐴, 𝐶) = if(𝜑, 𝐵, 𝐶)) | ||
Theorem | ifeq2 3530 | Equality theorem for conditional operator. (Contributed by NM, 1-Sep-2004.) (Revised by Mario Carneiro, 8-Sep-2013.) |
⊢ (𝐴 = 𝐵 → if(𝜑, 𝐶, 𝐴) = if(𝜑, 𝐶, 𝐵)) | ||
Theorem | iftrue 3531 | Value of the conditional operator when its first argument is true. (Contributed by NM, 15-May-1999.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
⊢ (𝜑 → if(𝜑, 𝐴, 𝐵) = 𝐴) | ||
Theorem | iftruei 3532 | Inference associated with iftrue 3531. (Contributed by BJ, 7-Oct-2018.) |
⊢ 𝜑 ⇒ ⊢ if(𝜑, 𝐴, 𝐵) = 𝐴 | ||
Theorem | iftrued 3533 | Value of the conditional operator when its first argument is true. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ (𝜑 → 𝜒) ⇒ ⊢ (𝜑 → if(𝜒, 𝐴, 𝐵) = 𝐴) | ||
Theorem | iffalse 3534 | Value of the conditional operator when its first argument is false. (Contributed by NM, 14-Aug-1999.) |
⊢ (¬ 𝜑 → if(𝜑, 𝐴, 𝐵) = 𝐵) | ||
Theorem | iffalsei 3535 | Inference associated with iffalse 3534. (Contributed by BJ, 7-Oct-2018.) |
⊢ ¬ 𝜑 ⇒ ⊢ if(𝜑, 𝐴, 𝐵) = 𝐵 | ||
Theorem | iffalsed 3536 | Value of the conditional operator when its first argument is false. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ (𝜑 → ¬ 𝜒) ⇒ ⊢ (𝜑 → if(𝜒, 𝐴, 𝐵) = 𝐵) | ||
Theorem | ifnefalse 3537 | When values are unequal, but an "if" condition checks if they are equal, then the "false" branch results. This is a simple utility to provide a slight shortening and simplification of proofs versus applying iffalse 3534 directly in this case. (Contributed by David A. Wheeler, 15-May-2015.) |
⊢ (𝐴 ≠ 𝐵 → if(𝐴 = 𝐵, 𝐶, 𝐷) = 𝐷) | ||
Theorem | ifsbdc 3538 | Distribute a function over an if-clause. (Contributed by Jim Kingdon, 1-Jan-2022.) |
⊢ (if(𝜑, 𝐴, 𝐵) = 𝐴 → 𝐶 = 𝐷) & ⊢ (if(𝜑, 𝐴, 𝐵) = 𝐵 → 𝐶 = 𝐸) ⇒ ⊢ (DECID 𝜑 → 𝐶 = if(𝜑, 𝐷, 𝐸)) | ||
Theorem | dfif3 3539* | Alternate definition of the conditional operator df-if 3527. Note that 𝜑 is independent of 𝑥 i.e. a constant true or false. (Contributed by NM, 25-Aug-2013.) (Revised by Mario Carneiro, 8-Sep-2013.) |
⊢ 𝐶 = {𝑥 ∣ 𝜑} ⇒ ⊢ if(𝜑, 𝐴, 𝐵) = ((𝐴 ∩ 𝐶) ∪ (𝐵 ∩ (V ∖ 𝐶))) | ||
Theorem | ifssun 3540 | A conditional class is included in the union of its two alternatives. (Contributed by BJ, 15-Aug-2024.) |
⊢ if(𝜑, 𝐴, 𝐵) ⊆ (𝐴 ∪ 𝐵) | ||
Theorem | ifidss 3541 | A conditional class whose two alternatives are equal is included in that alternative. With excluded middle, we can prove it is equal to it. (Contributed by BJ, 15-Aug-2024.) |
⊢ if(𝜑, 𝐴, 𝐴) ⊆ 𝐴 | ||
Theorem | ifeq12 3542 | Equality theorem for conditional operators. (Contributed by NM, 1-Sep-2004.) |
⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → if(𝜑, 𝐴, 𝐶) = if(𝜑, 𝐵, 𝐷)) | ||
Theorem | ifeq1d 3543 | Equality deduction for conditional operator. (Contributed by NM, 16-Feb-2005.) |
⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → if(𝜓, 𝐴, 𝐶) = if(𝜓, 𝐵, 𝐶)) | ||
Theorem | ifeq2d 3544 | Equality deduction for conditional operator. (Contributed by NM, 16-Feb-2005.) |
⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → if(𝜓, 𝐶, 𝐴) = if(𝜓, 𝐶, 𝐵)) | ||
Theorem | ifeq12d 3545 | Equality deduction for conditional operator. (Contributed by NM, 24-Mar-2015.) |
⊢ (𝜑 → 𝐴 = 𝐵) & ⊢ (𝜑 → 𝐶 = 𝐷) ⇒ ⊢ (𝜑 → if(𝜓, 𝐴, 𝐶) = if(𝜓, 𝐵, 𝐷)) | ||
Theorem | ifbi 3546 | Equivalence theorem for conditional operators. (Contributed by Raph Levien, 15-Jan-2004.) |
⊢ ((𝜑 ↔ 𝜓) → if(𝜑, 𝐴, 𝐵) = if(𝜓, 𝐴, 𝐵)) | ||
Theorem | ifbid 3547 | Equivalence deduction for conditional operators. (Contributed by NM, 18-Apr-2005.) |
⊢ (𝜑 → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → if(𝜓, 𝐴, 𝐵) = if(𝜒, 𝐴, 𝐵)) | ||
Theorem | ifbieq1d 3548 | Equivalence/equality deduction for conditional operators. (Contributed by JJ, 25-Sep-2018.) |
⊢ (𝜑 → (𝜓 ↔ 𝜒)) & ⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → if(𝜓, 𝐴, 𝐶) = if(𝜒, 𝐵, 𝐶)) | ||
Theorem | ifbieq2i 3549 | Equivalence/equality inference for conditional operators. (Contributed by Paul Chapman, 22-Jun-2011.) |
⊢ (𝜑 ↔ 𝜓) & ⊢ 𝐴 = 𝐵 ⇒ ⊢ if(𝜑, 𝐶, 𝐴) = if(𝜓, 𝐶, 𝐵) | ||
Theorem | ifbieq2d 3550 | Equivalence/equality deduction for conditional operators. (Contributed by Paul Chapman, 22-Jun-2011.) |
⊢ (𝜑 → (𝜓 ↔ 𝜒)) & ⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → if(𝜓, 𝐶, 𝐴) = if(𝜒, 𝐶, 𝐵)) | ||
Theorem | ifbieq12i 3551 | Equivalence deduction for conditional operators. (Contributed by NM, 18-Mar-2013.) |
⊢ (𝜑 ↔ 𝜓) & ⊢ 𝐴 = 𝐶 & ⊢ 𝐵 = 𝐷 ⇒ ⊢ if(𝜑, 𝐴, 𝐵) = if(𝜓, 𝐶, 𝐷) | ||
Theorem | ifbieq12d 3552 | Equivalence deduction for conditional operators. (Contributed by Jeff Madsen, 2-Sep-2009.) |
⊢ (𝜑 → (𝜓 ↔ 𝜒)) & ⊢ (𝜑 → 𝐴 = 𝐶) & ⊢ (𝜑 → 𝐵 = 𝐷) ⇒ ⊢ (𝜑 → if(𝜓, 𝐴, 𝐵) = if(𝜒, 𝐶, 𝐷)) | ||
Theorem | nfifd 3553 | Deduction version of nfif 3554. (Contributed by NM, 15-Feb-2013.) (Revised by Mario Carneiro, 13-Oct-2016.) |
⊢ (𝜑 → Ⅎ𝑥𝜓) & ⊢ (𝜑 → Ⅎ𝑥𝐴) & ⊢ (𝜑 → Ⅎ𝑥𝐵) ⇒ ⊢ (𝜑 → Ⅎ𝑥if(𝜓, 𝐴, 𝐵)) | ||
Theorem | nfif 3554 | Bound-variable hypothesis builder for a conditional operator. (Contributed by NM, 16-Feb-2005.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
⊢ Ⅎ𝑥𝜑 & ⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑥𝐵 ⇒ ⊢ Ⅎ𝑥if(𝜑, 𝐴, 𝐵) | ||
Theorem | ifcldadc 3555 | Conditional closure. (Contributed by Jim Kingdon, 11-Jan-2022.) |
⊢ ((𝜑 ∧ 𝜓) → 𝐴 ∈ 𝐶) & ⊢ ((𝜑 ∧ ¬ 𝜓) → 𝐵 ∈ 𝐶) & ⊢ (𝜑 → DECID 𝜓) ⇒ ⊢ (𝜑 → if(𝜓, 𝐴, 𝐵) ∈ 𝐶) | ||
Theorem | ifeq1dadc 3556 | Conditional equality. (Contributed by Jim Kingdon, 1-Jan-2022.) |
⊢ ((𝜑 ∧ 𝜓) → 𝐴 = 𝐵) & ⊢ (𝜑 → DECID 𝜓) ⇒ ⊢ (𝜑 → if(𝜓, 𝐴, 𝐶) = if(𝜓, 𝐵, 𝐶)) | ||
Theorem | ifbothdadc 3557 | A formula 𝜃 containing a decidable conditional operator is true when both of its cases are true. (Contributed by Jim Kingdon, 3-Jun-2022.) |
⊢ (𝐴 = if(𝜑, 𝐴, 𝐵) → (𝜓 ↔ 𝜃)) & ⊢ (𝐵 = if(𝜑, 𝐴, 𝐵) → (𝜒 ↔ 𝜃)) & ⊢ ((𝜂 ∧ 𝜑) → 𝜓) & ⊢ ((𝜂 ∧ ¬ 𝜑) → 𝜒) & ⊢ (𝜂 → DECID 𝜑) ⇒ ⊢ (𝜂 → 𝜃) | ||
Theorem | ifbothdc 3558 | A wff 𝜃 containing a conditional operator is true when both of its cases are true. (Contributed by Jim Kingdon, 8-Aug-2021.) |
⊢ (𝐴 = if(𝜑, 𝐴, 𝐵) → (𝜓 ↔ 𝜃)) & ⊢ (𝐵 = if(𝜑, 𝐴, 𝐵) → (𝜒 ↔ 𝜃)) ⇒ ⊢ ((𝜓 ∧ 𝜒 ∧ DECID 𝜑) → 𝜃) | ||
Theorem | ifiddc 3559 | Identical true and false arguments in the conditional operator. (Contributed by NM, 18-Apr-2005.) |
⊢ (DECID 𝜑 → if(𝜑, 𝐴, 𝐴) = 𝐴) | ||
Theorem | eqifdc 3560 | Expansion of an equality with a conditional operator. (Contributed by Jim Kingdon, 28-Jul-2022.) |
⊢ (DECID 𝜑 → (𝐴 = if(𝜑, 𝐵, 𝐶) ↔ ((𝜑 ∧ 𝐴 = 𝐵) ∨ (¬ 𝜑 ∧ 𝐴 = 𝐶)))) | ||
Theorem | ifcldcd 3561 | Membership (closure) of a conditional operator, deduction form. (Contributed by Jim Kingdon, 8-Aug-2021.) |
⊢ (𝜑 → 𝐴 ∈ 𝐶) & ⊢ (𝜑 → 𝐵 ∈ 𝐶) & ⊢ (𝜑 → DECID 𝜓) ⇒ ⊢ (𝜑 → if(𝜓, 𝐴, 𝐵) ∈ 𝐶) | ||
Theorem | ifnotdc 3562 | Negating the first argument swaps the last two arguments of a conditional operator. (Contributed by NM, 21-Jun-2007.) |
⊢ (DECID 𝜑 → if(¬ 𝜑, 𝐴, 𝐵) = if(𝜑, 𝐵, 𝐴)) | ||
Theorem | ifandc 3563 | Rewrite a conjunction in a conditional as two nested conditionals. (Contributed by Mario Carneiro, 28-Jul-2014.) |
⊢ (DECID 𝜑 → if((𝜑 ∧ 𝜓), 𝐴, 𝐵) = if(𝜑, if(𝜓, 𝐴, 𝐵), 𝐵)) | ||
Theorem | ifordc 3564 | Rewrite a disjunction in a conditional as two nested conditionals. (Contributed by Mario Carneiro, 28-Jul-2014.) |
⊢ (DECID 𝜑 → if((𝜑 ∨ 𝜓), 𝐴, 𝐵) = if(𝜑, 𝐴, if(𝜓, 𝐴, 𝐵))) | ||
Theorem | ifmdc 3565 | If a conditional class is inhabited, then the condition is decidable. This shows that conditionals are not very useful unless one can prove the condition decidable. (Contributed by BJ, 24-Sep-2022.) |
⊢ (𝐴 ∈ if(𝜑, 𝐵, 𝐶) → DECID 𝜑) | ||
Syntax | cpw 3566 | Extend class notation to include power class. (The tilde in the Metamath token is meant to suggest the calligraphic font of the P.) |
class 𝒫 𝐴 | ||
Theorem | pwjust 3567* | Soundness justification theorem for df-pw 3568. (Contributed by Rodolfo Medina, 28-Apr-2010.) (Proof shortened by Andrew Salmon, 29-Jun-2011.) |
⊢ {𝑥 ∣ 𝑥 ⊆ 𝐴} = {𝑦 ∣ 𝑦 ⊆ 𝐴} | ||
Definition | df-pw 3568* | Define power class. Definition 5.10 of [TakeutiZaring] p. 17, but we also let it apply to proper classes, i.e. those that are not members of V. When applied to a set, this produces its power set. A power set of S is the set of all subsets of S, including the empty set and S itself. For example, if 𝐴 is { 3 , 5 , 7 }, then 𝒫 𝐴 is { (/) , { 3 } , { 5 } , { 7 } , { 3 , 5 } , { 3 , 7 } , { 5 , 7 } , { 3 , 5 , 7 } }. We will later introduce the Axiom of Power Sets. Still later we will prove that the size of the power set of a finite set is 2 raised to the power of the size of the set. (Contributed by NM, 5-Aug-1993.) |
⊢ 𝒫 𝐴 = {𝑥 ∣ 𝑥 ⊆ 𝐴} | ||
Theorem | pweq 3569 | Equality theorem for power class. (Contributed by NM, 5-Aug-1993.) |
⊢ (𝐴 = 𝐵 → 𝒫 𝐴 = 𝒫 𝐵) | ||
Theorem | pweqi 3570 | Equality inference for power class. (Contributed by NM, 27-Nov-2013.) |
⊢ 𝐴 = 𝐵 ⇒ ⊢ 𝒫 𝐴 = 𝒫 𝐵 | ||
Theorem | pweqd 3571 | Equality deduction for power class. (Contributed by NM, 27-Nov-2013.) |
⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → 𝒫 𝐴 = 𝒫 𝐵) | ||
Theorem | elpw 3572 | Membership in a power class. Theorem 86 of [Suppes] p. 47. (Contributed by NM, 31-Dec-1993.) |
⊢ 𝐴 ∈ V ⇒ ⊢ (𝐴 ∈ 𝒫 𝐵 ↔ 𝐴 ⊆ 𝐵) | ||
Theorem | velpw 3573* | Setvar variable membership in a power class (common case). See elpw 3572. (Contributed by David A. Wheeler, 8-Dec-2018.) |
⊢ (𝑥 ∈ 𝒫 𝐴 ↔ 𝑥 ⊆ 𝐴) | ||
Theorem | elpwg 3574 | Membership in a power class. Theorem 86 of [Suppes] p. 47. (Contributed by NM, 6-Aug-2000.) |
⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ 𝒫 𝐵 ↔ 𝐴 ⊆ 𝐵)) | ||
Theorem | elpwi 3575 | Subset relation implied by membership in a power class. (Contributed by NM, 17-Feb-2007.) |
⊢ (𝐴 ∈ 𝒫 𝐵 → 𝐴 ⊆ 𝐵) | ||
Theorem | elpwb 3576 | Characterization of the elements of a power class. (Contributed by BJ, 29-Apr-2021.) |
⊢ (𝐴 ∈ 𝒫 𝐵 ↔ (𝐴 ∈ V ∧ 𝐴 ⊆ 𝐵)) | ||
Theorem | elpwid 3577 | An element of a power class is a subclass. Deduction form of elpwi 3575. (Contributed by David Moews, 1-May-2017.) |
⊢ (𝜑 → 𝐴 ∈ 𝒫 𝐵) ⇒ ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | ||
Theorem | elelpwi 3578 | If 𝐴 belongs to a part of 𝐶 then 𝐴 belongs to 𝐶. (Contributed by FL, 3-Aug-2009.) |
⊢ ((𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝒫 𝐶) → 𝐴 ∈ 𝐶) | ||
Theorem | nfpw 3579 | Bound-variable hypothesis builder for power class. (Contributed by NM, 28-Oct-2003.) (Revised by Mario Carneiro, 13-Oct-2016.) |
⊢ Ⅎ𝑥𝐴 ⇒ ⊢ Ⅎ𝑥𝒫 𝐴 | ||
Theorem | pwidg 3580 | Membership of the original in a power set. (Contributed by Stefan O'Rear, 1-Feb-2015.) |
⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ 𝒫 𝐴) | ||
Theorem | pwid 3581 | A set is a member of its power class. Theorem 87 of [Suppes] p. 47. (Contributed by NM, 5-Aug-1993.) |
⊢ 𝐴 ∈ V ⇒ ⊢ 𝐴 ∈ 𝒫 𝐴 | ||
Theorem | pwss 3582* | Subclass relationship for power class. (Contributed by NM, 21-Jun-2009.) |
⊢ (𝒫 𝐴 ⊆ 𝐵 ↔ ∀𝑥(𝑥 ⊆ 𝐴 → 𝑥 ∈ 𝐵)) | ||
Syntax | csn 3583 | Extend class notation to include singleton. |
class {𝐴} | ||
Syntax | cpr 3584 | Extend class notation to include unordered pair. |
class {𝐴, 𝐵} | ||
Syntax | ctp 3585 | Extend class notation to include unordered triplet. |
class {𝐴, 𝐵, 𝐶} | ||
Syntax | cop 3586 | Extend class notation to include ordered pair. |
class 〈𝐴, 𝐵〉 | ||
Syntax | cotp 3587 | Extend class notation to include ordered triple. |
class 〈𝐴, 𝐵, 𝐶〉 | ||
Theorem | snjust 3588* | Soundness justification theorem for df-sn 3589. (Contributed by Rodolfo Medina, 28-Apr-2010.) (Proof shortened by Andrew Salmon, 29-Jun-2011.) |
⊢ {𝑥 ∣ 𝑥 = 𝐴} = {𝑦 ∣ 𝑦 = 𝐴} | ||
Definition | df-sn 3589* | Define the singleton of a class. Definition 7.1 of [Quine] p. 48. For convenience, it is well-defined for proper classes, i.e., those that are not elements of V, although it is not very meaningful in this case. For an alternate definition see dfsn2 3597. (Contributed by NM, 5-Aug-1993.) |
⊢ {𝐴} = {𝑥 ∣ 𝑥 = 𝐴} | ||
Definition | df-pr 3590 | Define unordered pair of classes. Definition 7.1 of [Quine] p. 48. They are unordered, so {𝐴, 𝐵} = {𝐵, 𝐴} as proven by prcom 3659. For a more traditional definition, but requiring a dummy variable, see dfpr2 3602. (Contributed by NM, 5-Aug-1993.) |
⊢ {𝐴, 𝐵} = ({𝐴} ∪ {𝐵}) | ||
Definition | df-tp 3591 | Define unordered triple of classes. Definition of [Enderton] p. 19. (Contributed by NM, 9-Apr-1994.) |
⊢ {𝐴, 𝐵, 𝐶} = ({𝐴, 𝐵} ∪ {𝐶}) | ||
Definition | df-op 3592* |
Definition of an ordered pair, equivalent to Kuratowski's definition
{{𝐴}, {𝐴, 𝐵}} when the arguments are sets.
Since the
behavior of Kuratowski definition is not very useful for proper classes,
we define it to be empty in this case (see opprc1 3787 and opprc2 3788). For
Kuratowski's actual definition when the arguments are sets, see dfop 3764.
Definition 9.1 of [Quine] p. 58 defines an ordered pair unconditionally as 〈𝐴, 𝐵〉 = {{𝐴}, {𝐴, 𝐵}}, which has different behavior from our df-op 3592 when the arguments are proper classes. Ordinarily this difference is not important, since neither definition is meaningful in that case. Our df-op 3592 was chosen because it often makes proofs shorter by eliminating unnecessary sethood hypotheses. There are other ways to define ordered pairs. The basic requirement is that two ordered pairs are equal iff their respective members are equal. In 1914 Norbert Wiener gave the first successful definition 〈𝐴, 𝐵〉2 = {{{𝐴}, ∅}, {{𝐵}}}. This was simplified by Kazimierz Kuratowski in 1921 to our present definition. An even simpler definition is 〈𝐴, 𝐵〉3 = {𝐴, {𝐴, 𝐵}}, but it requires the Axiom of Regularity for its justification and is not commonly used. Finally, an ordered pair of real numbers can be represented by a complex number. (Contributed by NM, 28-May-1995.) (Revised by Mario Carneiro, 26-Apr-2015.) |
⊢ 〈𝐴, 𝐵〉 = {𝑥 ∣ (𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝑥 ∈ {{𝐴}, {𝐴, 𝐵}})} | ||
Definition | df-ot 3593 | Define ordered triple of classes. Definition of ordered triple in [Stoll] p. 25. (Contributed by NM, 3-Apr-2015.) |
⊢ 〈𝐴, 𝐵, 𝐶〉 = 〈〈𝐴, 𝐵〉, 𝐶〉 | ||
Theorem | sneq 3594 | Equality theorem for singletons. Part of Exercise 4 of [TakeutiZaring] p. 15. (Contributed by NM, 5-Aug-1993.) |
⊢ (𝐴 = 𝐵 → {𝐴} = {𝐵}) | ||
Theorem | sneqi 3595 | Equality inference for singletons. (Contributed by NM, 22-Jan-2004.) |
⊢ 𝐴 = 𝐵 ⇒ ⊢ {𝐴} = {𝐵} | ||
Theorem | sneqd 3596 | Equality deduction for singletons. (Contributed by NM, 22-Jan-2004.) |
⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → {𝐴} = {𝐵}) | ||
Theorem | dfsn2 3597 | Alternate definition of singleton. Definition 5.1 of [TakeutiZaring] p. 15. (Contributed by NM, 24-Apr-1994.) |
⊢ {𝐴} = {𝐴, 𝐴} | ||
Theorem | elsng 3598 | There is exactly one element in a singleton. Exercise 2 of [TakeutiZaring] p. 15 (generalized). (Contributed by NM, 13-Sep-1995.) (Proof shortened by Andrew Salmon, 29-Jun-2011.) |
⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ {𝐵} ↔ 𝐴 = 𝐵)) | ||
Theorem | elsn 3599 | There is exactly one element in a singleton. Exercise 2 of [TakeutiZaring] p. 15. (Contributed by NM, 13-Sep-1995.) |
⊢ 𝐴 ∈ V ⇒ ⊢ (𝐴 ∈ {𝐵} ↔ 𝐴 = 𝐵) | ||
Theorem | velsn 3600 | There is only one element in a singleton. Exercise 2 of [TakeutiZaring] p. 15. (Contributed by NM, 21-Jun-1993.) |
⊢ (𝑥 ∈ {𝐴} ↔ 𝑥 = 𝐴) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |