Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  if0ab GIF version

Theorem if0ab 15815
Description: Expression of a conditional class as a class abstraction when the False alternative is the empty class: in that case, the conditional class is the extension, in the True alternative, of the condition.

Remark: a consequence which could be formalized is the inclusion if(𝜑, 𝐴, ∅) ⊆ 𝐴 and therefore, using elpwg 3625, (𝐴𝑉 → if(𝜑, 𝐴, ∅) ∈ 𝒫 𝐴), from which fmelpw1o 15816 could be derived, yielding an alternative proof. (Contributed by BJ, 16-Aug-2024.)

Assertion
Ref Expression
if0ab if(𝜑, 𝐴, ∅) = {𝑥𝐴𝜑}
Distinct variable groups:   𝑥,𝐴   𝜑,𝑥

Proof of Theorem if0ab
StepHypRef Expression
1 noel 3465 . . . . . 6 ¬ 𝑥 ∈ ∅
21intnanr 932 . . . . 5 ¬ (𝑥 ∈ ∅ ∧ ¬ 𝜑)
32biorfi 748 . . . 4 ((𝑥𝐴𝜑) ↔ ((𝑥𝐴𝜑) ∨ (𝑥 ∈ ∅ ∧ ¬ 𝜑)))
43bicomi 132 . . 3 (((𝑥𝐴𝜑) ∨ (𝑥 ∈ ∅ ∧ ¬ 𝜑)) ↔ (𝑥𝐴𝜑))
54abbii 2322 . 2 {𝑥 ∣ ((𝑥𝐴𝜑) ∨ (𝑥 ∈ ∅ ∧ ¬ 𝜑))} = {𝑥 ∣ (𝑥𝐴𝜑)}
6 df-if 3573 . 2 if(𝜑, 𝐴, ∅) = {𝑥 ∣ ((𝑥𝐴𝜑) ∨ (𝑥 ∈ ∅ ∧ ¬ 𝜑))}
7 df-rab 2494 . 2 {𝑥𝐴𝜑} = {𝑥 ∣ (𝑥𝐴𝜑)}
85, 6, 73eqtr4i 2237 1 if(𝜑, 𝐴, ∅) = {𝑥𝐴𝜑}
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wa 104  wo 710   = wceq 1373  wcel 2177  {cab 2192  {crab 2489  c0 3461  ifcif 3572
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-rab 2494  df-v 2775  df-dif 3169  df-nul 3462  df-if 3573
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator