![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > pmresg | GIF version |
Description: Elementhood of a restricted function in the set of partial functions. (Contributed by Mario Carneiro, 31-Dec-2013.) |
Ref | Expression |
---|---|
pmresg | ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐹 ∈ (𝐴 ↑pm 𝐶)) → (𝐹 ↾ 𝐵) ∈ (𝐴 ↑pm 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-pm 6651 | . . . 4 ⊢ ↑pm = (𝑥 ∈ V, 𝑦 ∈ V ↦ {𝑓 ∈ 𝒫 (𝑦 × 𝑥) ∣ Fun 𝑓}) | |
2 | 1 | elmpocl1 6070 | . . 3 ⊢ (𝐹 ∈ (𝐴 ↑pm 𝐶) → 𝐴 ∈ V) |
3 | 2 | adantl 277 | . 2 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐹 ∈ (𝐴 ↑pm 𝐶)) → 𝐴 ∈ V) |
4 | simpl 109 | . 2 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐹 ∈ (𝐴 ↑pm 𝐶)) → 𝐵 ∈ 𝑉) | |
5 | elpmi 6667 | . . . . . 6 ⊢ (𝐹 ∈ (𝐴 ↑pm 𝐶) → (𝐹:dom 𝐹⟶𝐴 ∧ dom 𝐹 ⊆ 𝐶)) | |
6 | 5 | simpld 112 | . . . . 5 ⊢ (𝐹 ∈ (𝐴 ↑pm 𝐶) → 𝐹:dom 𝐹⟶𝐴) |
7 | 6 | adantl 277 | . . . 4 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐹 ∈ (𝐴 ↑pm 𝐶)) → 𝐹:dom 𝐹⟶𝐴) |
8 | inss1 3356 | . . . 4 ⊢ (dom 𝐹 ∩ 𝐵) ⊆ dom 𝐹 | |
9 | fssres 5392 | . . . 4 ⊢ ((𝐹:dom 𝐹⟶𝐴 ∧ (dom 𝐹 ∩ 𝐵) ⊆ dom 𝐹) → (𝐹 ↾ (dom 𝐹 ∩ 𝐵)):(dom 𝐹 ∩ 𝐵)⟶𝐴) | |
10 | 7, 8, 9 | sylancl 413 | . . 3 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐹 ∈ (𝐴 ↑pm 𝐶)) → (𝐹 ↾ (dom 𝐹 ∩ 𝐵)):(dom 𝐹 ∩ 𝐵)⟶𝐴) |
11 | ffun 5369 | . . . . 5 ⊢ (𝐹:dom 𝐹⟶𝐴 → Fun 𝐹) | |
12 | resres 4920 | . . . . . 6 ⊢ ((𝐹 ↾ dom 𝐹) ↾ 𝐵) = (𝐹 ↾ (dom 𝐹 ∩ 𝐵)) | |
13 | funrel 5234 | . . . . . . 7 ⊢ (Fun 𝐹 → Rel 𝐹) | |
14 | resdm 4947 | . . . . . . 7 ⊢ (Rel 𝐹 → (𝐹 ↾ dom 𝐹) = 𝐹) | |
15 | reseq1 4902 | . . . . . . 7 ⊢ ((𝐹 ↾ dom 𝐹) = 𝐹 → ((𝐹 ↾ dom 𝐹) ↾ 𝐵) = (𝐹 ↾ 𝐵)) | |
16 | 13, 14, 15 | 3syl 17 | . . . . . 6 ⊢ (Fun 𝐹 → ((𝐹 ↾ dom 𝐹) ↾ 𝐵) = (𝐹 ↾ 𝐵)) |
17 | 12, 16 | eqtr3id 2224 | . . . . 5 ⊢ (Fun 𝐹 → (𝐹 ↾ (dom 𝐹 ∩ 𝐵)) = (𝐹 ↾ 𝐵)) |
18 | 7, 11, 17 | 3syl 17 | . . . 4 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐹 ∈ (𝐴 ↑pm 𝐶)) → (𝐹 ↾ (dom 𝐹 ∩ 𝐵)) = (𝐹 ↾ 𝐵)) |
19 | 18 | feq1d 5353 | . . 3 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐹 ∈ (𝐴 ↑pm 𝐶)) → ((𝐹 ↾ (dom 𝐹 ∩ 𝐵)):(dom 𝐹 ∩ 𝐵)⟶𝐴 ↔ (𝐹 ↾ 𝐵):(dom 𝐹 ∩ 𝐵)⟶𝐴)) |
20 | 10, 19 | mpbid 147 | . 2 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐹 ∈ (𝐴 ↑pm 𝐶)) → (𝐹 ↾ 𝐵):(dom 𝐹 ∩ 𝐵)⟶𝐴) |
21 | inss2 3357 | . . 3 ⊢ (dom 𝐹 ∩ 𝐵) ⊆ 𝐵 | |
22 | elpm2r 6666 | . . 3 ⊢ (((𝐴 ∈ V ∧ 𝐵 ∈ 𝑉) ∧ ((𝐹 ↾ 𝐵):(dom 𝐹 ∩ 𝐵)⟶𝐴 ∧ (dom 𝐹 ∩ 𝐵) ⊆ 𝐵)) → (𝐹 ↾ 𝐵) ∈ (𝐴 ↑pm 𝐵)) | |
23 | 21, 22 | mpanr2 438 | . 2 ⊢ (((𝐴 ∈ V ∧ 𝐵 ∈ 𝑉) ∧ (𝐹 ↾ 𝐵):(dom 𝐹 ∩ 𝐵)⟶𝐴) → (𝐹 ↾ 𝐵) ∈ (𝐴 ↑pm 𝐵)) |
24 | 3, 4, 20, 23 | syl21anc 1237 | 1 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐹 ∈ (𝐴 ↑pm 𝐶)) → (𝐹 ↾ 𝐵) ∈ (𝐴 ↑pm 𝐵)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1353 ∈ wcel 2148 {crab 2459 Vcvv 2738 ∩ cin 3129 ⊆ wss 3130 𝒫 cpw 3576 × cxp 4625 dom cdm 4627 ↾ cres 4629 Rel wrel 4632 Fun wfun 5211 ⟶wf 5213 (class class class)co 5875 ↑pm cpm 6649 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-sep 4122 ax-pow 4175 ax-pr 4210 ax-un 4434 ax-setind 4537 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-ral 2460 df-rex 2461 df-rab 2464 df-v 2740 df-sbc 2964 df-dif 3132 df-un 3134 df-in 3136 df-ss 3143 df-pw 3578 df-sn 3599 df-pr 3600 df-op 3602 df-uni 3811 df-br 4005 df-opab 4066 df-id 4294 df-xp 4633 df-rel 4634 df-cnv 4635 df-co 4636 df-dm 4637 df-rn 4638 df-res 4639 df-iota 5179 df-fun 5219 df-fn 5220 df-f 5221 df-fv 5225 df-ov 5878 df-oprab 5879 df-mpo 5880 df-pm 6651 |
This theorem is referenced by: lmres 13751 |
Copyright terms: Public domain | W3C validator |