ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pmsspw GIF version

Theorem pmsspw 6456
Description: Partial maps are a subset of the power set of the Cartesian product of its arguments. (Contributed by Mario Carneiro, 2-Jan-2017.)
Assertion
Ref Expression
pmsspw (𝐴pm 𝐵) ⊆ 𝒫 (𝐵 × 𝐴)

Proof of Theorem pmsspw
Dummy variables 𝑓 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-pm 6424 . . . . . . 7 pm = (𝑥 ∈ V, 𝑦 ∈ V ↦ {𝑓 ∈ 𝒫 (𝑦 × 𝑥) ∣ Fun 𝑓})
21elmpt2cl 5858 . . . . . 6 (𝑓 ∈ (𝐴pm 𝐵) → (𝐴 ∈ V ∧ 𝐵 ∈ V))
3 elpmg 6437 . . . . . 6 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝑓 ∈ (𝐴pm 𝐵) ↔ (Fun 𝑓𝑓 ⊆ (𝐵 × 𝐴))))
42, 3syl 14 . . . . 5 (𝑓 ∈ (𝐴pm 𝐵) → (𝑓 ∈ (𝐴pm 𝐵) ↔ (Fun 𝑓𝑓 ⊆ (𝐵 × 𝐴))))
54ibi 175 . . . 4 (𝑓 ∈ (𝐴pm 𝐵) → (Fun 𝑓𝑓 ⊆ (𝐵 × 𝐴)))
65simprd 113 . . 3 (𝑓 ∈ (𝐴pm 𝐵) → 𝑓 ⊆ (𝐵 × 𝐴))
7 selpw 3442 . . 3 (𝑓 ∈ 𝒫 (𝐵 × 𝐴) ↔ 𝑓 ⊆ (𝐵 × 𝐴))
86, 7sylibr 133 . 2 (𝑓 ∈ (𝐴pm 𝐵) → 𝑓 ∈ 𝒫 (𝐵 × 𝐴))
98ssriv 3032 1 (𝐴pm 𝐵) ⊆ 𝒫 (𝐵 × 𝐴)
Colors of variables: wff set class
Syntax hints:  wa 103  wb 104  wcel 1439  {crab 2364  Vcvv 2622  wss 3002  𝒫 cpw 3435   × cxp 4452  Fun wfun 5024  (class class class)co 5668  pm cpm 6422
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 580  ax-in2 581  ax-io 666  ax-5 1382  ax-7 1383  ax-gen 1384  ax-ie1 1428  ax-ie2 1429  ax-8 1441  ax-10 1442  ax-11 1443  ax-i12 1444  ax-bndl 1445  ax-4 1446  ax-13 1450  ax-14 1451  ax-17 1465  ax-i9 1469  ax-ial 1473  ax-i5r 1474  ax-ext 2071  ax-sep 3965  ax-pow 4017  ax-pr 4047  ax-un 4271  ax-setind 4368
This theorem depends on definitions:  df-bi 116  df-3an 927  df-tru 1293  df-fal 1296  df-nf 1396  df-sb 1694  df-eu 1952  df-mo 1953  df-clab 2076  df-cleq 2082  df-clel 2085  df-nfc 2218  df-ne 2257  df-ral 2365  df-rex 2366  df-rab 2369  df-v 2624  df-sbc 2844  df-dif 3004  df-un 3006  df-in 3008  df-ss 3015  df-pw 3437  df-sn 3458  df-pr 3459  df-op 3461  df-uni 3662  df-br 3854  df-opab 3908  df-id 4131  df-xp 4460  df-rel 4461  df-cnv 4462  df-co 4463  df-dm 4464  df-iota 4995  df-fun 5032  df-fv 5038  df-ov 5671  df-oprab 5672  df-mpt2 5673  df-pm 6424
This theorem is referenced by:  mapsspw  6457
  Copyright terms: Public domain W3C validator