| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > pmresg | GIF version | ||
| Description: Elementhood of a restricted function in the set of partial functions. (Contributed by Mario Carneiro, 31-Dec-2013.) |
| Ref | Expression |
|---|---|
| pmresg | ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐹 ∈ (𝐴 ↑pm 𝐶)) → (𝐹 ↾ 𝐵) ∈ (𝐴 ↑pm 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-pm 6768 | . . . 4 ⊢ ↑pm = (𝑥 ∈ V, 𝑦 ∈ V ↦ {𝑓 ∈ 𝒫 (𝑦 × 𝑥) ∣ Fun 𝑓}) | |
| 2 | 1 | elmpocl1 6172 | . . 3 ⊢ (𝐹 ∈ (𝐴 ↑pm 𝐶) → 𝐴 ∈ V) |
| 3 | 2 | adantl 277 | . 2 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐹 ∈ (𝐴 ↑pm 𝐶)) → 𝐴 ∈ V) |
| 4 | simpl 109 | . 2 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐹 ∈ (𝐴 ↑pm 𝐶)) → 𝐵 ∈ 𝑉) | |
| 5 | elpmi 6784 | . . . . . 6 ⊢ (𝐹 ∈ (𝐴 ↑pm 𝐶) → (𝐹:dom 𝐹⟶𝐴 ∧ dom 𝐹 ⊆ 𝐶)) | |
| 6 | 5 | simpld 112 | . . . . 5 ⊢ (𝐹 ∈ (𝐴 ↑pm 𝐶) → 𝐹:dom 𝐹⟶𝐴) |
| 7 | 6 | adantl 277 | . . . 4 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐹 ∈ (𝐴 ↑pm 𝐶)) → 𝐹:dom 𝐹⟶𝐴) |
| 8 | inss1 3404 | . . . 4 ⊢ (dom 𝐹 ∩ 𝐵) ⊆ dom 𝐹 | |
| 9 | fssres 5477 | . . . 4 ⊢ ((𝐹:dom 𝐹⟶𝐴 ∧ (dom 𝐹 ∩ 𝐵) ⊆ dom 𝐹) → (𝐹 ↾ (dom 𝐹 ∩ 𝐵)):(dom 𝐹 ∩ 𝐵)⟶𝐴) | |
| 10 | 7, 8, 9 | sylancl 413 | . . 3 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐹 ∈ (𝐴 ↑pm 𝐶)) → (𝐹 ↾ (dom 𝐹 ∩ 𝐵)):(dom 𝐹 ∩ 𝐵)⟶𝐴) |
| 11 | ffun 5452 | . . . . 5 ⊢ (𝐹:dom 𝐹⟶𝐴 → Fun 𝐹) | |
| 12 | resres 4993 | . . . . . 6 ⊢ ((𝐹 ↾ dom 𝐹) ↾ 𝐵) = (𝐹 ↾ (dom 𝐹 ∩ 𝐵)) | |
| 13 | funrel 5311 | . . . . . . 7 ⊢ (Fun 𝐹 → Rel 𝐹) | |
| 14 | resdm 5020 | . . . . . . 7 ⊢ (Rel 𝐹 → (𝐹 ↾ dom 𝐹) = 𝐹) | |
| 15 | reseq1 4975 | . . . . . . 7 ⊢ ((𝐹 ↾ dom 𝐹) = 𝐹 → ((𝐹 ↾ dom 𝐹) ↾ 𝐵) = (𝐹 ↾ 𝐵)) | |
| 16 | 13, 14, 15 | 3syl 17 | . . . . . 6 ⊢ (Fun 𝐹 → ((𝐹 ↾ dom 𝐹) ↾ 𝐵) = (𝐹 ↾ 𝐵)) |
| 17 | 12, 16 | eqtr3id 2256 | . . . . 5 ⊢ (Fun 𝐹 → (𝐹 ↾ (dom 𝐹 ∩ 𝐵)) = (𝐹 ↾ 𝐵)) |
| 18 | 7, 11, 17 | 3syl 17 | . . . 4 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐹 ∈ (𝐴 ↑pm 𝐶)) → (𝐹 ↾ (dom 𝐹 ∩ 𝐵)) = (𝐹 ↾ 𝐵)) |
| 19 | 18 | feq1d 5436 | . . 3 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐹 ∈ (𝐴 ↑pm 𝐶)) → ((𝐹 ↾ (dom 𝐹 ∩ 𝐵)):(dom 𝐹 ∩ 𝐵)⟶𝐴 ↔ (𝐹 ↾ 𝐵):(dom 𝐹 ∩ 𝐵)⟶𝐴)) |
| 20 | 10, 19 | mpbid 147 | . 2 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐹 ∈ (𝐴 ↑pm 𝐶)) → (𝐹 ↾ 𝐵):(dom 𝐹 ∩ 𝐵)⟶𝐴) |
| 21 | inss2 3405 | . . 3 ⊢ (dom 𝐹 ∩ 𝐵) ⊆ 𝐵 | |
| 22 | elpm2r 6783 | . . 3 ⊢ (((𝐴 ∈ V ∧ 𝐵 ∈ 𝑉) ∧ ((𝐹 ↾ 𝐵):(dom 𝐹 ∩ 𝐵)⟶𝐴 ∧ (dom 𝐹 ∩ 𝐵) ⊆ 𝐵)) → (𝐹 ↾ 𝐵) ∈ (𝐴 ↑pm 𝐵)) | |
| 23 | 21, 22 | mpanr2 438 | . 2 ⊢ (((𝐴 ∈ V ∧ 𝐵 ∈ 𝑉) ∧ (𝐹 ↾ 𝐵):(dom 𝐹 ∩ 𝐵)⟶𝐴) → (𝐹 ↾ 𝐵) ∈ (𝐴 ↑pm 𝐵)) |
| 24 | 3, 4, 20, 23 | syl21anc 1251 | 1 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐹 ∈ (𝐴 ↑pm 𝐶)) → (𝐹 ↾ 𝐵) ∈ (𝐴 ↑pm 𝐵)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1375 ∈ wcel 2180 {crab 2492 Vcvv 2779 ∩ cin 3176 ⊆ wss 3177 𝒫 cpw 3629 × cxp 4694 dom cdm 4696 ↾ cres 4698 Rel wrel 4701 Fun wfun 5288 ⟶wf 5290 (class class class)co 5974 ↑pm cpm 6766 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-13 2182 ax-14 2183 ax-ext 2191 ax-sep 4181 ax-pow 4237 ax-pr 4272 ax-un 4501 ax-setind 4606 |
| This theorem depends on definitions: df-bi 117 df-3an 985 df-tru 1378 df-fal 1381 df-nf 1487 df-sb 1789 df-eu 2060 df-mo 2061 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-ne 2381 df-ral 2493 df-rex 2494 df-rab 2497 df-v 2781 df-sbc 3009 df-dif 3179 df-un 3181 df-in 3183 df-ss 3190 df-pw 3631 df-sn 3652 df-pr 3653 df-op 3655 df-uni 3868 df-br 4063 df-opab 4125 df-id 4361 df-xp 4702 df-rel 4703 df-cnv 4704 df-co 4705 df-dm 4706 df-rn 4707 df-res 4708 df-iota 5254 df-fun 5296 df-fn 5297 df-f 5298 df-fv 5302 df-ov 5977 df-oprab 5978 df-mpo 5979 df-pm 6768 |
| This theorem is referenced by: lmres 14887 |
| Copyright terms: Public domain | W3C validator |