Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > Mathboxes > if0ab | GIF version |
Description: Expression of a
conditional class as a class abstraction when the False
alternative is the empty class: in that case, the conditional class is
the extension, in the True alternative, of the condition.
Remark: a consequence which could be formalized is the inclusion ⊢ if(𝜑, 𝐴, ∅) ⊆ 𝐴 and therefore, using elpwg 3574, ⊢ (𝐴 ∈ 𝑉 → if(𝜑, 𝐴, ∅) ∈ 𝒫 𝐴), from which fmelpw1o 13841 could be derived, yielding an alternative proof. (Contributed by BJ, 16-Aug-2024.) |
Ref | Expression |
---|---|
if0ab | ⊢ if(𝜑, 𝐴, ∅) = {𝑥 ∈ 𝐴 ∣ 𝜑} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | noel 3418 | . . . . . 6 ⊢ ¬ 𝑥 ∈ ∅ | |
2 | 1 | intnanr 925 | . . . . 5 ⊢ ¬ (𝑥 ∈ ∅ ∧ ¬ 𝜑) |
3 | 2 | biorfi 741 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝜑) ↔ ((𝑥 ∈ 𝐴 ∧ 𝜑) ∨ (𝑥 ∈ ∅ ∧ ¬ 𝜑))) |
4 | 3 | bicomi 131 | . . 3 ⊢ (((𝑥 ∈ 𝐴 ∧ 𝜑) ∨ (𝑥 ∈ ∅ ∧ ¬ 𝜑)) ↔ (𝑥 ∈ 𝐴 ∧ 𝜑)) |
5 | 4 | abbii 2286 | . 2 ⊢ {𝑥 ∣ ((𝑥 ∈ 𝐴 ∧ 𝜑) ∨ (𝑥 ∈ ∅ ∧ ¬ 𝜑))} = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} |
6 | df-if 3527 | . 2 ⊢ if(𝜑, 𝐴, ∅) = {𝑥 ∣ ((𝑥 ∈ 𝐴 ∧ 𝜑) ∨ (𝑥 ∈ ∅ ∧ ¬ 𝜑))} | |
7 | df-rab 2457 | . 2 ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} | |
8 | 5, 6, 7 | 3eqtr4i 2201 | 1 ⊢ if(𝜑, 𝐴, ∅) = {𝑥 ∈ 𝐴 ∣ 𝜑} |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 ∧ wa 103 ∨ wo 703 = wceq 1348 ∈ wcel 2141 {cab 2156 {crab 2452 ∅c0 3414 ifcif 3526 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-rab 2457 df-v 2732 df-dif 3123 df-nul 3415 df-if 3527 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |