| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ifmdc | GIF version | ||
| Description: If a conditional class is inhabited, then the condition is decidable. This shows that conditionals are not very useful unless one can prove the condition decidable. (Contributed by BJ, 24-Sep-2022.) |
| Ref | Expression |
|---|---|
| ifmdc | ⊢ (𝐴 ∈ if(𝜑, 𝐵, 𝐶) → DECID 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq1 2269 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝑥 ∈ if(𝜑, 𝐵, 𝐶) ↔ 𝐴 ∈ if(𝜑, 𝐵, 𝐶))) | |
| 2 | 1 | imbi1d 231 | . . . 4 ⊢ (𝑥 = 𝐴 → ((𝑥 ∈ if(𝜑, 𝐵, 𝐶) → (𝜑 ∨ ¬ 𝜑)) ↔ (𝐴 ∈ if(𝜑, 𝐵, 𝐶) → (𝜑 ∨ ¬ 𝜑)))) |
| 3 | df-if 3573 | . . . . . 6 ⊢ if(𝜑, 𝐵, 𝐶) = {𝑥 ∣ ((𝑥 ∈ 𝐵 ∧ 𝜑) ∨ (𝑥 ∈ 𝐶 ∧ ¬ 𝜑))} | |
| 4 | 3 | abeq2i 2317 | . . . . 5 ⊢ (𝑥 ∈ if(𝜑, 𝐵, 𝐶) ↔ ((𝑥 ∈ 𝐵 ∧ 𝜑) ∨ (𝑥 ∈ 𝐶 ∧ ¬ 𝜑))) |
| 5 | simpr 110 | . . . . . 6 ⊢ ((𝑥 ∈ 𝐵 ∧ 𝜑) → 𝜑) | |
| 6 | simpr 110 | . . . . . 6 ⊢ ((𝑥 ∈ 𝐶 ∧ ¬ 𝜑) → ¬ 𝜑) | |
| 7 | 5, 6 | orim12i 761 | . . . . 5 ⊢ (((𝑥 ∈ 𝐵 ∧ 𝜑) ∨ (𝑥 ∈ 𝐶 ∧ ¬ 𝜑)) → (𝜑 ∨ ¬ 𝜑)) |
| 8 | 4, 7 | sylbi 121 | . . . 4 ⊢ (𝑥 ∈ if(𝜑, 𝐵, 𝐶) → (𝜑 ∨ ¬ 𝜑)) |
| 9 | 2, 8 | vtoclg 2834 | . . 3 ⊢ (𝐴 ∈ if(𝜑, 𝐵, 𝐶) → (𝐴 ∈ if(𝜑, 𝐵, 𝐶) → (𝜑 ∨ ¬ 𝜑))) |
| 10 | 9 | pm2.43i 49 | . 2 ⊢ (𝐴 ∈ if(𝜑, 𝐵, 𝐶) → (𝜑 ∨ ¬ 𝜑)) |
| 11 | df-dc 837 | . 2 ⊢ (DECID 𝜑 ↔ (𝜑 ∨ ¬ 𝜑)) | |
| 12 | 10, 11 | sylibr 134 | 1 ⊢ (𝐴 ∈ if(𝜑, 𝐵, 𝐶) → DECID 𝜑) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ∨ wo 710 DECID wdc 836 = wceq 1373 ∈ wcel 2177 ifcif 3572 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-v 2775 df-if 3573 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |