ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pmresg GIF version

Theorem pmresg 6642
Description: Elementhood of a restricted function in the set of partial functions. (Contributed by Mario Carneiro, 31-Dec-2013.)
Assertion
Ref Expression
pmresg ((𝐵𝑉𝐹 ∈ (𝐴pm 𝐶)) → (𝐹𝐵) ∈ (𝐴pm 𝐵))

Proof of Theorem pmresg
Dummy variables 𝑥 𝑓 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-pm 6617 . . . 4 pm = (𝑥 ∈ V, 𝑦 ∈ V ↦ {𝑓 ∈ 𝒫 (𝑦 × 𝑥) ∣ Fun 𝑓})
21elmpocl1 6037 . . 3 (𝐹 ∈ (𝐴pm 𝐶) → 𝐴 ∈ V)
32adantl 275 . 2 ((𝐵𝑉𝐹 ∈ (𝐴pm 𝐶)) → 𝐴 ∈ V)
4 simpl 108 . 2 ((𝐵𝑉𝐹 ∈ (𝐴pm 𝐶)) → 𝐵𝑉)
5 elpmi 6633 . . . . . 6 (𝐹 ∈ (𝐴pm 𝐶) → (𝐹:dom 𝐹𝐴 ∧ dom 𝐹𝐶))
65simpld 111 . . . . 5 (𝐹 ∈ (𝐴pm 𝐶) → 𝐹:dom 𝐹𝐴)
76adantl 275 . . . 4 ((𝐵𝑉𝐹 ∈ (𝐴pm 𝐶)) → 𝐹:dom 𝐹𝐴)
8 inss1 3342 . . . 4 (dom 𝐹𝐵) ⊆ dom 𝐹
9 fssres 5363 . . . 4 ((𝐹:dom 𝐹𝐴 ∧ (dom 𝐹𝐵) ⊆ dom 𝐹) → (𝐹 ↾ (dom 𝐹𝐵)):(dom 𝐹𝐵)⟶𝐴)
107, 8, 9sylancl 410 . . 3 ((𝐵𝑉𝐹 ∈ (𝐴pm 𝐶)) → (𝐹 ↾ (dom 𝐹𝐵)):(dom 𝐹𝐵)⟶𝐴)
11 ffun 5340 . . . . 5 (𝐹:dom 𝐹𝐴 → Fun 𝐹)
12 resres 4896 . . . . . 6 ((𝐹 ↾ dom 𝐹) ↾ 𝐵) = (𝐹 ↾ (dom 𝐹𝐵))
13 funrel 5205 . . . . . . 7 (Fun 𝐹 → Rel 𝐹)
14 resdm 4923 . . . . . . 7 (Rel 𝐹 → (𝐹 ↾ dom 𝐹) = 𝐹)
15 reseq1 4878 . . . . . . 7 ((𝐹 ↾ dom 𝐹) = 𝐹 → ((𝐹 ↾ dom 𝐹) ↾ 𝐵) = (𝐹𝐵))
1613, 14, 153syl 17 . . . . . 6 (Fun 𝐹 → ((𝐹 ↾ dom 𝐹) ↾ 𝐵) = (𝐹𝐵))
1712, 16eqtr3id 2213 . . . . 5 (Fun 𝐹 → (𝐹 ↾ (dom 𝐹𝐵)) = (𝐹𝐵))
187, 11, 173syl 17 . . . 4 ((𝐵𝑉𝐹 ∈ (𝐴pm 𝐶)) → (𝐹 ↾ (dom 𝐹𝐵)) = (𝐹𝐵))
1918feq1d 5324 . . 3 ((𝐵𝑉𝐹 ∈ (𝐴pm 𝐶)) → ((𝐹 ↾ (dom 𝐹𝐵)):(dom 𝐹𝐵)⟶𝐴 ↔ (𝐹𝐵):(dom 𝐹𝐵)⟶𝐴))
2010, 19mpbid 146 . 2 ((𝐵𝑉𝐹 ∈ (𝐴pm 𝐶)) → (𝐹𝐵):(dom 𝐹𝐵)⟶𝐴)
21 inss2 3343 . . 3 (dom 𝐹𝐵) ⊆ 𝐵
22 elpm2r 6632 . . 3 (((𝐴 ∈ V ∧ 𝐵𝑉) ∧ ((𝐹𝐵):(dom 𝐹𝐵)⟶𝐴 ∧ (dom 𝐹𝐵) ⊆ 𝐵)) → (𝐹𝐵) ∈ (𝐴pm 𝐵))
2321, 22mpanr2 435 . 2 (((𝐴 ∈ V ∧ 𝐵𝑉) ∧ (𝐹𝐵):(dom 𝐹𝐵)⟶𝐴) → (𝐹𝐵) ∈ (𝐴pm 𝐵))
243, 4, 20, 23syl21anc 1227 1 ((𝐵𝑉𝐹 ∈ (𝐴pm 𝐶)) → (𝐹𝐵) ∈ (𝐴pm 𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1343  wcel 2136  {crab 2448  Vcvv 2726  cin 3115  wss 3116  𝒫 cpw 3559   × cxp 4602  dom cdm 4604  cres 4606  Rel wrel 4609  Fun wfun 5182  wf 5184  (class class class)co 5842  pm cpm 6615
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-ral 2449  df-rex 2450  df-rab 2453  df-v 2728  df-sbc 2952  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-opab 4044  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-fv 5196  df-ov 5845  df-oprab 5846  df-mpo 5847  df-pm 6617
This theorem is referenced by:  lmres  12888
  Copyright terms: Public domain W3C validator