Theorem List for Intuitionistic Logic Explorer - 6601-6700   *Has distinct variable
 group(s)
| Type | Label | Description | 
| Statement | 
|   | 
| Theorem | errel 6601 | 
An equivalence relation is a relation.  (Contributed by Mario Carneiro,
     12-Aug-2015.)
 | 
| ⊢ (𝑅 Er 𝐴 → Rel 𝑅) | 
|   | 
| Theorem | erdm 6602 | 
The domain of an equivalence relation.  (Contributed by Mario Carneiro,
     12-Aug-2015.)
 | 
| ⊢ (𝑅 Er 𝐴 → dom 𝑅 = 𝐴) | 
|   | 
| Theorem | ercl 6603 | 
Elementhood in the field of an equivalence relation.  (Contributed by
       Mario Carneiro, 12-Aug-2015.)
 | 
| ⊢ (𝜑 → 𝑅 Er 𝑋)   
 &   ⊢ (𝜑 → 𝐴𝑅𝐵)    ⇒   ⊢ (𝜑 → 𝐴 ∈ 𝑋) | 
|   | 
| Theorem | ersym 6604 | 
An equivalence relation is symmetric.  (Contributed by NM, 4-Jun-1995.)
       (Revised by Mario Carneiro, 12-Aug-2015.)
 | 
| ⊢ (𝜑 → 𝑅 Er 𝑋)   
 &   ⊢ (𝜑 → 𝐴𝑅𝐵)    ⇒   ⊢ (𝜑 → 𝐵𝑅𝐴) | 
|   | 
| Theorem | ercl2 6605 | 
Elementhood in the field of an equivalence relation.  (Contributed by
       Mario Carneiro, 12-Aug-2015.)
 | 
| ⊢ (𝜑 → 𝑅 Er 𝑋)   
 &   ⊢ (𝜑 → 𝐴𝑅𝐵)    ⇒   ⊢ (𝜑 → 𝐵 ∈ 𝑋) | 
|   | 
| Theorem | ersymb 6606 | 
An equivalence relation is symmetric.  (Contributed by NM, 30-Jul-1995.)
       (Revised by Mario Carneiro, 12-Aug-2015.)
 | 
| ⊢ (𝜑 → 𝑅 Er 𝑋)    ⇒   ⊢ (𝜑 → (𝐴𝑅𝐵 ↔ 𝐵𝑅𝐴)) | 
|   | 
| Theorem | ertr 6607 | 
An equivalence relation is transitive.  (Contributed by NM, 4-Jun-1995.)
       (Revised by Mario Carneiro, 12-Aug-2015.)
 | 
| ⊢ (𝜑 → 𝑅 Er 𝑋)    ⇒   ⊢ (𝜑 → ((𝐴𝑅𝐵 ∧ 𝐵𝑅𝐶) → 𝐴𝑅𝐶)) | 
|   | 
| Theorem | ertrd 6608 | 
A transitivity relation for equivalences.  (Contributed by Mario
         Carneiro, 9-Jul-2014.)
 | 
| ⊢ (𝜑 → 𝑅 Er 𝑋)   
 &   ⊢ (𝜑 → 𝐴𝑅𝐵)   
 &   ⊢ (𝜑 → 𝐵𝑅𝐶)    ⇒   ⊢ (𝜑 → 𝐴𝑅𝐶) | 
|   | 
| Theorem | ertr2d 6609 | 
A transitivity relation for equivalences.  (Contributed by Mario
         Carneiro, 9-Jul-2014.)
 | 
| ⊢ (𝜑 → 𝑅 Er 𝑋)   
 &   ⊢ (𝜑 → 𝐴𝑅𝐵)   
 &   ⊢ (𝜑 → 𝐵𝑅𝐶)    ⇒   ⊢ (𝜑 → 𝐶𝑅𝐴) | 
|   | 
| Theorem | ertr3d 6610 | 
A transitivity relation for equivalences.  (Contributed by Mario
         Carneiro, 9-Jul-2014.)
 | 
| ⊢ (𝜑 → 𝑅 Er 𝑋)   
 &   ⊢ (𝜑 → 𝐵𝑅𝐴)   
 &   ⊢ (𝜑 → 𝐵𝑅𝐶)    ⇒   ⊢ (𝜑 → 𝐴𝑅𝐶) | 
|   | 
| Theorem | ertr4d 6611 | 
A transitivity relation for equivalences.  (Contributed by Mario
         Carneiro, 9-Jul-2014.)
 | 
| ⊢ (𝜑 → 𝑅 Er 𝑋)   
 &   ⊢ (𝜑 → 𝐴𝑅𝐵)   
 &   ⊢ (𝜑 → 𝐶𝑅𝐵)    ⇒   ⊢ (𝜑 → 𝐴𝑅𝐶) | 
|   | 
| Theorem | erref 6612 | 
An equivalence relation is reflexive on its field.  Compare Theorem 3M
       of [Enderton] p. 56.  (Contributed by
Mario Carneiro, 6-May-2013.)
       (Revised by Mario Carneiro, 12-Aug-2015.)
 | 
| ⊢ (𝜑 → 𝑅 Er 𝑋)   
 &   ⊢ (𝜑 → 𝐴 ∈ 𝑋)    ⇒   ⊢ (𝜑 → 𝐴𝑅𝐴) | 
|   | 
| Theorem | ercnv 6613 | 
The converse of an equivalence relation is itself.  (Contributed by
       Mario Carneiro, 12-Aug-2015.)
 | 
| ⊢ (𝑅 Er 𝐴 → ◡𝑅 = 𝑅) | 
|   | 
| Theorem | errn 6614 | 
The range and domain of an equivalence relation are equal.  (Contributed
     by Rodolfo Medina, 11-Oct-2010.)  (Revised by Mario Carneiro,
     12-Aug-2015.)
 | 
| ⊢ (𝑅 Er 𝐴 → ran 𝑅 = 𝐴) | 
|   | 
| Theorem | erssxp 6615 | 
An equivalence relation is a subset of the cartesian product of the field.
     (Contributed by Mario Carneiro, 12-Aug-2015.)
 | 
| ⊢ (𝑅 Er 𝐴 → 𝑅 ⊆ (𝐴 × 𝐴)) | 
|   | 
| Theorem | erex 6616 | 
An equivalence relation is a set if its domain is a set.  (Contributed by
     Rodolfo Medina, 15-Oct-2010.)  (Proof shortened by Mario Carneiro,
     12-Aug-2015.)
 | 
| ⊢ (𝑅 Er 𝐴 → (𝐴 ∈ 𝑉 → 𝑅 ∈ V)) | 
|   | 
| Theorem | erexb 6617 | 
An equivalence relation is a set if and only if its domain is a set.
     (Contributed by Rodolfo Medina, 15-Oct-2010.)  (Revised by Mario Carneiro,
     12-Aug-2015.)
 | 
| ⊢ (𝑅 Er 𝐴 → (𝑅 ∈ V ↔ 𝐴 ∈ V)) | 
|   | 
| Theorem | iserd 6618* | 
A reflexive, symmetric, transitive relation is an equivalence relation
       on its domain.  (Contributed by Mario Carneiro, 9-Jul-2014.)  (Revised
       by Mario Carneiro, 12-Aug-2015.)
 | 
| ⊢ (𝜑 → Rel 𝑅)   
 &   ⊢ ((𝜑 ∧ 𝑥𝑅𝑦) → 𝑦𝑅𝑥)   
 &   ⊢ ((𝜑 ∧ (𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧)) → 𝑥𝑅𝑧)   
 &   ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↔ 𝑥𝑅𝑥))    ⇒   ⊢ (𝜑 → 𝑅 Er 𝐴) | 
|   | 
| Theorem | brdifun 6619 | 
Evaluate the incomparability relation.  (Contributed by Mario Carneiro,
       9-Jul-2014.)
 | 
| ⊢ 𝑅 = ((𝑋 × 𝑋) ∖ ( < ∪ ◡ <
 ))    ⇒   ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝑅𝐵 ↔ ¬ (𝐴 < 𝐵 ∨ 𝐵 < 𝐴))) | 
|   | 
| Theorem | swoer 6620* | 
Incomparability under a strict weak partial order is an equivalence
       relation.  (Contributed by Mario Carneiro, 9-Jul-2014.)  (Revised by
       Mario Carneiro, 12-Aug-2015.)
 | 
| ⊢ 𝑅 = ((𝑋 × 𝑋) ∖ ( < ∪ ◡ < ))    &   ⊢ ((𝜑 ∧ (𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → (𝑦 < 𝑧 → ¬ 𝑧 < 𝑦))   
 &   ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → (𝑥 < 𝑦 → (𝑥 < 𝑧 ∨ 𝑧 < 𝑦)))    ⇒   ⊢ (𝜑 → 𝑅 Er 𝑋) | 
|   | 
| Theorem | swoord1 6621* | 
The incomparability equivalence relation is compatible with the
         original order.  (Contributed by Mario Carneiro, 31-Dec-2014.)
 | 
| ⊢ 𝑅 = ((𝑋 × 𝑋) ∖ ( < ∪ ◡ < ))    &   ⊢ ((𝜑 ∧ (𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → (𝑦 < 𝑧 → ¬ 𝑧 < 𝑦))   
 &   ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → (𝑥 < 𝑦 → (𝑥 < 𝑧 ∨ 𝑧 < 𝑦)))    &   ⊢ (𝜑 → 𝐵 ∈ 𝑋)   
 &   ⊢ (𝜑 → 𝐶 ∈ 𝑋)   
 &   ⊢ (𝜑 → 𝐴𝑅𝐵)    ⇒   ⊢ (𝜑 → (𝐴 < 𝐶 ↔ 𝐵 < 𝐶)) | 
|   | 
| Theorem | swoord2 6622* | 
The incomparability equivalence relation is compatible with the
         original order.  (Contributed by Mario Carneiro, 31-Dec-2014.)
 | 
| ⊢ 𝑅 = ((𝑋 × 𝑋) ∖ ( < ∪ ◡ < ))    &   ⊢ ((𝜑 ∧ (𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → (𝑦 < 𝑧 → ¬ 𝑧 < 𝑦))   
 &   ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → (𝑥 < 𝑦 → (𝑥 < 𝑧 ∨ 𝑧 < 𝑦)))    &   ⊢ (𝜑 → 𝐵 ∈ 𝑋)   
 &   ⊢ (𝜑 → 𝐶 ∈ 𝑋)   
 &   ⊢ (𝜑 → 𝐴𝑅𝐵)    ⇒   ⊢ (𝜑 → (𝐶 < 𝐴 ↔ 𝐶 < 𝐵)) | 
|   | 
| Theorem | eqerlem 6623* | 
Lemma for eqer 6624.  (Contributed by NM, 17-Mar-2008.)  (Proof
shortened
       by Mario Carneiro, 6-Dec-2016.)
 | 
| ⊢ (𝑥 = 𝑦 → 𝐴 = 𝐵)   
 &   ⊢ 𝑅 = {〈𝑥, 𝑦〉 ∣ 𝐴 = 𝐵}    ⇒   ⊢ (𝑧𝑅𝑤 ↔ ⦋𝑧 / 𝑥⦌𝐴 = ⦋𝑤 / 𝑥⦌𝐴) | 
|   | 
| Theorem | eqer 6624* | 
Equivalence relation involving equality of dependent classes 𝐴(𝑥)
       and 𝐵(𝑦).  (Contributed by NM, 17-Mar-2008.) 
(Revised by Mario
       Carneiro, 12-Aug-2015.)
 | 
| ⊢ (𝑥 = 𝑦 → 𝐴 = 𝐵)   
 &   ⊢ 𝑅 = {〈𝑥, 𝑦〉 ∣ 𝐴 = 𝐵}    ⇒   ⊢ 𝑅 Er V | 
|   | 
| Theorem | ider 6625 | 
The identity relation is an equivalence relation.  (Contributed by NM,
       10-May-1998.)  (Proof shortened by Andrew Salmon, 22-Oct-2011.)  (Proof
       shortened by Mario Carneiro, 9-Jul-2014.)
 | 
| ⊢  I Er V | 
|   | 
| Theorem | 0er 6626 | 
The empty set is an equivalence relation on the empty set.  (Contributed
       by Mario Carneiro, 5-Sep-2015.)
 | 
| ⊢ ∅ Er ∅ | 
|   | 
| Theorem | eceq1 6627 | 
Equality theorem for equivalence class.  (Contributed by NM,
     23-Jul-1995.)
 | 
| ⊢ (𝐴 = 𝐵 → [𝐴]𝐶 = [𝐵]𝐶) | 
|   | 
| Theorem | eceq1d 6628 | 
Equality theorem for equivalence class (deduction form).  (Contributed
       by Jim Kingdon, 31-Dec-2019.)
 | 
| ⊢ (𝜑 → 𝐴 = 𝐵)    ⇒   ⊢ (𝜑 → [𝐴]𝐶 = [𝐵]𝐶) | 
|   | 
| Theorem | eceq2 6629 | 
Equality theorem for equivalence class.  (Contributed by NM,
     23-Jul-1995.)
 | 
| ⊢ (𝐴 = 𝐵 → [𝐶]𝐴 = [𝐶]𝐵) | 
|   | 
| Theorem | eceq2i 6630 | 
Equality theorem for the 𝐴-coset and 𝐵-coset of 𝐶,
       inference version.  (Contributed by Peter Mazsa, 11-May-2021.)
 | 
| ⊢ 𝐴 = 𝐵    ⇒   ⊢ [𝐶]𝐴 = [𝐶]𝐵 | 
|   | 
| Theorem | eceq2d 6631 | 
Equality theorem for the 𝐴-coset and 𝐵-coset of 𝐶,
       deduction version.  (Contributed by Peter Mazsa, 23-Apr-2021.)
 | 
| ⊢ (𝜑 → 𝐴 = 𝐵)    ⇒   ⊢ (𝜑 → [𝐶]𝐴 = [𝐶]𝐵) | 
|   | 
| Theorem | elecg 6632 | 
Membership in an equivalence class.  Theorem 72 of [Suppes] p. 82.
     (Contributed by Mario Carneiro, 9-Jul-2014.)
 | 
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ∈ [𝐵]𝑅 ↔ 𝐵𝑅𝐴)) | 
|   | 
| Theorem | elec 6633 | 
Membership in an equivalence class.  Theorem 72 of [Suppes] p. 82.
       (Contributed by NM, 23-Jul-1995.)
 | 
| ⊢ 𝐴 ∈ V    &   ⊢ 𝐵 ∈
 V    ⇒   ⊢ (𝐴 ∈ [𝐵]𝑅 ↔ 𝐵𝑅𝐴) | 
|   | 
| Theorem | relelec 6634 | 
Membership in an equivalence class when 𝑅 is a relation.  (Contributed
     by Mario Carneiro, 11-Sep-2015.)
 | 
| ⊢ (Rel 𝑅 → (𝐴 ∈ [𝐵]𝑅 ↔ 𝐵𝑅𝐴)) | 
|   | 
| Theorem | ecss 6635 | 
An equivalence class is a subset of the domain.  (Contributed by NM,
       6-Aug-1995.)  (Revised by Mario Carneiro, 12-Aug-2015.)
 | 
| ⊢ (𝜑 → 𝑅 Er 𝑋)    ⇒   ⊢ (𝜑 → [𝐴]𝑅 ⊆ 𝑋) | 
|   | 
| Theorem | ecdmn0m 6636* | 
A representative of an inhabited equivalence class belongs to the domain
       of the equivalence relation.  (Contributed by Jim Kingdon,
       21-Aug-2019.)
 | 
| ⊢ (𝐴 ∈ dom 𝑅 ↔ ∃𝑥 𝑥 ∈ [𝐴]𝑅) | 
|   | 
| Theorem | ereldm 6637 | 
Equality of equivalence classes implies equivalence of domain
       membership.  (Contributed by NM, 28-Jan-1996.)  (Revised by Mario
       Carneiro, 12-Aug-2015.)
 | 
| ⊢ (𝜑 → 𝑅 Er 𝑋)   
 &   ⊢ (𝜑 → [𝐴]𝑅 = [𝐵]𝑅)    ⇒   ⊢ (𝜑 → (𝐴 ∈ 𝑋 ↔ 𝐵 ∈ 𝑋)) | 
|   | 
| Theorem | erth 6638 | 
Basic property of equivalence relations.  Theorem 73 of [Suppes] p. 82.
       (Contributed by NM, 23-Jul-1995.)  (Revised by Mario Carneiro,
       6-Jul-2015.)
 | 
| ⊢ (𝜑 → 𝑅 Er 𝑋)   
 &   ⊢ (𝜑 → 𝐴 ∈ 𝑋)    ⇒   ⊢ (𝜑 → (𝐴𝑅𝐵 ↔ [𝐴]𝑅 = [𝐵]𝑅)) | 
|   | 
| Theorem | erth2 6639 | 
Basic property of equivalence relations.  Compare Theorem 73 of [Suppes]
       p. 82.  Assumes membership of the second argument in the domain.
       (Contributed by NM, 30-Jul-1995.)  (Revised by Mario Carneiro,
       6-Jul-2015.)
 | 
| ⊢ (𝜑 → 𝑅 Er 𝑋)   
 &   ⊢ (𝜑 → 𝐵 ∈ 𝑋)    ⇒   ⊢ (𝜑 → (𝐴𝑅𝐵 ↔ [𝐴]𝑅 = [𝐵]𝑅)) | 
|   | 
| Theorem | erthi 6640 | 
Basic property of equivalence relations.  Part of Lemma 3N of [Enderton]
       p. 57.  (Contributed by NM, 30-Jul-1995.)  (Revised by Mario Carneiro,
       9-Jul-2014.)
 | 
| ⊢ (𝜑 → 𝑅 Er 𝑋)   
 &   ⊢ (𝜑 → 𝐴𝑅𝐵)    ⇒   ⊢ (𝜑 → [𝐴]𝑅 = [𝐵]𝑅) | 
|   | 
| Theorem | ecidsn 6641 | 
An equivalence class modulo the identity relation is a singleton.
     (Contributed by NM, 24-Oct-2004.)
 | 
| ⊢ [𝐴] I = {𝐴} | 
|   | 
| Theorem | qseq1 6642 | 
Equality theorem for quotient set.  (Contributed by NM, 23-Jul-1995.)
 | 
| ⊢ (𝐴 = 𝐵 → (𝐴 / 𝐶) = (𝐵 / 𝐶)) | 
|   | 
| Theorem | qseq2 6643 | 
Equality theorem for quotient set.  (Contributed by NM, 23-Jul-1995.)
 | 
| ⊢ (𝐴 = 𝐵 → (𝐶 / 𝐴) = (𝐶 / 𝐵)) | 
|   | 
| Theorem | elqsg 6644* | 
Closed form of elqs 6645.  (Contributed by Rodolfo Medina,
       12-Oct-2010.)
 | 
| ⊢ (𝐵 ∈ 𝑉 → (𝐵 ∈ (𝐴 / 𝑅) ↔ ∃𝑥 ∈ 𝐴 𝐵 = [𝑥]𝑅)) | 
|   | 
| Theorem | elqs 6645* | 
Membership in a quotient set.  (Contributed by NM, 23-Jul-1995.)
 | 
| ⊢ 𝐵 ∈ V    ⇒   ⊢ (𝐵 ∈ (𝐴 / 𝑅) ↔ ∃𝑥 ∈ 𝐴 𝐵 = [𝑥]𝑅) | 
|   | 
| Theorem | elqsi 6646* | 
Membership in a quotient set.  (Contributed by NM, 23-Jul-1995.)
 | 
| ⊢ (𝐵 ∈ (𝐴 / 𝑅) → ∃𝑥 ∈ 𝐴 𝐵 = [𝑥]𝑅) | 
|   | 
| Theorem | ecelqsg 6647 | 
Membership of an equivalence class in a quotient set.  (Contributed by
       Jeff Madsen, 10-Jun-2010.)  (Revised by Mario Carneiro, 9-Jul-2014.)
 | 
| ⊢ ((𝑅 ∈ 𝑉 ∧ 𝐵 ∈ 𝐴) → [𝐵]𝑅 ∈ (𝐴 / 𝑅)) | 
|   | 
| Theorem | ecelqsi 6648 | 
Membership of an equivalence class in a quotient set.  (Contributed by
       NM, 25-Jul-1995.)  (Revised by Mario Carneiro, 9-Jul-2014.)
 | 
| ⊢ 𝑅 ∈ V    ⇒   ⊢ (𝐵 ∈ 𝐴 → [𝐵]𝑅 ∈ (𝐴 / 𝑅)) | 
|   | 
| Theorem | ecopqsi 6649 | 
"Closure" law for equivalence class of ordered pairs.  (Contributed
by
       NM, 25-Mar-1996.)
 | 
| ⊢ 𝑅 ∈ V    &   ⊢ 𝑆 = ((𝐴 × 𝐴) / 𝑅)    ⇒   ⊢ ((𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴) → [〈𝐵, 𝐶〉]𝑅 ∈ 𝑆) | 
|   | 
| Theorem | qsexg 6650 | 
A quotient set exists.  (Contributed by FL, 19-May-2007.)  (Revised by
       Mario Carneiro, 9-Jul-2014.)
 | 
| ⊢ (𝐴 ∈ 𝑉 → (𝐴 / 𝑅) ∈ V) | 
|   | 
| Theorem | qsex 6651 | 
A quotient set exists.  (Contributed by NM, 14-Aug-1995.)
 | 
| ⊢ 𝐴 ∈ V    ⇒   ⊢ (𝐴 / 𝑅) ∈ V | 
|   | 
| Theorem | uniqs 6652 | 
The union of a quotient set.  (Contributed by NM, 9-Dec-2008.)
 | 
| ⊢ (𝑅 ∈ 𝑉 → ∪ (𝐴 / 𝑅) = (𝑅 “ 𝐴)) | 
|   | 
| Theorem | qsss 6653 | 
A quotient set is a set of subsets of the base set.  (Contributed by
       Mario Carneiro, 9-Jul-2014.)  (Revised by Mario Carneiro,
       12-Aug-2015.)
 | 
| ⊢ (𝜑 → 𝑅 Er 𝐴)    ⇒   ⊢ (𝜑 → (𝐴 / 𝑅) ⊆ 𝒫 𝐴) | 
|   | 
| Theorem | uniqs2 6654 | 
The union of a quotient set.  (Contributed by Mario Carneiro,
       11-Jul-2014.)
 | 
| ⊢ (𝜑 → 𝑅 Er 𝐴)   
 &   ⊢ (𝜑 → 𝑅 ∈ 𝑉)    ⇒   ⊢ (𝜑 → ∪ (𝐴 / 𝑅) = 𝐴) | 
|   | 
| Theorem | snec 6655 | 
The singleton of an equivalence class.  (Contributed by NM,
       29-Jan-1999.)  (Revised by Mario Carneiro, 9-Jul-2014.)
 | 
| ⊢ 𝐴 ∈ V    ⇒   ⊢ {[𝐴]𝑅} = ({𝐴} / 𝑅) | 
|   | 
| Theorem | ecqs 6656 | 
Equivalence class in terms of quotient set.  (Contributed by NM,
       29-Jan-1999.)
 | 
| ⊢ 𝑅 ∈ V    ⇒   ⊢ [𝐴]𝑅 = ∪ ({𝐴} / 𝑅) | 
|   | 
| Theorem | ecid 6657 | 
A set is equal to its converse epsilon coset.  (Note: converse epsilon
       is not an equivalence relation.)  (Contributed by NM, 13-Aug-1995.)
       (Revised by Mario Carneiro, 9-Jul-2014.)
 | 
| ⊢ 𝐴 ∈ V    ⇒   ⊢ [𝐴]◡
 E = 𝐴 | 
|   | 
| Theorem | ecidg 6658 | 
A set is equal to its converse epsilon coset.  (Note: converse epsilon
       is not an equivalence relation.)  (Contributed by Jim Kingdon,
       8-Jan-2020.)
 | 
| ⊢ (𝐴 ∈ 𝑉 → [𝐴]◡
 E = 𝐴) | 
|   | 
| Theorem | qsid 6659 | 
A set is equal to its quotient set mod converse epsilon.  (Note:
       converse epsilon is not an equivalence relation.)  (Contributed by NM,
       13-Aug-1995.)  (Revised by Mario Carneiro, 9-Jul-2014.)
 | 
| ⊢ (𝐴 / ◡ E ) = 𝐴 | 
|   | 
| Theorem | ectocld 6660* | 
Implicit substitution of class for equivalence class.  (Contributed by
         Mario Carneiro, 9-Jul-2014.)
 | 
| ⊢ 𝑆 = (𝐵 / 𝑅)   
 &   ⊢ ([𝑥]𝑅 = 𝐴 → (𝜑 ↔ 𝜓))    &   ⊢ ((𝜒 ∧ 𝑥 ∈ 𝐵) → 𝜑)    ⇒   ⊢ ((𝜒 ∧ 𝐴 ∈ 𝑆) → 𝜓) | 
|   | 
| Theorem | ectocl 6661* | 
Implicit substitution of class for equivalence class.  (Contributed by
       NM, 23-Jul-1995.)  (Revised by Mario Carneiro, 9-Jul-2014.)
 | 
| ⊢ 𝑆 = (𝐵 / 𝑅)   
 &   ⊢ ([𝑥]𝑅 = 𝐴 → (𝜑 ↔ 𝜓))    &   ⊢ (𝑥 ∈ 𝐵 → 𝜑)    ⇒   ⊢ (𝐴 ∈ 𝑆 → 𝜓) | 
|   | 
| Theorem | elqsn0m 6662* | 
An element of a quotient set is inhabited.  (Contributed by Jim Kingdon,
       21-Aug-2019.)
 | 
| ⊢ ((dom 𝑅 = 𝐴 ∧ 𝐵 ∈ (𝐴 / 𝑅)) → ∃𝑥 𝑥 ∈ 𝐵) | 
|   | 
| Theorem | elqsn0 6663 | 
A quotient set doesn't contain the empty set.  (Contributed by NM,
       24-Aug-1995.)
 | 
| ⊢ ((dom 𝑅 = 𝐴 ∧ 𝐵 ∈ (𝐴 / 𝑅)) → 𝐵 ≠ ∅) | 
|   | 
| Theorem | ecelqsdm 6664 | 
Membership of an equivalence class in a quotient set.  (Contributed by
       NM, 30-Jul-1995.)
 | 
| ⊢ ((dom 𝑅 = 𝐴 ∧ [𝐵]𝑅 ∈ (𝐴 / 𝑅)) → 𝐵 ∈ 𝐴) | 
|   | 
| Theorem | xpider 6665 | 
A square Cartesian product is an equivalence relation (in general it's not
     a poset).  (Contributed by FL, 31-Jul-2009.)  (Revised by Mario Carneiro,
     12-Aug-2015.)
 | 
| ⊢ (𝐴 × 𝐴) Er 𝐴 | 
|   | 
| Theorem | iinerm 6666* | 
The intersection of a nonempty family of equivalence relations is an
       equivalence relation.  (Contributed by Mario Carneiro, 27-Sep-2015.)
 | 
| ⊢ ((∃𝑦 𝑦 ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 𝑅 Er 𝐵) → ∩ 𝑥 ∈ 𝐴 𝑅 Er 𝐵) | 
|   | 
| Theorem | riinerm 6667* | 
The relative intersection of a family of equivalence relations is an
       equivalence relation.  (Contributed by Mario Carneiro, 27-Sep-2015.)
 | 
| ⊢ ((∃𝑦 𝑦 ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 𝑅 Er 𝐵) → ((𝐵 × 𝐵) ∩ ∩
 𝑥 ∈ 𝐴 𝑅) Er 𝐵) | 
|   | 
| Theorem | erinxp 6668 | 
A restricted equivalence relation is an equivalence relation.
       (Contributed by Mario Carneiro, 10-Jul-2015.)  (Revised by Mario
       Carneiro, 12-Aug-2015.)
 | 
| ⊢ (𝜑 → 𝑅 Er 𝐴)   
 &   ⊢ (𝜑 → 𝐵 ⊆ 𝐴)    ⇒   ⊢ (𝜑 → (𝑅 ∩ (𝐵 × 𝐵)) Er 𝐵) | 
|   | 
| Theorem | ecinxp 6669 | 
Restrict the relation in an equivalence class to a base set.  (Contributed
     by Mario Carneiro, 10-Jul-2015.)
 | 
| ⊢ (((𝑅 “ 𝐴) ⊆ 𝐴 ∧ 𝐵 ∈ 𝐴) → [𝐵]𝑅 = [𝐵](𝑅 ∩ (𝐴 × 𝐴))) | 
|   | 
| Theorem | qsinxp 6670 | 
Restrict the equivalence relation in a quotient set to the base set.
       (Contributed by Mario Carneiro, 23-Feb-2015.)
 | 
| ⊢ ((𝑅 “ 𝐴) ⊆ 𝐴 → (𝐴 / 𝑅) = (𝐴 / (𝑅 ∩ (𝐴 × 𝐴)))) | 
|   | 
| Theorem | qsel 6671 | 
If an element of a quotient set contains a given element, it is equal to
       the equivalence class of the element.  (Contributed by Mario Carneiro,
       12-Aug-2015.)
 | 
| ⊢ ((𝑅 Er 𝑋 ∧ 𝐵 ∈ (𝐴 / 𝑅) ∧ 𝐶 ∈ 𝐵) → 𝐵 = [𝐶]𝑅) | 
|   | 
| Theorem | qliftlem 6672* | 
𝐹,
a function lift, is a subset of 𝑅 × 𝑆.  (Contributed by
       Mario Carneiro, 23-Dec-2016.)
 | 
| ⊢ 𝐹 = ran (𝑥 ∈ 𝑋 ↦ 〈[𝑥]𝑅, 𝐴〉)    &   ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐴 ∈ 𝑌)   
 &   ⊢ (𝜑 → 𝑅 Er 𝑋)   
 &   ⊢ (𝜑 → 𝑋 ∈ V)    ⇒   ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → [𝑥]𝑅 ∈ (𝑋 / 𝑅)) | 
|   | 
| Theorem | qliftrel 6673* | 
𝐹,
a function lift, is a subset of 𝑅 × 𝑆.  (Contributed by
       Mario Carneiro, 23-Dec-2016.)
 | 
| ⊢ 𝐹 = ran (𝑥 ∈ 𝑋 ↦ 〈[𝑥]𝑅, 𝐴〉)    &   ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐴 ∈ 𝑌)   
 &   ⊢ (𝜑 → 𝑅 Er 𝑋)   
 &   ⊢ (𝜑 → 𝑋 ∈ V)    ⇒   ⊢ (𝜑 → 𝐹 ⊆ ((𝑋 / 𝑅) × 𝑌)) | 
|   | 
| Theorem | qliftel 6674* | 
Elementhood in the relation 𝐹.  (Contributed by Mario Carneiro,
       23-Dec-2016.)
 | 
| ⊢ 𝐹 = ran (𝑥 ∈ 𝑋 ↦ 〈[𝑥]𝑅, 𝐴〉)    &   ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐴 ∈ 𝑌)   
 &   ⊢ (𝜑 → 𝑅 Er 𝑋)   
 &   ⊢ (𝜑 → 𝑋 ∈ V)    ⇒   ⊢ (𝜑 → ([𝐶]𝑅𝐹𝐷 ↔ ∃𝑥 ∈ 𝑋 (𝐶𝑅𝑥 ∧ 𝐷 = 𝐴))) | 
|   | 
| Theorem | qliftel1 6675* | 
Elementhood in the relation 𝐹.  (Contributed by Mario Carneiro,
       23-Dec-2016.)
 | 
| ⊢ 𝐹 = ran (𝑥 ∈ 𝑋 ↦ 〈[𝑥]𝑅, 𝐴〉)    &   ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐴 ∈ 𝑌)   
 &   ⊢ (𝜑 → 𝑅 Er 𝑋)   
 &   ⊢ (𝜑 → 𝑋 ∈ V)    ⇒   ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → [𝑥]𝑅𝐹𝐴) | 
|   | 
| Theorem | qliftfun 6676* | 
The function 𝐹 is the unique function defined by
         𝐹‘[𝑥] = 𝐴, provided that the well-definedness
condition
         holds.  (Contributed by Mario Carneiro, 23-Dec-2016.)
 | 
| ⊢ 𝐹 = ran (𝑥 ∈ 𝑋 ↦ 〈[𝑥]𝑅, 𝐴〉)    &   ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐴 ∈ 𝑌)   
 &   ⊢ (𝜑 → 𝑅 Er 𝑋)   
 &   ⊢ (𝜑 → 𝑋 ∈ V)    &   ⊢ (𝑥 = 𝑦 → 𝐴 = 𝐵)    ⇒   ⊢ (𝜑 → (Fun 𝐹 ↔ ∀𝑥∀𝑦(𝑥𝑅𝑦 → 𝐴 = 𝐵))) | 
|   | 
| Theorem | qliftfund 6677* | 
The function 𝐹 is the unique function defined by
         𝐹‘[𝑥] = 𝐴, provided that the well-definedness
condition
         holds.  (Contributed by Mario Carneiro, 23-Dec-2016.)
 | 
| ⊢ 𝐹 = ran (𝑥 ∈ 𝑋 ↦ 〈[𝑥]𝑅, 𝐴〉)    &   ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐴 ∈ 𝑌)   
 &   ⊢ (𝜑 → 𝑅 Er 𝑋)   
 &   ⊢ (𝜑 → 𝑋 ∈ V)    &   ⊢ (𝑥 = 𝑦 → 𝐴 = 𝐵)   
 &   ⊢ ((𝜑 ∧ 𝑥𝑅𝑦) → 𝐴 = 𝐵)    ⇒   ⊢ (𝜑 → Fun 𝐹) | 
|   | 
| Theorem | qliftfuns 6678* | 
The function 𝐹 is the unique function defined by
       𝐹‘[𝑥] = 𝐴, provided that the well-definedness
condition holds.
       (Contributed by Mario Carneiro, 23-Dec-2016.)
 | 
| ⊢ 𝐹 = ran (𝑥 ∈ 𝑋 ↦ 〈[𝑥]𝑅, 𝐴〉)    &   ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐴 ∈ 𝑌)   
 &   ⊢ (𝜑 → 𝑅 Er 𝑋)   
 &   ⊢ (𝜑 → 𝑋 ∈ V)    ⇒   ⊢ (𝜑 → (Fun 𝐹 ↔ ∀𝑦∀𝑧(𝑦𝑅𝑧 → ⦋𝑦 / 𝑥⦌𝐴 = ⦋𝑧 / 𝑥⦌𝐴))) | 
|   | 
| Theorem | qliftf 6679* | 
The domain and codomain of the function 𝐹.  (Contributed by Mario
       Carneiro, 23-Dec-2016.)
 | 
| ⊢ 𝐹 = ran (𝑥 ∈ 𝑋 ↦ 〈[𝑥]𝑅, 𝐴〉)    &   ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐴 ∈ 𝑌)   
 &   ⊢ (𝜑 → 𝑅 Er 𝑋)   
 &   ⊢ (𝜑 → 𝑋 ∈ V)    ⇒   ⊢ (𝜑 → (Fun 𝐹 ↔ 𝐹:(𝑋 / 𝑅)⟶𝑌)) | 
|   | 
| Theorem | qliftval 6680* | 
The value of the function 𝐹.  (Contributed by Mario Carneiro,
       23-Dec-2016.)
 | 
| ⊢ 𝐹 = ran (𝑥 ∈ 𝑋 ↦ 〈[𝑥]𝑅, 𝐴〉)    &   ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐴 ∈ 𝑌)   
 &   ⊢ (𝜑 → 𝑅 Er 𝑋)   
 &   ⊢ (𝜑 → 𝑋 ∈ V)    &   ⊢ (𝑥 = 𝐶 → 𝐴 = 𝐵)   
 &   ⊢ (𝜑 → Fun 𝐹)    ⇒   ⊢ ((𝜑 ∧ 𝐶 ∈ 𝑋) → (𝐹‘[𝐶]𝑅) = 𝐵) | 
|   | 
| Theorem | ecoptocl 6681* | 
Implicit substitution of class for equivalence class of ordered pair.
       (Contributed by NM, 23-Jul-1995.)
 | 
| ⊢ 𝑆 = ((𝐵 × 𝐶) / 𝑅)   
 &   ⊢ ([〈𝑥, 𝑦〉]𝑅 = 𝐴 → (𝜑 ↔ 𝜓))    &   ⊢ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶) → 𝜑)    ⇒   ⊢ (𝐴 ∈ 𝑆 → 𝜓) | 
|   | 
| Theorem | 2ecoptocl 6682* | 
Implicit substitution of classes for equivalence classes of ordered
       pairs.  (Contributed by NM, 23-Jul-1995.)
 | 
| ⊢ 𝑆 = ((𝐶 × 𝐷) / 𝑅)   
 &   ⊢ ([〈𝑥, 𝑦〉]𝑅 = 𝐴 → (𝜑 ↔ 𝜓))    &   ⊢ ([〈𝑧, 𝑤〉]𝑅 = 𝐵 → (𝜓 ↔ 𝜒))    &   ⊢ (((𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷) ∧ (𝑧 ∈ 𝐶 ∧ 𝑤 ∈ 𝐷)) → 𝜑)    ⇒   ⊢ ((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → 𝜒) | 
|   | 
| Theorem | 3ecoptocl 6683* | 
Implicit substitution of classes for equivalence classes of ordered
       pairs.  (Contributed by NM, 9-Aug-1995.)
 | 
| ⊢ 𝑆 = ((𝐷 × 𝐷) / 𝑅)   
 &   ⊢ ([〈𝑥, 𝑦〉]𝑅 = 𝐴 → (𝜑 ↔ 𝜓))    &   ⊢ ([〈𝑧, 𝑤〉]𝑅 = 𝐵 → (𝜓 ↔ 𝜒))    &   ⊢ ([〈𝑣, 𝑢〉]𝑅 = 𝐶 → (𝜒 ↔ 𝜃))    &   ⊢ (((𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷) ∧ (𝑧 ∈ 𝐷 ∧ 𝑤 ∈ 𝐷) ∧ (𝑣 ∈ 𝐷 ∧ 𝑢 ∈ 𝐷)) → 𝜑)    ⇒   ⊢ ((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆) → 𝜃) | 
|   | 
| Theorem | brecop 6684* | 
Binary relation on a quotient set.  Lemma for real number construction.
       (Contributed by NM, 29-Jan-1996.)
 | 
| ⊢  ∼ ∈
 V   
 &   ⊢  ∼ Er (𝐺 × 𝐺)   
 &   ⊢ 𝐻 = ((𝐺 × 𝐺) / ∼ )    &   ⊢  ≤ =
 {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐻 ∧ 𝑦 ∈ 𝐻) ∧ ∃𝑧∃𝑤∃𝑣∃𝑢((𝑥 = [〈𝑧, 𝑤〉] ∼ ∧ 𝑦 = [〈𝑣, 𝑢〉] ∼ ) ∧ 𝜑))}    &   ⊢ ((((𝑧 ∈ 𝐺 ∧ 𝑤 ∈ 𝐺) ∧ (𝐴 ∈ 𝐺 ∧ 𝐵 ∈ 𝐺)) ∧ ((𝑣 ∈ 𝐺 ∧ 𝑢 ∈ 𝐺) ∧ (𝐶 ∈ 𝐺 ∧ 𝐷 ∈ 𝐺))) → (([〈𝑧, 𝑤〉] ∼ = [〈𝐴, 𝐵〉] ∼ ∧ [〈𝑣, 𝑢〉] ∼ = [〈𝐶, 𝐷〉] ∼ ) → (𝜑 ↔ 𝜓)))    ⇒   ⊢ (((𝐴 ∈ 𝐺 ∧ 𝐵 ∈ 𝐺) ∧ (𝐶 ∈ 𝐺 ∧ 𝐷 ∈ 𝐺)) → ([〈𝐴, 𝐵〉] ∼ ≤ [〈𝐶, 𝐷〉] ∼ ↔ 𝜓)) | 
|   | 
| Theorem | eroveu 6685* | 
Lemma for eroprf 6687.  (Contributed by Jeff Madsen, 10-Jun-2010.)
       (Revised by Mario Carneiro, 9-Jul-2014.)
 | 
| ⊢ 𝐽 = (𝐴 / 𝑅)   
 &   ⊢ 𝐾 = (𝐵 / 𝑆)   
 &   ⊢ (𝜑 → 𝑇 ∈ 𝑍)   
 &   ⊢ (𝜑 → 𝑅 Er 𝑈)   
 &   ⊢ (𝜑 → 𝑆 Er 𝑉)   
 &   ⊢ (𝜑 → 𝑇 Er 𝑊)   
 &   ⊢ (𝜑 → 𝐴 ⊆ 𝑈)   
 &   ⊢ (𝜑 → 𝐵 ⊆ 𝑉)   
 &   ⊢ (𝜑 → 𝐶 ⊆ 𝑊)   
 &   ⊢ (𝜑 → + :(𝐴 × 𝐵)⟶𝐶)   
 &   ⊢ ((𝜑 ∧ ((𝑟 ∈ 𝐴 ∧ 𝑠 ∈ 𝐴) ∧ (𝑡 ∈ 𝐵 ∧ 𝑢 ∈ 𝐵))) → ((𝑟𝑅𝑠 ∧ 𝑡𝑆𝑢) → (𝑟 + 𝑡)𝑇(𝑠 + 𝑢)))    ⇒   ⊢ ((𝜑 ∧ (𝑋 ∈ 𝐽 ∧ 𝑌 ∈ 𝐾)) → ∃!𝑧∃𝑝 ∈ 𝐴 ∃𝑞 ∈ 𝐵 ((𝑋 = [𝑝]𝑅 ∧ 𝑌 = [𝑞]𝑆) ∧ 𝑧 = [(𝑝 + 𝑞)]𝑇)) | 
|   | 
| Theorem | erovlem 6686* | 
Lemma for eroprf 6687.  (Contributed by Jeff Madsen, 10-Jun-2010.)
       (Revised by Mario Carneiro, 30-Dec-2014.)
 | 
| ⊢ 𝐽 = (𝐴 / 𝑅)   
 &   ⊢ 𝐾 = (𝐵 / 𝑆)   
 &   ⊢ (𝜑 → 𝑇 ∈ 𝑍)   
 &   ⊢ (𝜑 → 𝑅 Er 𝑈)   
 &   ⊢ (𝜑 → 𝑆 Er 𝑉)   
 &   ⊢ (𝜑 → 𝑇 Er 𝑊)   
 &   ⊢ (𝜑 → 𝐴 ⊆ 𝑈)   
 &   ⊢ (𝜑 → 𝐵 ⊆ 𝑉)   
 &   ⊢ (𝜑 → 𝐶 ⊆ 𝑊)   
 &   ⊢ (𝜑 → + :(𝐴 × 𝐵)⟶𝐶)   
 &   ⊢ ((𝜑 ∧ ((𝑟 ∈ 𝐴 ∧ 𝑠 ∈ 𝐴) ∧ (𝑡 ∈ 𝐵 ∧ 𝑢 ∈ 𝐵))) → ((𝑟𝑅𝑠 ∧ 𝑡𝑆𝑢) → (𝑟 + 𝑡)𝑇(𝑠 + 𝑢)))    &   ⊢  ⨣ =
 {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ∃𝑝 ∈ 𝐴 ∃𝑞 ∈ 𝐵 ((𝑥 = [𝑝]𝑅 ∧ 𝑦 = [𝑞]𝑆) ∧ 𝑧 = [(𝑝 + 𝑞)]𝑇)}    ⇒   ⊢ (𝜑 → ⨣ = (𝑥 ∈ 𝐽, 𝑦 ∈ 𝐾 ↦ (℩𝑧∃𝑝 ∈ 𝐴 ∃𝑞 ∈ 𝐵 ((𝑥 = [𝑝]𝑅 ∧ 𝑦 = [𝑞]𝑆) ∧ 𝑧 = [(𝑝 + 𝑞)]𝑇)))) | 
|   | 
| Theorem | eroprf 6687* | 
Functionality of an operation defined on equivalence classes.
       (Contributed by Jeff Madsen, 10-Jun-2010.)  (Revised by Mario Carneiro,
       30-Dec-2014.)
 | 
| ⊢ 𝐽 = (𝐴 / 𝑅)   
 &   ⊢ 𝐾 = (𝐵 / 𝑆)   
 &   ⊢ (𝜑 → 𝑇 ∈ 𝑍)   
 &   ⊢ (𝜑 → 𝑅 Er 𝑈)   
 &   ⊢ (𝜑 → 𝑆 Er 𝑉)   
 &   ⊢ (𝜑 → 𝑇 Er 𝑊)   
 &   ⊢ (𝜑 → 𝐴 ⊆ 𝑈)   
 &   ⊢ (𝜑 → 𝐵 ⊆ 𝑉)   
 &   ⊢ (𝜑 → 𝐶 ⊆ 𝑊)   
 &   ⊢ (𝜑 → + :(𝐴 × 𝐵)⟶𝐶)   
 &   ⊢ ((𝜑 ∧ ((𝑟 ∈ 𝐴 ∧ 𝑠 ∈ 𝐴) ∧ (𝑡 ∈ 𝐵 ∧ 𝑢 ∈ 𝐵))) → ((𝑟𝑅𝑠 ∧ 𝑡𝑆𝑢) → (𝑟 + 𝑡)𝑇(𝑠 + 𝑢)))    &   ⊢  ⨣ =
 {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ∃𝑝 ∈ 𝐴 ∃𝑞 ∈ 𝐵 ((𝑥 = [𝑝]𝑅 ∧ 𝑦 = [𝑞]𝑆) ∧ 𝑧 = [(𝑝 + 𝑞)]𝑇)}    &   ⊢ (𝜑 → 𝑅 ∈ 𝑋)   
 &   ⊢ (𝜑 → 𝑆 ∈ 𝑌)   
 &   ⊢ 𝐿 = (𝐶 / 𝑇)    ⇒   ⊢ (𝜑 → ⨣ :(𝐽 × 𝐾)⟶𝐿) | 
|   | 
| Theorem | eroprf2 6688* | 
Functionality of an operation defined on equivalence classes.
       (Contributed by Jeff Madsen, 10-Jun-2010.)
 | 
| ⊢ 𝐽 = (𝐴 / ∼ )    &   ⊢  ⨣ =
 {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ∃𝑝 ∈ 𝐴 ∃𝑞 ∈ 𝐴 ((𝑥 = [𝑝] ∼ ∧ 𝑦 = [𝑞] ∼ ) ∧ 𝑧 = [(𝑝 + 𝑞)] ∼ )}    &   ⊢ (𝜑 → ∼ ∈ 𝑋)    &   ⊢ (𝜑 → ∼ Er 𝑈)    &   ⊢ (𝜑 → 𝐴 ⊆ 𝑈)   
 &   ⊢ (𝜑 → + :(𝐴 × 𝐴)⟶𝐴)   
 &   ⊢ ((𝜑 ∧ ((𝑟 ∈ 𝐴 ∧ 𝑠 ∈ 𝐴) ∧ (𝑡 ∈ 𝐴 ∧ 𝑢 ∈ 𝐴))) → ((𝑟 ∼ 𝑠 ∧ 𝑡 ∼ 𝑢) → (𝑟 + 𝑡) ∼ (𝑠 + 𝑢)))    ⇒   ⊢ (𝜑 → ⨣ :(𝐽 × 𝐽)⟶𝐽) | 
|   | 
| Theorem | ecopoveq 6689* | 
This is the first of several theorems about equivalence relations of
         the kind used in construction of fractions and signed reals, involving
         operations on equivalent classes of ordered pairs.  This theorem
         expresses the relation ∼ (specified
by the hypothesis) in terms
         of its operation 𝐹.  (Contributed by NM, 16-Aug-1995.)
 | 
| ⊢  ∼ = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (𝑆 × 𝑆) ∧ 𝑦 ∈ (𝑆 × 𝑆)) ∧ ∃𝑧∃𝑤∃𝑣∃𝑢((𝑥 = 〈𝑧, 𝑤〉 ∧ 𝑦 = 〈𝑣, 𝑢〉) ∧ (𝑧 + 𝑢) = (𝑤 + 𝑣)))}    ⇒   ⊢ (((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) ∧ (𝐶 ∈ 𝑆 ∧ 𝐷 ∈ 𝑆)) → (〈𝐴, 𝐵〉 ∼ 〈𝐶, 𝐷〉 ↔ (𝐴 + 𝐷) = (𝐵 + 𝐶))) | 
|   | 
| Theorem | ecopovsym 6690* | 
Assuming the operation 𝐹 is commutative, show that the
relation
         ∼, specified
by the first hypothesis, is symmetric.
         (Contributed by NM, 27-Aug-1995.)  (Revised by Mario Carneiro,
         26-Apr-2015.)
 | 
| ⊢  ∼ = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (𝑆 × 𝑆) ∧ 𝑦 ∈ (𝑆 × 𝑆)) ∧ ∃𝑧∃𝑤∃𝑣∃𝑢((𝑥 = 〈𝑧, 𝑤〉 ∧ 𝑦 = 〈𝑣, 𝑢〉) ∧ (𝑧 + 𝑢) = (𝑤 + 𝑣)))}    &   ⊢ (𝑥 + 𝑦) = (𝑦 + 𝑥)    ⇒   ⊢ (𝐴 ∼ 𝐵 → 𝐵 ∼ 𝐴) | 
|   | 
| Theorem | ecopovtrn 6691* | 
Assuming that operation 𝐹 is commutative (second hypothesis),
           closed (third hypothesis), associative (fourth hypothesis), and has
           the cancellation property (fifth hypothesis), show that the relation
           ∼, specified
by the first hypothesis, is transitive.
           (Contributed by NM, 11-Feb-1996.)  (Revised by Mario Carneiro,
           26-Apr-2015.)
 | 
| ⊢  ∼ = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (𝑆 × 𝑆) ∧ 𝑦 ∈ (𝑆 × 𝑆)) ∧ ∃𝑧∃𝑤∃𝑣∃𝑢((𝑥 = 〈𝑧, 𝑤〉 ∧ 𝑦 = 〈𝑣, 𝑢〉) ∧ (𝑧 + 𝑢) = (𝑤 + 𝑣)))}    &   ⊢ (𝑥 + 𝑦) = (𝑦 + 𝑥)   
 &   ⊢ ((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) → (𝑥 + 𝑦) ∈ 𝑆)   
 &   ⊢ ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧))   
 &   ⊢ ((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) → ((𝑥 + 𝑦) = (𝑥 + 𝑧) → 𝑦 = 𝑧))    ⇒   ⊢ ((𝐴 ∼ 𝐵 ∧ 𝐵 ∼ 𝐶) → 𝐴 ∼ 𝐶) | 
|   | 
| Theorem | ecopover 6692* | 
Assuming that operation 𝐹 is commutative (second hypothesis),
           closed (third hypothesis), associative (fourth hypothesis), and has
           the cancellation property (fifth hypothesis), show that the relation
           ∼, specified
by the first hypothesis, is an equivalence
           relation.  (Contributed by NM, 16-Feb-1996.)  (Revised by Mario
           Carneiro, 12-Aug-2015.)
 | 
| ⊢  ∼ = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (𝑆 × 𝑆) ∧ 𝑦 ∈ (𝑆 × 𝑆)) ∧ ∃𝑧∃𝑤∃𝑣∃𝑢((𝑥 = 〈𝑧, 𝑤〉 ∧ 𝑦 = 〈𝑣, 𝑢〉) ∧ (𝑧 + 𝑢) = (𝑤 + 𝑣)))}    &   ⊢ (𝑥 + 𝑦) = (𝑦 + 𝑥)   
 &   ⊢ ((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) → (𝑥 + 𝑦) ∈ 𝑆)   
 &   ⊢ ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧))   
 &   ⊢ ((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) → ((𝑥 + 𝑦) = (𝑥 + 𝑧) → 𝑦 = 𝑧))    ⇒   ⊢  ∼ Er (𝑆 × 𝑆) | 
|   | 
| Theorem | ecopovsymg 6693* | 
Assuming the operation 𝐹 is commutative, show that the
relation
         ∼, specified
by the first hypothesis, is symmetric.
         (Contributed by Jim Kingdon, 1-Sep-2019.)
 | 
| ⊢  ∼ = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (𝑆 × 𝑆) ∧ 𝑦 ∈ (𝑆 × 𝑆)) ∧ ∃𝑧∃𝑤∃𝑣∃𝑢((𝑥 = 〈𝑧, 𝑤〉 ∧ 𝑦 = 〈𝑣, 𝑢〉) ∧ (𝑧 + 𝑢) = (𝑤 + 𝑣)))}    &   ⊢ ((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) → (𝑥 + 𝑦) = (𝑦 + 𝑥))    ⇒   ⊢ (𝐴 ∼ 𝐵 → 𝐵 ∼ 𝐴) | 
|   | 
| Theorem | ecopovtrng 6694* | 
Assuming that operation 𝐹 is commutative (second hypothesis),
           closed (third hypothesis), associative (fourth hypothesis), and has
           the cancellation property (fifth hypothesis), show that the relation
           ∼, specified
by the first hypothesis, is transitive.
           (Contributed by Jim Kingdon, 1-Sep-2019.)
 | 
| ⊢  ∼ = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (𝑆 × 𝑆) ∧ 𝑦 ∈ (𝑆 × 𝑆)) ∧ ∃𝑧∃𝑤∃𝑣∃𝑢((𝑥 = 〈𝑧, 𝑤〉 ∧ 𝑦 = 〈𝑣, 𝑢〉) ∧ (𝑧 + 𝑢) = (𝑤 + 𝑣)))}    &   ⊢ ((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) → (𝑥 + 𝑦) = (𝑦 + 𝑥))   
 &   ⊢ ((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) → (𝑥 + 𝑦) ∈ 𝑆)   
 &   ⊢ ((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)))    &   ⊢ ((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆) → ((𝑥 + 𝑦) = (𝑥 + 𝑧) → 𝑦 = 𝑧))    ⇒   ⊢ ((𝐴 ∼ 𝐵 ∧ 𝐵 ∼ 𝐶) → 𝐴 ∼ 𝐶) | 
|   | 
| Theorem | ecopoverg 6695* | 
Assuming that operation 𝐹 is commutative (second hypothesis),
           closed (third hypothesis), associative (fourth hypothesis), and has
           the cancellation property (fifth hypothesis), show that the relation
           ∼, specified
by the first hypothesis, is an equivalence
           relation.  (Contributed by Jim Kingdon, 1-Sep-2019.)
 | 
| ⊢  ∼ = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (𝑆 × 𝑆) ∧ 𝑦 ∈ (𝑆 × 𝑆)) ∧ ∃𝑧∃𝑤∃𝑣∃𝑢((𝑥 = 〈𝑧, 𝑤〉 ∧ 𝑦 = 〈𝑣, 𝑢〉) ∧ (𝑧 + 𝑢) = (𝑤 + 𝑣)))}    &   ⊢ ((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) → (𝑥 + 𝑦) = (𝑦 + 𝑥))   
 &   ⊢ ((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) → (𝑥 + 𝑦) ∈ 𝑆)   
 &   ⊢ ((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)))    &   ⊢ ((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆) → ((𝑥 + 𝑦) = (𝑥 + 𝑧) → 𝑦 = 𝑧))    ⇒   ⊢  ∼ Er (𝑆 × 𝑆) | 
|   | 
| Theorem | th3qlem1 6696* | 
Lemma for Exercise 44 version of Theorem 3Q of [Enderton] p. 60.  The
       third hypothesis is the compatibility assumption.  (Contributed by NM,
       3-Aug-1995.)  (Revised by Mario Carneiro, 9-Jul-2014.)
 | 
| ⊢  ∼ Er 𝑆    &   ⊢ (((𝑦 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆) ∧ (𝑧 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆)) → ((𝑦 ∼ 𝑤 ∧ 𝑧 ∼ 𝑣) → (𝑦 + 𝑧) ∼ (𝑤 + 𝑣)))    ⇒   ⊢ ((𝐴 ∈ (𝑆 / ∼ ) ∧ 𝐵 ∈ (𝑆 / ∼ )) →
 ∃*𝑥∃𝑦∃𝑧((𝐴 = [𝑦] ∼ ∧ 𝐵 = [𝑧] ∼ ) ∧ 𝑥 = [(𝑦 + 𝑧)] ∼
 )) | 
|   | 
| Theorem | th3qlem2 6697* | 
Lemma for Exercise 44 version of Theorem 3Q of [Enderton] p. 60,
       extended to operations on ordered pairs.  The fourth hypothesis is the
       compatibility assumption.  (Contributed by NM, 4-Aug-1995.)  (Revised by
       Mario Carneiro, 12-Aug-2015.)
 | 
| ⊢  ∼ ∈
 V   
 &   ⊢  ∼ Er (𝑆 × 𝑆)   
 &   ⊢ ((((𝑤 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆) ∧ (𝑢 ∈ 𝑆 ∧ 𝑡 ∈ 𝑆)) ∧ ((𝑠 ∈ 𝑆 ∧ 𝑓 ∈ 𝑆) ∧ (𝑔 ∈ 𝑆 ∧ ℎ ∈ 𝑆))) → ((〈𝑤, 𝑣〉 ∼ 〈𝑢, 𝑡〉 ∧ 〈𝑠, 𝑓〉 ∼ 〈𝑔, ℎ〉) → (〈𝑤, 𝑣〉 + 〈𝑠, 𝑓〉) ∼ (〈𝑢, 𝑡〉 + 〈𝑔, ℎ〉)))    ⇒   ⊢ ((𝐴 ∈ ((𝑆 × 𝑆) / ∼ ) ∧ 𝐵 ∈ ((𝑆 × 𝑆) / ∼ )) →
 ∃*𝑧∃𝑤∃𝑣∃𝑢∃𝑡((𝐴 = [〈𝑤, 𝑣〉] ∼ ∧ 𝐵 = [〈𝑢, 𝑡〉] ∼ ) ∧ 𝑧 = [(〈𝑤, 𝑣〉 + 〈𝑢, 𝑡〉)] ∼
 )) | 
|   | 
| Theorem | th3qcor 6698* | 
Corollary of Theorem 3Q of [Enderton] p. 60. 
(Contributed by NM,
         12-Nov-1995.)  (Revised by David Abernethy, 4-Jun-2013.)
 | 
| ⊢  ∼ ∈
 V   
 &   ⊢  ∼ Er (𝑆 × 𝑆)   
 &   ⊢ ((((𝑤 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆) ∧ (𝑢 ∈ 𝑆 ∧ 𝑡 ∈ 𝑆)) ∧ ((𝑠 ∈ 𝑆 ∧ 𝑓 ∈ 𝑆) ∧ (𝑔 ∈ 𝑆 ∧ ℎ ∈ 𝑆))) → ((〈𝑤, 𝑣〉 ∼ 〈𝑢, 𝑡〉 ∧ 〈𝑠, 𝑓〉 ∼ 〈𝑔, ℎ〉) → (〈𝑤, 𝑣〉 + 〈𝑠, 𝑓〉) ∼ (〈𝑢, 𝑡〉 + 〈𝑔, ℎ〉)))    &   ⊢ 𝐺 = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ ((𝑆 × 𝑆) / ∼ ) ∧ 𝑦 ∈ ((𝑆 × 𝑆) / ∼ )) ∧
 ∃𝑤∃𝑣∃𝑢∃𝑡((𝑥 = [〈𝑤, 𝑣〉] ∼ ∧ 𝑦 = [〈𝑢, 𝑡〉] ∼ ) ∧ 𝑧 = [(〈𝑤, 𝑣〉 + 〈𝑢, 𝑡〉)] ∼
 ))}    ⇒   ⊢ Fun 𝐺 | 
|   | 
| Theorem | th3q 6699* | 
Theorem 3Q of [Enderton] p. 60, extended to
operations on ordered
         pairs.  (Contributed by NM, 4-Aug-1995.)  (Revised by Mario Carneiro,
         19-Dec-2013.)
 | 
| ⊢  ∼ ∈
 V   
 &   ⊢  ∼ Er (𝑆 × 𝑆)   
 &   ⊢ ((((𝑤 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆) ∧ (𝑢 ∈ 𝑆 ∧ 𝑡 ∈ 𝑆)) ∧ ((𝑠 ∈ 𝑆 ∧ 𝑓 ∈ 𝑆) ∧ (𝑔 ∈ 𝑆 ∧ ℎ ∈ 𝑆))) → ((〈𝑤, 𝑣〉 ∼ 〈𝑢, 𝑡〉 ∧ 〈𝑠, 𝑓〉 ∼ 〈𝑔, ℎ〉) → (〈𝑤, 𝑣〉 + 〈𝑠, 𝑓〉) ∼ (〈𝑢, 𝑡〉 + 〈𝑔, ℎ〉)))    &   ⊢ 𝐺 = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ ((𝑆 × 𝑆) / ∼ ) ∧ 𝑦 ∈ ((𝑆 × 𝑆) / ∼ )) ∧
 ∃𝑤∃𝑣∃𝑢∃𝑡((𝑥 = [〈𝑤, 𝑣〉] ∼ ∧ 𝑦 = [〈𝑢, 𝑡〉] ∼ ) ∧ 𝑧 = [(〈𝑤, 𝑣〉 + 〈𝑢, 𝑡〉)] ∼
 ))}    ⇒   ⊢ (((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) ∧ (𝐶 ∈ 𝑆 ∧ 𝐷 ∈ 𝑆)) → ([〈𝐴, 𝐵〉] ∼ 𝐺[〈𝐶, 𝐷〉] ∼ ) = [(〈𝐴, 𝐵〉 + 〈𝐶, 𝐷〉)] ∼ ) | 
|   | 
| Theorem | oviec 6700* | 
Express an operation on equivalence classes of ordered pairs in terms of
       equivalence class of operations on ordered pairs.  See iset.mm for
       additional comments describing the hypotheses.  (Unnecessary distinct
       variable restrictions were removed by David Abernethy, 4-Jun-2013.)
       (Contributed by NM, 6-Aug-1995.)  (Revised by Mario Carneiro,
       4-Jun-2013.)
 | 
| ⊢ (((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) ∧ (𝐶 ∈ 𝑆 ∧ 𝐷 ∈ 𝑆)) → 𝐻 ∈ (𝑆 × 𝑆))    &   ⊢ (((𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝑆) ∧ (𝑔 ∈ 𝑆 ∧ ℎ ∈ 𝑆)) → 𝐾 ∈ (𝑆 × 𝑆))    &   ⊢ (((𝑐 ∈ 𝑆 ∧ 𝑑 ∈ 𝑆) ∧ (𝑡 ∈ 𝑆 ∧ 𝑠 ∈ 𝑆)) → 𝐿 ∈ (𝑆 × 𝑆))    &   ⊢  ∼
 ∈ V   
 &   ⊢  ∼ Er (𝑆 × 𝑆)   
 &   ⊢  ∼ = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (𝑆 × 𝑆) ∧ 𝑦 ∈ (𝑆 × 𝑆)) ∧ ∃𝑧∃𝑤∃𝑣∃𝑢((𝑥 = 〈𝑧, 𝑤〉 ∧ 𝑦 = 〈𝑣, 𝑢〉) ∧ 𝜑))}    &   ⊢ (((𝑧 = 𝑎 ∧ 𝑤 = 𝑏) ∧ (𝑣 = 𝑐 ∧ 𝑢 = 𝑑)) → (𝜑 ↔ 𝜓))    &   ⊢ (((𝑧 = 𝑔 ∧ 𝑤 = ℎ) ∧ (𝑣 = 𝑡 ∧ 𝑢 = 𝑠)) → (𝜑 ↔ 𝜒))    &   ⊢  + =
 {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ (𝑆 × 𝑆) ∧ 𝑦 ∈ (𝑆 × 𝑆)) ∧ ∃𝑤∃𝑣∃𝑢∃𝑓((𝑥 = 〈𝑤, 𝑣〉 ∧ 𝑦 = 〈𝑢, 𝑓〉) ∧ 𝑧 = 𝐽))}    &   ⊢ (((𝑤 = 𝑎 ∧ 𝑣 = 𝑏) ∧ (𝑢 = 𝑔 ∧ 𝑓 = ℎ)) → 𝐽 = 𝐾)   
 &   ⊢ (((𝑤 = 𝑐 ∧ 𝑣 = 𝑑) ∧ (𝑢 = 𝑡 ∧ 𝑓 = 𝑠)) → 𝐽 = 𝐿)   
 &   ⊢ (((𝑤 = 𝐴 ∧ 𝑣 = 𝐵) ∧ (𝑢 = 𝐶 ∧ 𝑓 = 𝐷)) → 𝐽 = 𝐻)   
 &   ⊢  ⨣ =
 {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝑄 ∧ 𝑦 ∈ 𝑄) ∧ ∃𝑎∃𝑏∃𝑐∃𝑑((𝑥 = [〈𝑎, 𝑏〉] ∼ ∧ 𝑦 = [〈𝑐, 𝑑〉] ∼ ) ∧ 𝑧 = [(〈𝑎, 𝑏〉 + 〈𝑐, 𝑑〉)] ∼ ))}    &   ⊢ 𝑄 = ((𝑆 × 𝑆) / ∼ )    &   ⊢ ((((𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝑆) ∧ (𝑐 ∈ 𝑆 ∧ 𝑑 ∈ 𝑆)) ∧ ((𝑔 ∈ 𝑆 ∧ ℎ ∈ 𝑆) ∧ (𝑡 ∈ 𝑆 ∧ 𝑠 ∈ 𝑆))) → ((𝜓 ∧ 𝜒) → 𝐾 ∼ 𝐿))    ⇒   ⊢ (((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) ∧ (𝐶 ∈ 𝑆 ∧ 𝐷 ∈ 𝑆)) → ([〈𝐴, 𝐵〉] ∼ ⨣ [〈𝐶, 𝐷〉] ∼ ) = [𝐻] ∼ ) |