Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  if0ab GIF version

Theorem if0ab 13840
Description: Expression of a conditional class as a class abstraction when the False alternative is the empty class: in that case, the conditional class is the extension, in the True alternative, of the condition.

Remark: a consequence which could be formalized is the inclusion if(𝜑, 𝐴, ∅) ⊆ 𝐴 and therefore, using elpwg 3574, (𝐴𝑉 → if(𝜑, 𝐴, ∅) ∈ 𝒫 𝐴), from which fmelpw1o 13841 could be derived, yielding an alternative proof. (Contributed by BJ, 16-Aug-2024.)

Assertion
Ref Expression
if0ab if(𝜑, 𝐴, ∅) = {𝑥𝐴𝜑}
Distinct variable groups:   𝑥,𝐴   𝜑,𝑥

Proof of Theorem if0ab
StepHypRef Expression
1 noel 3418 . . . . . 6 ¬ 𝑥 ∈ ∅
21intnanr 925 . . . . 5 ¬ (𝑥 ∈ ∅ ∧ ¬ 𝜑)
32biorfi 741 . . . 4 ((𝑥𝐴𝜑) ↔ ((𝑥𝐴𝜑) ∨ (𝑥 ∈ ∅ ∧ ¬ 𝜑)))
43bicomi 131 . . 3 (((𝑥𝐴𝜑) ∨ (𝑥 ∈ ∅ ∧ ¬ 𝜑)) ↔ (𝑥𝐴𝜑))
54abbii 2286 . 2 {𝑥 ∣ ((𝑥𝐴𝜑) ∨ (𝑥 ∈ ∅ ∧ ¬ 𝜑))} = {𝑥 ∣ (𝑥𝐴𝜑)}
6 df-if 3527 . 2 if(𝜑, 𝐴, ∅) = {𝑥 ∣ ((𝑥𝐴𝜑) ∨ (𝑥 ∈ ∅ ∧ ¬ 𝜑))}
7 df-rab 2457 . 2 {𝑥𝐴𝜑} = {𝑥 ∣ (𝑥𝐴𝜑)}
85, 6, 73eqtr4i 2201 1 if(𝜑, 𝐴, ∅) = {𝑥𝐴𝜑}
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wa 103  wo 703   = wceq 1348  wcel 2141  {cab 2156  {crab 2452  c0 3414  ifcif 3526
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-rab 2457  df-v 2732  df-dif 3123  df-nul 3415  df-if 3527
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator