| Mathbox for BJ | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > if0ab | GIF version | ||
| Description: Expression of a
conditional class as a class abstraction when the False
       alternative is the empty class: in that case, the conditional class is
       the extension, in the True alternative, of the condition.
 Remark: a consequence which could be formalized is the inclusion ⊢ if(𝜑, 𝐴, ∅) ⊆ 𝐴 and therefore, using elpwg 3613, ⊢ (𝐴 ∈ 𝑉 → if(𝜑, 𝐴, ∅) ∈ 𝒫 𝐴), from which fmelpw1o 15452 could be derived, yielding an alternative proof. (Contributed by BJ, 16-Aug-2024.)  | 
| Ref | Expression | 
|---|---|
| if0ab | ⊢ if(𝜑, 𝐴, ∅) = {𝑥 ∈ 𝐴 ∣ 𝜑} | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | noel 3454 | . . . . . 6 ⊢ ¬ 𝑥 ∈ ∅ | |
| 2 | 1 | intnanr 931 | . . . . 5 ⊢ ¬ (𝑥 ∈ ∅ ∧ ¬ 𝜑) | 
| 3 | 2 | biorfi 747 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝜑) ↔ ((𝑥 ∈ 𝐴 ∧ 𝜑) ∨ (𝑥 ∈ ∅ ∧ ¬ 𝜑))) | 
| 4 | 3 | bicomi 132 | . . 3 ⊢ (((𝑥 ∈ 𝐴 ∧ 𝜑) ∨ (𝑥 ∈ ∅ ∧ ¬ 𝜑)) ↔ (𝑥 ∈ 𝐴 ∧ 𝜑)) | 
| 5 | 4 | abbii 2312 | . 2 ⊢ {𝑥 ∣ ((𝑥 ∈ 𝐴 ∧ 𝜑) ∨ (𝑥 ∈ ∅ ∧ ¬ 𝜑))} = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} | 
| 6 | df-if 3562 | . 2 ⊢ if(𝜑, 𝐴, ∅) = {𝑥 ∣ ((𝑥 ∈ 𝐴 ∧ 𝜑) ∨ (𝑥 ∈ ∅ ∧ ¬ 𝜑))} | |
| 7 | df-rab 2484 | . 2 ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} | |
| 8 | 5, 6, 7 | 3eqtr4i 2227 | 1 ⊢ if(𝜑, 𝐴, ∅) = {𝑥 ∈ 𝐴 ∣ 𝜑} | 
| Colors of variables: wff set class | 
| Syntax hints: ¬ wn 3 ∧ wa 104 ∨ wo 709 = wceq 1364 ∈ wcel 2167 {cab 2182 {crab 2479 ∅c0 3450 ifcif 3561 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-rab 2484 df-v 2765 df-dif 3159 df-nul 3451 df-if 3562 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |