Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > Mathboxes > if0ab | GIF version |
Description: Expression of a
conditional class as a class abstraction when the False
alternative is the empty class: in that case, the conditional class is
the extension, in the True alternative, of the condition.
Remark: a consequence which could be formalized is the inclusion ⊢ if(𝜑, 𝐴, ∅) ⊆ 𝐴 and therefore, using elpwg 3567, ⊢ (𝐴 ∈ 𝑉 → if(𝜑, 𝐴, ∅) ∈ 𝒫 𝐴), from which fmelpw1o 13688 could be derived, yielding an alternative proof. (Contributed by BJ, 16-Aug-2024.) |
Ref | Expression |
---|---|
if0ab | ⊢ if(𝜑, 𝐴, ∅) = {𝑥 ∈ 𝐴 ∣ 𝜑} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | noel 3413 | . . . . . 6 ⊢ ¬ 𝑥 ∈ ∅ | |
2 | 1 | intnanr 920 | . . . . 5 ⊢ ¬ (𝑥 ∈ ∅ ∧ ¬ 𝜑) |
3 | 2 | biorfi 736 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝜑) ↔ ((𝑥 ∈ 𝐴 ∧ 𝜑) ∨ (𝑥 ∈ ∅ ∧ ¬ 𝜑))) |
4 | 3 | bicomi 131 | . . 3 ⊢ (((𝑥 ∈ 𝐴 ∧ 𝜑) ∨ (𝑥 ∈ ∅ ∧ ¬ 𝜑)) ↔ (𝑥 ∈ 𝐴 ∧ 𝜑)) |
5 | 4 | abbii 2282 | . 2 ⊢ {𝑥 ∣ ((𝑥 ∈ 𝐴 ∧ 𝜑) ∨ (𝑥 ∈ ∅ ∧ ¬ 𝜑))} = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} |
6 | df-if 3521 | . 2 ⊢ if(𝜑, 𝐴, ∅) = {𝑥 ∣ ((𝑥 ∈ 𝐴 ∧ 𝜑) ∨ (𝑥 ∈ ∅ ∧ ¬ 𝜑))} | |
7 | df-rab 2453 | . 2 ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} | |
8 | 5, 6, 7 | 3eqtr4i 2196 | 1 ⊢ if(𝜑, 𝐴, ∅) = {𝑥 ∈ 𝐴 ∣ 𝜑} |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 ∧ wa 103 ∨ wo 698 = wceq 1343 ∈ wcel 2136 {cab 2151 {crab 2448 ∅c0 3409 ifcif 3520 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-rab 2453 df-v 2728 df-dif 3118 df-nul 3410 df-if 3521 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |