ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-pm GIF version

Definition df-pm 6596
Description: Define the partial mapping operation. A partial function from 𝐵 to 𝐴 is a function from a subset of 𝐵 to 𝐴. The set of all partial functions from 𝐵 to 𝐴 is written (𝐴pm 𝐵) (see pmvalg 6604). A notation for this operation apparently does not appear in the literature. We use pm to distinguish it from the less general set exponentiation operation 𝑚 (df-map 6595) . See mapsspm 6627 for its relationship to set exponentiation. (Contributed by NM, 15-Nov-2007.)
Assertion
Ref Expression
df-pm pm = (𝑥 ∈ V, 𝑦 ∈ V ↦ {𝑓 ∈ 𝒫 (𝑦 × 𝑥) ∣ Fun 𝑓})
Distinct variable group:   𝑥,𝑦,𝑓

Detailed syntax breakdown of Definition df-pm
StepHypRef Expression
1 cpm 6594 . 2 class pm
2 vx . . 3 setvar 𝑥
3 vy . . 3 setvar 𝑦
4 cvv 2712 . . 3 class V
5 vf . . . . . 6 setvar 𝑓
65cv 1334 . . . . 5 class 𝑓
76wfun 5164 . . . 4 wff Fun 𝑓
83cv 1334 . . . . . 6 class 𝑦
92cv 1334 . . . . . 6 class 𝑥
108, 9cxp 4584 . . . . 5 class (𝑦 × 𝑥)
1110cpw 3543 . . . 4 class 𝒫 (𝑦 × 𝑥)
127, 5, 11crab 2439 . . 3 class {𝑓 ∈ 𝒫 (𝑦 × 𝑥) ∣ Fun 𝑓}
132, 3, 4, 4, 12cmpo 5826 . 2 class (𝑥 ∈ V, 𝑦 ∈ V ↦ {𝑓 ∈ 𝒫 (𝑦 × 𝑥) ∣ Fun 𝑓})
141, 13wceq 1335 1 wff pm = (𝑥 ∈ V, 𝑦 ∈ V ↦ {𝑓 ∈ 𝒫 (𝑦 × 𝑥) ∣ Fun 𝑓})
Colors of variables: wff set class
This definition is referenced by:  fnpm  6601  pmvalg  6604  elpmi  6612  pmresg  6621  pmsspw  6628
  Copyright terms: Public domain W3C validator