| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > pmresg | GIF version | ||
| Description: Elementhood of a restricted function in the set of partial functions. (Contributed by Mario Carneiro, 31-Dec-2013.) |
| Ref | Expression |
|---|---|
| pmresg | ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐹 ∈ (𝐴 ↑pm 𝐶)) → (𝐹 ↾ 𝐵) ∈ (𝐴 ↑pm 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-pm 6806 | . . . 4 ⊢ ↑pm = (𝑥 ∈ V, 𝑦 ∈ V ↦ {𝑓 ∈ 𝒫 (𝑦 × 𝑥) ∣ Fun 𝑓}) | |
| 2 | 1 | elmpocl1 6207 | . . 3 ⊢ (𝐹 ∈ (𝐴 ↑pm 𝐶) → 𝐴 ∈ V) |
| 3 | 2 | adantl 277 | . 2 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐹 ∈ (𝐴 ↑pm 𝐶)) → 𝐴 ∈ V) |
| 4 | simpl 109 | . 2 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐹 ∈ (𝐴 ↑pm 𝐶)) → 𝐵 ∈ 𝑉) | |
| 5 | elpmi 6822 | . . . . . 6 ⊢ (𝐹 ∈ (𝐴 ↑pm 𝐶) → (𝐹:dom 𝐹⟶𝐴 ∧ dom 𝐹 ⊆ 𝐶)) | |
| 6 | 5 | simpld 112 | . . . . 5 ⊢ (𝐹 ∈ (𝐴 ↑pm 𝐶) → 𝐹:dom 𝐹⟶𝐴) |
| 7 | 6 | adantl 277 | . . . 4 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐹 ∈ (𝐴 ↑pm 𝐶)) → 𝐹:dom 𝐹⟶𝐴) |
| 8 | inss1 3424 | . . . 4 ⊢ (dom 𝐹 ∩ 𝐵) ⊆ dom 𝐹 | |
| 9 | fssres 5503 | . . . 4 ⊢ ((𝐹:dom 𝐹⟶𝐴 ∧ (dom 𝐹 ∩ 𝐵) ⊆ dom 𝐹) → (𝐹 ↾ (dom 𝐹 ∩ 𝐵)):(dom 𝐹 ∩ 𝐵)⟶𝐴) | |
| 10 | 7, 8, 9 | sylancl 413 | . . 3 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐹 ∈ (𝐴 ↑pm 𝐶)) → (𝐹 ↾ (dom 𝐹 ∩ 𝐵)):(dom 𝐹 ∩ 𝐵)⟶𝐴) |
| 11 | ffun 5476 | . . . . 5 ⊢ (𝐹:dom 𝐹⟶𝐴 → Fun 𝐹) | |
| 12 | resres 5017 | . . . . . 6 ⊢ ((𝐹 ↾ dom 𝐹) ↾ 𝐵) = (𝐹 ↾ (dom 𝐹 ∩ 𝐵)) | |
| 13 | funrel 5335 | . . . . . . 7 ⊢ (Fun 𝐹 → Rel 𝐹) | |
| 14 | resdm 5044 | . . . . . . 7 ⊢ (Rel 𝐹 → (𝐹 ↾ dom 𝐹) = 𝐹) | |
| 15 | reseq1 4999 | . . . . . . 7 ⊢ ((𝐹 ↾ dom 𝐹) = 𝐹 → ((𝐹 ↾ dom 𝐹) ↾ 𝐵) = (𝐹 ↾ 𝐵)) | |
| 16 | 13, 14, 15 | 3syl 17 | . . . . . 6 ⊢ (Fun 𝐹 → ((𝐹 ↾ dom 𝐹) ↾ 𝐵) = (𝐹 ↾ 𝐵)) |
| 17 | 12, 16 | eqtr3id 2276 | . . . . 5 ⊢ (Fun 𝐹 → (𝐹 ↾ (dom 𝐹 ∩ 𝐵)) = (𝐹 ↾ 𝐵)) |
| 18 | 7, 11, 17 | 3syl 17 | . . . 4 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐹 ∈ (𝐴 ↑pm 𝐶)) → (𝐹 ↾ (dom 𝐹 ∩ 𝐵)) = (𝐹 ↾ 𝐵)) |
| 19 | 18 | feq1d 5460 | . . 3 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐹 ∈ (𝐴 ↑pm 𝐶)) → ((𝐹 ↾ (dom 𝐹 ∩ 𝐵)):(dom 𝐹 ∩ 𝐵)⟶𝐴 ↔ (𝐹 ↾ 𝐵):(dom 𝐹 ∩ 𝐵)⟶𝐴)) |
| 20 | 10, 19 | mpbid 147 | . 2 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐹 ∈ (𝐴 ↑pm 𝐶)) → (𝐹 ↾ 𝐵):(dom 𝐹 ∩ 𝐵)⟶𝐴) |
| 21 | inss2 3425 | . . 3 ⊢ (dom 𝐹 ∩ 𝐵) ⊆ 𝐵 | |
| 22 | elpm2r 6821 | . . 3 ⊢ (((𝐴 ∈ V ∧ 𝐵 ∈ 𝑉) ∧ ((𝐹 ↾ 𝐵):(dom 𝐹 ∩ 𝐵)⟶𝐴 ∧ (dom 𝐹 ∩ 𝐵) ⊆ 𝐵)) → (𝐹 ↾ 𝐵) ∈ (𝐴 ↑pm 𝐵)) | |
| 23 | 21, 22 | mpanr2 438 | . 2 ⊢ (((𝐴 ∈ V ∧ 𝐵 ∈ 𝑉) ∧ (𝐹 ↾ 𝐵):(dom 𝐹 ∩ 𝐵)⟶𝐴) → (𝐹 ↾ 𝐵) ∈ (𝐴 ↑pm 𝐵)) |
| 24 | 3, 4, 20, 23 | syl21anc 1270 | 1 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐹 ∈ (𝐴 ↑pm 𝐶)) → (𝐹 ↾ 𝐵) ∈ (𝐴 ↑pm 𝐵)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1395 ∈ wcel 2200 {crab 2512 Vcvv 2799 ∩ cin 3196 ⊆ wss 3197 𝒫 cpw 3649 × cxp 4717 dom cdm 4719 ↾ cres 4721 Rel wrel 4724 Fun wfun 5312 ⟶wf 5314 (class class class)co 6007 ↑pm cpm 6804 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-sbc 3029 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-br 4084 df-opab 4146 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-fv 5326 df-ov 6010 df-oprab 6011 df-mpo 6012 df-pm 6806 |
| This theorem is referenced by: lmres 14930 |
| Copyright terms: Public domain | W3C validator |