| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mapsspm | GIF version | ||
| Description: Set exponentiation is a subset of partial maps. (Contributed by NM, 15-Nov-2007.) (Revised by Mario Carneiro, 27-Feb-2016.) |
| Ref | Expression |
|---|---|
| mapsspm | ⊢ (𝐴 ↑𝑚 𝐵) ⊆ (𝐴 ↑pm 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elmapex 6824 | . . . 4 ⊢ (𝑓 ∈ (𝐴 ↑𝑚 𝐵) → (𝐴 ∈ V ∧ 𝐵 ∈ V)) | |
| 2 | 1 | simprd 114 | . . 3 ⊢ (𝑓 ∈ (𝐴 ↑𝑚 𝐵) → 𝐵 ∈ V) |
| 3 | 1 | simpld 112 | . . 3 ⊢ (𝑓 ∈ (𝐴 ↑𝑚 𝐵) → 𝐴 ∈ V) |
| 4 | elmapi 6825 | . . 3 ⊢ (𝑓 ∈ (𝐴 ↑𝑚 𝐵) → 𝑓:𝐵⟶𝐴) | |
| 5 | fpmg 6829 | . . 3 ⊢ ((𝐵 ∈ V ∧ 𝐴 ∈ V ∧ 𝑓:𝐵⟶𝐴) → 𝑓 ∈ (𝐴 ↑pm 𝐵)) | |
| 6 | 2, 3, 4, 5 | syl3anc 1271 | . 2 ⊢ (𝑓 ∈ (𝐴 ↑𝑚 𝐵) → 𝑓 ∈ (𝐴 ↑pm 𝐵)) |
| 7 | 6 | ssriv 3228 | 1 ⊢ (𝐴 ↑𝑚 𝐵) ⊆ (𝐴 ↑pm 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2200 Vcvv 2799 ⊆ wss 3197 ⟶wf 5314 (class class class)co 6007 ↑𝑚 cmap 6803 ↑pm cpm 6804 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-sbc 3029 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-br 4084 df-opab 4146 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-fv 5326 df-ov 6010 df-oprab 6011 df-mpo 6012 df-map 6805 df-pm 6806 |
| This theorem is referenced by: mapsspw 6839 |
| Copyright terms: Public domain | W3C validator |