![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > dfif6 | GIF version |
Description: An alternate definition of the conditional operator df-if 3558 as a simple class abstraction. (Contributed by Mario Carneiro, 8-Sep-2013.) |
Ref | Expression |
---|---|
dfif6 | ⊢ if(𝜑, 𝐴, 𝐵) = ({𝑥 ∈ 𝐴 ∣ 𝜑} ∪ {𝑥 ∈ 𝐵 ∣ ¬ 𝜑}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | unab 3426 | . 2 ⊢ ({𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} ∪ {𝑥 ∣ (𝑥 ∈ 𝐵 ∧ ¬ 𝜑)}) = {𝑥 ∣ ((𝑥 ∈ 𝐴 ∧ 𝜑) ∨ (𝑥 ∈ 𝐵 ∧ ¬ 𝜑))} | |
2 | df-rab 2481 | . . 3 ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} | |
3 | df-rab 2481 | . . 3 ⊢ {𝑥 ∈ 𝐵 ∣ ¬ 𝜑} = {𝑥 ∣ (𝑥 ∈ 𝐵 ∧ ¬ 𝜑)} | |
4 | 2, 3 | uneq12i 3311 | . 2 ⊢ ({𝑥 ∈ 𝐴 ∣ 𝜑} ∪ {𝑥 ∈ 𝐵 ∣ ¬ 𝜑}) = ({𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} ∪ {𝑥 ∣ (𝑥 ∈ 𝐵 ∧ ¬ 𝜑)}) |
5 | df-if 3558 | . 2 ⊢ if(𝜑, 𝐴, 𝐵) = {𝑥 ∣ ((𝑥 ∈ 𝐴 ∧ 𝜑) ∨ (𝑥 ∈ 𝐵 ∧ ¬ 𝜑))} | |
6 | 1, 4, 5 | 3eqtr4ri 2225 | 1 ⊢ if(𝜑, 𝐴, 𝐵) = ({𝑥 ∈ 𝐴 ∣ 𝜑} ∪ {𝑥 ∈ 𝐵 ∣ ¬ 𝜑}) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 ∧ wa 104 ∨ wo 709 = wceq 1364 ∈ wcel 2164 {cab 2179 {crab 2476 ∪ cun 3151 ifcif 3557 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-rab 2481 df-v 2762 df-un 3157 df-if 3558 |
This theorem is referenced by: ifeq1 3560 ifeq2 3561 dfif3 3570 ifssun 3571 |
Copyright terms: Public domain | W3C validator |