| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > if0ab | GIF version | ||
| Description: Expression of a
conditional class as a class abstraction when the False
alternative is the empty class: in that case, the conditional class is
the extension, in the True alternative, of the condition.
Remark: a consequence which could be formalized is the inclusion ⊢ if(𝜑, 𝐴, ∅) ⊆ 𝐴 and therefore, using elpwg 3625, ⊢ (𝐴 ∈ 𝑉 → if(𝜑, 𝐴, ∅) ∈ 𝒫 𝐴), from which fmelpw1o 15816 could be derived, yielding an alternative proof. (Contributed by BJ, 16-Aug-2024.) |
| Ref | Expression |
|---|---|
| if0ab | ⊢ if(𝜑, 𝐴, ∅) = {𝑥 ∈ 𝐴 ∣ 𝜑} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | noel 3465 | . . . . . 6 ⊢ ¬ 𝑥 ∈ ∅ | |
| 2 | 1 | intnanr 932 | . . . . 5 ⊢ ¬ (𝑥 ∈ ∅ ∧ ¬ 𝜑) |
| 3 | 2 | biorfi 748 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝜑) ↔ ((𝑥 ∈ 𝐴 ∧ 𝜑) ∨ (𝑥 ∈ ∅ ∧ ¬ 𝜑))) |
| 4 | 3 | bicomi 132 | . . 3 ⊢ (((𝑥 ∈ 𝐴 ∧ 𝜑) ∨ (𝑥 ∈ ∅ ∧ ¬ 𝜑)) ↔ (𝑥 ∈ 𝐴 ∧ 𝜑)) |
| 5 | 4 | abbii 2322 | . 2 ⊢ {𝑥 ∣ ((𝑥 ∈ 𝐴 ∧ 𝜑) ∨ (𝑥 ∈ ∅ ∧ ¬ 𝜑))} = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} |
| 6 | df-if 3573 | . 2 ⊢ if(𝜑, 𝐴, ∅) = {𝑥 ∣ ((𝑥 ∈ 𝐴 ∧ 𝜑) ∨ (𝑥 ∈ ∅ ∧ ¬ 𝜑))} | |
| 7 | df-rab 2494 | . 2 ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} | |
| 8 | 5, 6, 7 | 3eqtr4i 2237 | 1 ⊢ if(𝜑, 𝐴, ∅) = {𝑥 ∈ 𝐴 ∣ 𝜑} |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 ∧ wa 104 ∨ wo 710 = wceq 1373 ∈ wcel 2177 {cab 2192 {crab 2489 ∅c0 3461 ifcif 3572 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-rab 2494 df-v 2775 df-dif 3169 df-nul 3462 df-if 3573 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |