Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > pmsspw | GIF version |
Description: Partial maps are a subset of the power set of the Cartesian product of its arguments. (Contributed by Mario Carneiro, 2-Jan-2017.) |
Ref | Expression |
---|---|
pmsspw | ⊢ (𝐴 ↑pm 𝐵) ⊆ 𝒫 (𝐵 × 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-pm 6617 | . . . . . . 7 ⊢ ↑pm = (𝑥 ∈ V, 𝑦 ∈ V ↦ {𝑓 ∈ 𝒫 (𝑦 × 𝑥) ∣ Fun 𝑓}) | |
2 | 1 | elmpocl 6036 | . . . . . 6 ⊢ (𝑓 ∈ (𝐴 ↑pm 𝐵) → (𝐴 ∈ V ∧ 𝐵 ∈ V)) |
3 | elpmg 6630 | . . . . . 6 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝑓 ∈ (𝐴 ↑pm 𝐵) ↔ (Fun 𝑓 ∧ 𝑓 ⊆ (𝐵 × 𝐴)))) | |
4 | 2, 3 | syl 14 | . . . . 5 ⊢ (𝑓 ∈ (𝐴 ↑pm 𝐵) → (𝑓 ∈ (𝐴 ↑pm 𝐵) ↔ (Fun 𝑓 ∧ 𝑓 ⊆ (𝐵 × 𝐴)))) |
5 | 4 | ibi 175 | . . . 4 ⊢ (𝑓 ∈ (𝐴 ↑pm 𝐵) → (Fun 𝑓 ∧ 𝑓 ⊆ (𝐵 × 𝐴))) |
6 | 5 | simprd 113 | . . 3 ⊢ (𝑓 ∈ (𝐴 ↑pm 𝐵) → 𝑓 ⊆ (𝐵 × 𝐴)) |
7 | velpw 3566 | . . 3 ⊢ (𝑓 ∈ 𝒫 (𝐵 × 𝐴) ↔ 𝑓 ⊆ (𝐵 × 𝐴)) | |
8 | 6, 7 | sylibr 133 | . 2 ⊢ (𝑓 ∈ (𝐴 ↑pm 𝐵) → 𝑓 ∈ 𝒫 (𝐵 × 𝐴)) |
9 | 8 | ssriv 3146 | 1 ⊢ (𝐴 ↑pm 𝐵) ⊆ 𝒫 (𝐵 × 𝐴) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 103 ↔ wb 104 ∈ wcel 2136 {crab 2448 Vcvv 2726 ⊆ wss 3116 𝒫 cpw 3559 × cxp 4602 Fun wfun 5182 (class class class)co 5842 ↑pm cpm 6615 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-ral 2449 df-rex 2450 df-rab 2453 df-v 2728 df-sbc 2952 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-iota 5153 df-fun 5190 df-fv 5196 df-ov 5845 df-oprab 5846 df-mpo 5847 df-pm 6617 |
This theorem is referenced by: mapsspw 6650 |
Copyright terms: Public domain | W3C validator |