ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mapsspm GIF version

Theorem mapsspm 6583
Description: Set exponentiation is a subset of partial maps. (Contributed by NM, 15-Nov-2007.) (Revised by Mario Carneiro, 27-Feb-2016.)
Assertion
Ref Expression
mapsspm (𝐴𝑚 𝐵) ⊆ (𝐴pm 𝐵)

Proof of Theorem mapsspm
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 elmapex 6570 . . . 4 (𝑓 ∈ (𝐴𝑚 𝐵) → (𝐴 ∈ V ∧ 𝐵 ∈ V))
21simprd 113 . . 3 (𝑓 ∈ (𝐴𝑚 𝐵) → 𝐵 ∈ V)
31simpld 111 . . 3 (𝑓 ∈ (𝐴𝑚 𝐵) → 𝐴 ∈ V)
4 elmapi 6571 . . 3 (𝑓 ∈ (𝐴𝑚 𝐵) → 𝑓:𝐵𝐴)
5 fpmg 6575 . . 3 ((𝐵 ∈ V ∧ 𝐴 ∈ V ∧ 𝑓:𝐵𝐴) → 𝑓 ∈ (𝐴pm 𝐵))
62, 3, 4, 5syl3anc 1217 . 2 (𝑓 ∈ (𝐴𝑚 𝐵) → 𝑓 ∈ (𝐴pm 𝐵))
76ssriv 3105 1 (𝐴𝑚 𝐵) ⊆ (𝐴pm 𝐵)
Colors of variables: wff set class
Syntax hints:  wcel 1481  Vcvv 2689  wss 3075  wf 5126  (class class class)co 5781  𝑚 cmap 6549  pm cpm 6550
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4053  ax-pow 4105  ax-pr 4138  ax-un 4362  ax-setind 4459
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-ral 2422  df-rex 2423  df-rab 2426  df-v 2691  df-sbc 2913  df-dif 3077  df-un 3079  df-in 3081  df-ss 3088  df-pw 3516  df-sn 3537  df-pr 3538  df-op 3540  df-uni 3744  df-br 3937  df-opab 3997  df-id 4222  df-xp 4552  df-rel 4553  df-cnv 4554  df-co 4555  df-dm 4556  df-rn 4557  df-iota 5095  df-fun 5132  df-fn 5133  df-f 5134  df-fv 5138  df-ov 5784  df-oprab 5785  df-mpo 5786  df-map 6551  df-pm 6552
This theorem is referenced by:  mapsspw  6585
  Copyright terms: Public domain W3C validator