Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  if0ab GIF version

Theorem if0ab 15297
Description: Expression of a conditional class as a class abstraction when the False alternative is the empty class: in that case, the conditional class is the extension, in the True alternative, of the condition.

Remark: a consequence which could be formalized is the inclusion if(𝜑, 𝐴, ∅) ⊆ 𝐴 and therefore, using elpwg 3609, (𝐴𝑉 → if(𝜑, 𝐴, ∅) ∈ 𝒫 𝐴), from which fmelpw1o 15298 could be derived, yielding an alternative proof. (Contributed by BJ, 16-Aug-2024.)

Assertion
Ref Expression
if0ab if(𝜑, 𝐴, ∅) = {𝑥𝐴𝜑}
Distinct variable groups:   𝑥,𝐴   𝜑,𝑥

Proof of Theorem if0ab
StepHypRef Expression
1 noel 3450 . . . . . 6 ¬ 𝑥 ∈ ∅
21intnanr 931 . . . . 5 ¬ (𝑥 ∈ ∅ ∧ ¬ 𝜑)
32biorfi 747 . . . 4 ((𝑥𝐴𝜑) ↔ ((𝑥𝐴𝜑) ∨ (𝑥 ∈ ∅ ∧ ¬ 𝜑)))
43bicomi 132 . . 3 (((𝑥𝐴𝜑) ∨ (𝑥 ∈ ∅ ∧ ¬ 𝜑)) ↔ (𝑥𝐴𝜑))
54abbii 2309 . 2 {𝑥 ∣ ((𝑥𝐴𝜑) ∨ (𝑥 ∈ ∅ ∧ ¬ 𝜑))} = {𝑥 ∣ (𝑥𝐴𝜑)}
6 df-if 3558 . 2 if(𝜑, 𝐴, ∅) = {𝑥 ∣ ((𝑥𝐴𝜑) ∨ (𝑥 ∈ ∅ ∧ ¬ 𝜑))}
7 df-rab 2481 . 2 {𝑥𝐴𝜑} = {𝑥 ∣ (𝑥𝐴𝜑)}
85, 6, 73eqtr4i 2224 1 if(𝜑, 𝐴, ∅) = {𝑥𝐴𝜑}
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wa 104  wo 709   = wceq 1364  wcel 2164  {cab 2179  {crab 2476  c0 3446  ifcif 3557
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-rab 2481  df-v 2762  df-dif 3155  df-nul 3447  df-if 3558
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator