ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ifmdc GIF version

Theorem ifmdc 3625
Description: If a conditional class is inhabited, then the condition is decidable. This shows that conditionals are not very useful unless one can prove the condition decidable. (Contributed by BJ, 24-Sep-2022.)
Assertion
Ref Expression
ifmdc (𝐴 ∈ if(𝜑, 𝐵, 𝐶) → DECID 𝜑)

Proof of Theorem ifmdc
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eleq1 2272 . . . . 5 (𝑥 = 𝐴 → (𝑥 ∈ if(𝜑, 𝐵, 𝐶) ↔ 𝐴 ∈ if(𝜑, 𝐵, 𝐶)))
21imbi1d 231 . . . 4 (𝑥 = 𝐴 → ((𝑥 ∈ if(𝜑, 𝐵, 𝐶) → (𝜑 ∨ ¬ 𝜑)) ↔ (𝐴 ∈ if(𝜑, 𝐵, 𝐶) → (𝜑 ∨ ¬ 𝜑))))
3 df-if 3583 . . . . . 6 if(𝜑, 𝐵, 𝐶) = {𝑥 ∣ ((𝑥𝐵𝜑) ∨ (𝑥𝐶 ∧ ¬ 𝜑))}
43abeq2i 2320 . . . . 5 (𝑥 ∈ if(𝜑, 𝐵, 𝐶) ↔ ((𝑥𝐵𝜑) ∨ (𝑥𝐶 ∧ ¬ 𝜑)))
5 simpr 110 . . . . . 6 ((𝑥𝐵𝜑) → 𝜑)
6 simpr 110 . . . . . 6 ((𝑥𝐶 ∧ ¬ 𝜑) → ¬ 𝜑)
75, 6orim12i 763 . . . . 5 (((𝑥𝐵𝜑) ∨ (𝑥𝐶 ∧ ¬ 𝜑)) → (𝜑 ∨ ¬ 𝜑))
84, 7sylbi 121 . . . 4 (𝑥 ∈ if(𝜑, 𝐵, 𝐶) → (𝜑 ∨ ¬ 𝜑))
92, 8vtoclg 2841 . . 3 (𝐴 ∈ if(𝜑, 𝐵, 𝐶) → (𝐴 ∈ if(𝜑, 𝐵, 𝐶) → (𝜑 ∨ ¬ 𝜑)))
109pm2.43i 49 . 2 (𝐴 ∈ if(𝜑, 𝐵, 𝐶) → (𝜑 ∨ ¬ 𝜑))
11 df-dc 839 . 2 (DECID 𝜑 ↔ (𝜑 ∨ ¬ 𝜑))
1210, 11sylibr 134 1 (𝐴 ∈ if(𝜑, 𝐵, 𝐶) → DECID 𝜑)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wo 712  DECID wdc 838   = wceq 1375  wcel 2180  ifcif 3582
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-ext 2191
This theorem depends on definitions:  df-bi 117  df-dc 839  df-tru 1378  df-nf 1487  df-sb 1789  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-v 2781  df-if 3583
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator