Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  if0ab GIF version

Theorem if0ab 16193
Description: Expression of a conditional class as a class abstraction when the False alternative is the empty class: in that case, the conditional class is the extension, in the True alternative, of the condition.

Remark: a consequence which could be formalized is the inclusion if(𝜑, 𝐴, ∅) ⊆ 𝐴 and therefore, using elpwg 3657, (𝐴𝑉 → if(𝜑, 𝐴, ∅) ∈ 𝒫 𝐴), from which fmelpw1o 7440 could be derived, yielding an alternative proof. (Contributed by BJ, 16-Aug-2024.)

Assertion
Ref Expression
if0ab if(𝜑, 𝐴, ∅) = {𝑥𝐴𝜑}
Distinct variable groups:   𝑥,𝐴   𝜑,𝑥

Proof of Theorem if0ab
StepHypRef Expression
1 noel 3495 . . . . . 6 ¬ 𝑥 ∈ ∅
21intnanr 935 . . . . 5 ¬ (𝑥 ∈ ∅ ∧ ¬ 𝜑)
32biorfi 751 . . . 4 ((𝑥𝐴𝜑) ↔ ((𝑥𝐴𝜑) ∨ (𝑥 ∈ ∅ ∧ ¬ 𝜑)))
43bicomi 132 . . 3 (((𝑥𝐴𝜑) ∨ (𝑥 ∈ ∅ ∧ ¬ 𝜑)) ↔ (𝑥𝐴𝜑))
54abbii 2345 . 2 {𝑥 ∣ ((𝑥𝐴𝜑) ∨ (𝑥 ∈ ∅ ∧ ¬ 𝜑))} = {𝑥 ∣ (𝑥𝐴𝜑)}
6 df-if 3603 . 2 if(𝜑, 𝐴, ∅) = {𝑥 ∣ ((𝑥𝐴𝜑) ∨ (𝑥 ∈ ∅ ∧ ¬ 𝜑))}
7 df-rab 2517 . 2 {𝑥𝐴𝜑} = {𝑥 ∣ (𝑥𝐴𝜑)}
85, 6, 73eqtr4i 2260 1 if(𝜑, 𝐴, ∅) = {𝑥𝐴𝜑}
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wa 104  wo 713   = wceq 1395  wcel 2200  {cab 2215  {crab 2512  c0 3491  ifcif 3602
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-rab 2517  df-v 2801  df-dif 3199  df-nul 3492  df-if 3603
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator