![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > pmresg | GIF version |
Description: Elementhood of a restricted function in the set of partial functions. (Contributed by Mario Carneiro, 31-Dec-2013.) |
Ref | Expression |
---|---|
pmresg | ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐹 ∈ (𝐴 ↑pm 𝐶)) → (𝐹 ↾ 𝐵) ∈ (𝐴 ↑pm 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-pm 6705 | . . . 4 ⊢ ↑pm = (𝑥 ∈ V, 𝑦 ∈ V ↦ {𝑓 ∈ 𝒫 (𝑦 × 𝑥) ∣ Fun 𝑓}) | |
2 | 1 | elmpocl1 6114 | . . 3 ⊢ (𝐹 ∈ (𝐴 ↑pm 𝐶) → 𝐴 ∈ V) |
3 | 2 | adantl 277 | . 2 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐹 ∈ (𝐴 ↑pm 𝐶)) → 𝐴 ∈ V) |
4 | simpl 109 | . 2 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐹 ∈ (𝐴 ↑pm 𝐶)) → 𝐵 ∈ 𝑉) | |
5 | elpmi 6721 | . . . . . 6 ⊢ (𝐹 ∈ (𝐴 ↑pm 𝐶) → (𝐹:dom 𝐹⟶𝐴 ∧ dom 𝐹 ⊆ 𝐶)) | |
6 | 5 | simpld 112 | . . . . 5 ⊢ (𝐹 ∈ (𝐴 ↑pm 𝐶) → 𝐹:dom 𝐹⟶𝐴) |
7 | 6 | adantl 277 | . . . 4 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐹 ∈ (𝐴 ↑pm 𝐶)) → 𝐹:dom 𝐹⟶𝐴) |
8 | inss1 3379 | . . . 4 ⊢ (dom 𝐹 ∩ 𝐵) ⊆ dom 𝐹 | |
9 | fssres 5429 | . . . 4 ⊢ ((𝐹:dom 𝐹⟶𝐴 ∧ (dom 𝐹 ∩ 𝐵) ⊆ dom 𝐹) → (𝐹 ↾ (dom 𝐹 ∩ 𝐵)):(dom 𝐹 ∩ 𝐵)⟶𝐴) | |
10 | 7, 8, 9 | sylancl 413 | . . 3 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐹 ∈ (𝐴 ↑pm 𝐶)) → (𝐹 ↾ (dom 𝐹 ∩ 𝐵)):(dom 𝐹 ∩ 𝐵)⟶𝐴) |
11 | ffun 5406 | . . . . 5 ⊢ (𝐹:dom 𝐹⟶𝐴 → Fun 𝐹) | |
12 | resres 4954 | . . . . . 6 ⊢ ((𝐹 ↾ dom 𝐹) ↾ 𝐵) = (𝐹 ↾ (dom 𝐹 ∩ 𝐵)) | |
13 | funrel 5271 | . . . . . . 7 ⊢ (Fun 𝐹 → Rel 𝐹) | |
14 | resdm 4981 | . . . . . . 7 ⊢ (Rel 𝐹 → (𝐹 ↾ dom 𝐹) = 𝐹) | |
15 | reseq1 4936 | . . . . . . 7 ⊢ ((𝐹 ↾ dom 𝐹) = 𝐹 → ((𝐹 ↾ dom 𝐹) ↾ 𝐵) = (𝐹 ↾ 𝐵)) | |
16 | 13, 14, 15 | 3syl 17 | . . . . . 6 ⊢ (Fun 𝐹 → ((𝐹 ↾ dom 𝐹) ↾ 𝐵) = (𝐹 ↾ 𝐵)) |
17 | 12, 16 | eqtr3id 2240 | . . . . 5 ⊢ (Fun 𝐹 → (𝐹 ↾ (dom 𝐹 ∩ 𝐵)) = (𝐹 ↾ 𝐵)) |
18 | 7, 11, 17 | 3syl 17 | . . . 4 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐹 ∈ (𝐴 ↑pm 𝐶)) → (𝐹 ↾ (dom 𝐹 ∩ 𝐵)) = (𝐹 ↾ 𝐵)) |
19 | 18 | feq1d 5390 | . . 3 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐹 ∈ (𝐴 ↑pm 𝐶)) → ((𝐹 ↾ (dom 𝐹 ∩ 𝐵)):(dom 𝐹 ∩ 𝐵)⟶𝐴 ↔ (𝐹 ↾ 𝐵):(dom 𝐹 ∩ 𝐵)⟶𝐴)) |
20 | 10, 19 | mpbid 147 | . 2 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐹 ∈ (𝐴 ↑pm 𝐶)) → (𝐹 ↾ 𝐵):(dom 𝐹 ∩ 𝐵)⟶𝐴) |
21 | inss2 3380 | . . 3 ⊢ (dom 𝐹 ∩ 𝐵) ⊆ 𝐵 | |
22 | elpm2r 6720 | . . 3 ⊢ (((𝐴 ∈ V ∧ 𝐵 ∈ 𝑉) ∧ ((𝐹 ↾ 𝐵):(dom 𝐹 ∩ 𝐵)⟶𝐴 ∧ (dom 𝐹 ∩ 𝐵) ⊆ 𝐵)) → (𝐹 ↾ 𝐵) ∈ (𝐴 ↑pm 𝐵)) | |
23 | 21, 22 | mpanr2 438 | . 2 ⊢ (((𝐴 ∈ V ∧ 𝐵 ∈ 𝑉) ∧ (𝐹 ↾ 𝐵):(dom 𝐹 ∩ 𝐵)⟶𝐴) → (𝐹 ↾ 𝐵) ∈ (𝐴 ↑pm 𝐵)) |
24 | 3, 4, 20, 23 | syl21anc 1248 | 1 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐹 ∈ (𝐴 ↑pm 𝐶)) → (𝐹 ↾ 𝐵) ∈ (𝐴 ↑pm 𝐵)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∈ wcel 2164 {crab 2476 Vcvv 2760 ∩ cin 3152 ⊆ wss 3153 𝒫 cpw 3601 × cxp 4657 dom cdm 4659 ↾ cres 4661 Rel wrel 4664 Fun wfun 5248 ⟶wf 5250 (class class class)co 5918 ↑pm cpm 6703 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-pow 4203 ax-pr 4238 ax-un 4464 ax-setind 4569 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-ral 2477 df-rex 2478 df-rab 2481 df-v 2762 df-sbc 2986 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-br 4030 df-opab 4091 df-id 4324 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-rn 4670 df-res 4671 df-iota 5215 df-fun 5256 df-fn 5257 df-f 5258 df-fv 5262 df-ov 5921 df-oprab 5922 df-mpo 5923 df-pm 6705 |
This theorem is referenced by: lmres 14416 |
Copyright terms: Public domain | W3C validator |