| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > pmsspw | GIF version | ||
| Description: Partial maps are a subset of the power set of the Cartesian product of its arguments. (Contributed by Mario Carneiro, 2-Jan-2017.) |
| Ref | Expression |
|---|---|
| pmsspw | ⊢ (𝐴 ↑pm 𝐵) ⊆ 𝒫 (𝐵 × 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-pm 6796 | . . . . . . 7 ⊢ ↑pm = (𝑥 ∈ V, 𝑦 ∈ V ↦ {𝑓 ∈ 𝒫 (𝑦 × 𝑥) ∣ Fun 𝑓}) | |
| 2 | 1 | elmpocl 6199 | . . . . . 6 ⊢ (𝑓 ∈ (𝐴 ↑pm 𝐵) → (𝐴 ∈ V ∧ 𝐵 ∈ V)) |
| 3 | elpmg 6809 | . . . . . 6 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝑓 ∈ (𝐴 ↑pm 𝐵) ↔ (Fun 𝑓 ∧ 𝑓 ⊆ (𝐵 × 𝐴)))) | |
| 4 | 2, 3 | syl 14 | . . . . 5 ⊢ (𝑓 ∈ (𝐴 ↑pm 𝐵) → (𝑓 ∈ (𝐴 ↑pm 𝐵) ↔ (Fun 𝑓 ∧ 𝑓 ⊆ (𝐵 × 𝐴)))) |
| 5 | 4 | ibi 176 | . . . 4 ⊢ (𝑓 ∈ (𝐴 ↑pm 𝐵) → (Fun 𝑓 ∧ 𝑓 ⊆ (𝐵 × 𝐴))) |
| 6 | 5 | simprd 114 | . . 3 ⊢ (𝑓 ∈ (𝐴 ↑pm 𝐵) → 𝑓 ⊆ (𝐵 × 𝐴)) |
| 7 | velpw 3656 | . . 3 ⊢ (𝑓 ∈ 𝒫 (𝐵 × 𝐴) ↔ 𝑓 ⊆ (𝐵 × 𝐴)) | |
| 8 | 6, 7 | sylibr 134 | . 2 ⊢ (𝑓 ∈ (𝐴 ↑pm 𝐵) → 𝑓 ∈ 𝒫 (𝐵 × 𝐴)) |
| 9 | 8 | ssriv 3228 | 1 ⊢ (𝐴 ↑pm 𝐵) ⊆ 𝒫 (𝐵 × 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 ↔ wb 105 ∈ wcel 2200 {crab 2512 Vcvv 2799 ⊆ wss 3197 𝒫 cpw 3649 × cxp 4716 Fun wfun 5311 (class class class)co 6000 ↑pm cpm 6794 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-setind 4628 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-sbc 3029 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-br 4083 df-opab 4145 df-id 4383 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-iota 5277 df-fun 5319 df-fv 5325 df-ov 6003 df-oprab 6004 df-mpo 6005 df-pm 6796 |
| This theorem is referenced by: mapsspw 6829 |
| Copyright terms: Public domain | W3C validator |