ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfif6 GIF version

Theorem dfif6 3522
Description: An alternate definition of the conditional operator df-if 3521 as a simple class abstraction. (Contributed by Mario Carneiro, 8-Sep-2013.)
Assertion
Ref Expression
dfif6 if(𝜑, 𝐴, 𝐵) = ({𝑥𝐴𝜑} ∪ {𝑥𝐵 ∣ ¬ 𝜑})
Distinct variable groups:   𝜑,𝑥   𝑥,𝐴   𝑥,𝐵

Proof of Theorem dfif6
StepHypRef Expression
1 unab 3389 . 2 ({𝑥 ∣ (𝑥𝐴𝜑)} ∪ {𝑥 ∣ (𝑥𝐵 ∧ ¬ 𝜑)}) = {𝑥 ∣ ((𝑥𝐴𝜑) ∨ (𝑥𝐵 ∧ ¬ 𝜑))}
2 df-rab 2453 . . 3 {𝑥𝐴𝜑} = {𝑥 ∣ (𝑥𝐴𝜑)}
3 df-rab 2453 . . 3 {𝑥𝐵 ∣ ¬ 𝜑} = {𝑥 ∣ (𝑥𝐵 ∧ ¬ 𝜑)}
42, 3uneq12i 3274 . 2 ({𝑥𝐴𝜑} ∪ {𝑥𝐵 ∣ ¬ 𝜑}) = ({𝑥 ∣ (𝑥𝐴𝜑)} ∪ {𝑥 ∣ (𝑥𝐵 ∧ ¬ 𝜑)})
5 df-if 3521 . 2 if(𝜑, 𝐴, 𝐵) = {𝑥 ∣ ((𝑥𝐴𝜑) ∨ (𝑥𝐵 ∧ ¬ 𝜑))}
61, 4, 53eqtr4ri 2197 1 if(𝜑, 𝐴, 𝐵) = ({𝑥𝐴𝜑} ∪ {𝑥𝐵 ∣ ¬ 𝜑})
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wa 103  wo 698   = wceq 1343  wcel 2136  {cab 2151  {crab 2448  cun 3114  ifcif 3520
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-rab 2453  df-v 2728  df-un 3120  df-if 3521
This theorem is referenced by:  ifeq1  3523  ifeq2  3524  dfif3  3533  ifssun  3534
  Copyright terms: Public domain W3C validator