| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > ifmdc | GIF version | ||
| Description: If a conditional class is inhabited, then the condition is decidable. This shows that conditionals are not very useful unless one can prove the condition decidable. (Contributed by BJ, 24-Sep-2022.) | 
| Ref | Expression | 
|---|---|
| ifmdc | ⊢ (𝐴 ∈ if(𝜑, 𝐵, 𝐶) → DECID 𝜑) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | eleq1 2259 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝑥 ∈ if(𝜑, 𝐵, 𝐶) ↔ 𝐴 ∈ if(𝜑, 𝐵, 𝐶))) | |
| 2 | 1 | imbi1d 231 | . . . 4 ⊢ (𝑥 = 𝐴 → ((𝑥 ∈ if(𝜑, 𝐵, 𝐶) → (𝜑 ∨ ¬ 𝜑)) ↔ (𝐴 ∈ if(𝜑, 𝐵, 𝐶) → (𝜑 ∨ ¬ 𝜑)))) | 
| 3 | df-if 3562 | . . . . . 6 ⊢ if(𝜑, 𝐵, 𝐶) = {𝑥 ∣ ((𝑥 ∈ 𝐵 ∧ 𝜑) ∨ (𝑥 ∈ 𝐶 ∧ ¬ 𝜑))} | |
| 4 | 3 | abeq2i 2307 | . . . . 5 ⊢ (𝑥 ∈ if(𝜑, 𝐵, 𝐶) ↔ ((𝑥 ∈ 𝐵 ∧ 𝜑) ∨ (𝑥 ∈ 𝐶 ∧ ¬ 𝜑))) | 
| 5 | simpr 110 | . . . . . 6 ⊢ ((𝑥 ∈ 𝐵 ∧ 𝜑) → 𝜑) | |
| 6 | simpr 110 | . . . . . 6 ⊢ ((𝑥 ∈ 𝐶 ∧ ¬ 𝜑) → ¬ 𝜑) | |
| 7 | 5, 6 | orim12i 760 | . . . . 5 ⊢ (((𝑥 ∈ 𝐵 ∧ 𝜑) ∨ (𝑥 ∈ 𝐶 ∧ ¬ 𝜑)) → (𝜑 ∨ ¬ 𝜑)) | 
| 8 | 4, 7 | sylbi 121 | . . . 4 ⊢ (𝑥 ∈ if(𝜑, 𝐵, 𝐶) → (𝜑 ∨ ¬ 𝜑)) | 
| 9 | 2, 8 | vtoclg 2824 | . . 3 ⊢ (𝐴 ∈ if(𝜑, 𝐵, 𝐶) → (𝐴 ∈ if(𝜑, 𝐵, 𝐶) → (𝜑 ∨ ¬ 𝜑))) | 
| 10 | 9 | pm2.43i 49 | . 2 ⊢ (𝐴 ∈ if(𝜑, 𝐵, 𝐶) → (𝜑 ∨ ¬ 𝜑)) | 
| 11 | df-dc 836 | . 2 ⊢ (DECID 𝜑 ↔ (𝜑 ∨ ¬ 𝜑)) | |
| 12 | 10, 11 | sylibr 134 | 1 ⊢ (𝐴 ∈ if(𝜑, 𝐵, 𝐶) → DECID 𝜑) | 
| Colors of variables: wff set class | 
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ∨ wo 709 DECID wdc 835 = wceq 1364 ∈ wcel 2167 ifcif 3561 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-dc 836 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-if 3562 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |