Theorem List for Intuitionistic Logic Explorer - 6601-6700 *Has distinct variable
group(s)
Type | Label | Description |
Statement |
|
Theorem | idssen 6601 |
Equality implies equinumerosity. (Contributed by NM, 30-Apr-1998.)
(Revised by Mario Carneiro, 15-Nov-2014.)
|
⊢ I ⊆ ≈ |
|
Theorem | ssdomg 6602 |
A set dominates its subsets. Theorem 16 of [Suppes] p. 94. (Contributed
by NM, 19-Jun-1998.) (Revised by Mario Carneiro, 24-Jun-2015.)
|
⊢ (𝐵 ∈ 𝑉 → (𝐴 ⊆ 𝐵 → 𝐴 ≼ 𝐵)) |
|
Theorem | ener 6603 |
Equinumerosity is an equivalence relation. (Contributed by NM,
19-Mar-1998.) (Revised by Mario Carneiro, 15-Nov-2014.)
|
⊢ ≈ Er V |
|
Theorem | ensymb 6604 |
Symmetry of equinumerosity. Theorem 2 of [Suppes] p. 92. (Contributed by
Mario Carneiro, 26-Apr-2015.)
|
⊢ (𝐴 ≈ 𝐵 ↔ 𝐵 ≈ 𝐴) |
|
Theorem | ensym 6605 |
Symmetry of equinumerosity. Theorem 2 of [Suppes] p. 92. (Contributed by
NM, 26-Oct-2003.) (Revised by Mario Carneiro, 26-Apr-2015.)
|
⊢ (𝐴 ≈ 𝐵 → 𝐵 ≈ 𝐴) |
|
Theorem | ensymi 6606 |
Symmetry of equinumerosity. Theorem 2 of [Suppes] p. 92. (Contributed
by NM, 25-Sep-2004.)
|
⊢ 𝐴 ≈ 𝐵 ⇒ ⊢ 𝐵 ≈ 𝐴 |
|
Theorem | ensymd 6607 |
Symmetry of equinumerosity. Deduction form of ensym 6605. (Contributed
by David Moews, 1-May-2017.)
|
⊢ (𝜑 → 𝐴 ≈ 𝐵) ⇒ ⊢ (𝜑 → 𝐵 ≈ 𝐴) |
|
Theorem | entr 6608 |
Transitivity of equinumerosity. Theorem 3 of [Suppes] p. 92.
(Contributed by NM, 9-Jun-1998.)
|
⊢ ((𝐴 ≈ 𝐵 ∧ 𝐵 ≈ 𝐶) → 𝐴 ≈ 𝐶) |
|
Theorem | domtr 6609 |
Transitivity of dominance relation. Theorem 17 of [Suppes] p. 94.
(Contributed by NM, 4-Jun-1998.) (Revised by Mario Carneiro,
15-Nov-2014.)
|
⊢ ((𝐴 ≼ 𝐵 ∧ 𝐵 ≼ 𝐶) → 𝐴 ≼ 𝐶) |
|
Theorem | entri 6610 |
A chained equinumerosity inference. (Contributed by NM,
25-Sep-2004.)
|
⊢ 𝐴 ≈ 𝐵
& ⊢ 𝐵 ≈ 𝐶 ⇒ ⊢ 𝐴 ≈ 𝐶 |
|
Theorem | entr2i 6611 |
A chained equinumerosity inference. (Contributed by NM,
25-Sep-2004.)
|
⊢ 𝐴 ≈ 𝐵
& ⊢ 𝐵 ≈ 𝐶 ⇒ ⊢ 𝐶 ≈ 𝐴 |
|
Theorem | entr3i 6612 |
A chained equinumerosity inference. (Contributed by NM,
25-Sep-2004.)
|
⊢ 𝐴 ≈ 𝐵
& ⊢ 𝐴 ≈ 𝐶 ⇒ ⊢ 𝐵 ≈ 𝐶 |
|
Theorem | entr4i 6613 |
A chained equinumerosity inference. (Contributed by NM,
25-Sep-2004.)
|
⊢ 𝐴 ≈ 𝐵
& ⊢ 𝐶 ≈ 𝐵 ⇒ ⊢ 𝐴 ≈ 𝐶 |
|
Theorem | endomtr 6614 |
Transitivity of equinumerosity and dominance. (Contributed by NM,
7-Jun-1998.)
|
⊢ ((𝐴 ≈ 𝐵 ∧ 𝐵 ≼ 𝐶) → 𝐴 ≼ 𝐶) |
|
Theorem | domentr 6615 |
Transitivity of dominance and equinumerosity. (Contributed by NM,
7-Jun-1998.)
|
⊢ ((𝐴 ≼ 𝐵 ∧ 𝐵 ≈ 𝐶) → 𝐴 ≼ 𝐶) |
|
Theorem | f1imaeng 6616 |
A one-to-one function's image under a subset of its domain is equinumerous
to the subset. (Contributed by Mario Carneiro, 15-May-2015.)
|
⊢ ((𝐹:𝐴–1-1→𝐵 ∧ 𝐶 ⊆ 𝐴 ∧ 𝐶 ∈ 𝑉) → (𝐹 “ 𝐶) ≈ 𝐶) |
|
Theorem | f1imaen2g 6617 |
A one-to-one function's image under a subset of its domain is equinumerous
to the subset. (This version of f1imaen 6618 does not need ax-setind 4390.)
(Contributed by Mario Carneiro, 16-Nov-2014.) (Revised by Mario Carneiro,
25-Jun-2015.)
|
⊢ (((𝐹:𝐴–1-1→𝐵 ∧ 𝐵 ∈ 𝑉) ∧ (𝐶 ⊆ 𝐴 ∧ 𝐶 ∈ 𝑉)) → (𝐹 “ 𝐶) ≈ 𝐶) |
|
Theorem | f1imaen 6618 |
A one-to-one function's image under a subset of its domain is
equinumerous to the subset. (Contributed by NM, 30-Sep-2004.)
|
⊢ 𝐶 ∈ V ⇒ ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ 𝐶 ⊆ 𝐴) → (𝐹 “ 𝐶) ≈ 𝐶) |
|
Theorem | en0 6619 |
The empty set is equinumerous only to itself. Exercise 1 of
[TakeutiZaring] p. 88.
(Contributed by NM, 27-May-1998.)
|
⊢ (𝐴 ≈ ∅ ↔ 𝐴 = ∅) |
|
Theorem | ensn1 6620 |
A singleton is equinumerous to ordinal one. (Contributed by NM,
4-Nov-2002.)
|
⊢ 𝐴 ∈ V ⇒ ⊢ {𝐴} ≈ 1o |
|
Theorem | ensn1g 6621 |
A singleton is equinumerous to ordinal one. (Contributed by NM,
23-Apr-2004.)
|
⊢ (𝐴 ∈ 𝑉 → {𝐴} ≈ 1o) |
|
Theorem | enpr1g 6622 |
{𝐴, 𝐴} has only one element.
(Contributed by FL, 15-Feb-2010.)
|
⊢ (𝐴 ∈ 𝑉 → {𝐴, 𝐴} ≈ 1o) |
|
Theorem | en1 6623* |
A set is equinumerous to ordinal one iff it is a singleton.
(Contributed by NM, 25-Jul-2004.)
|
⊢ (𝐴 ≈ 1o ↔ ∃𝑥 𝐴 = {𝑥}) |
|
Theorem | en1bg 6624 |
A set is equinumerous to ordinal one iff it is a singleton.
(Contributed by Jim Kingdon, 13-Apr-2020.)
|
⊢ (𝐴 ∈ 𝑉 → (𝐴 ≈ 1o ↔ 𝐴 = {∪ 𝐴})) |
|
Theorem | reuen1 6625* |
Two ways to express "exactly one". (Contributed by Stefan O'Rear,
28-Oct-2014.)
|
⊢ (∃!𝑥 ∈ 𝐴 𝜑 ↔ {𝑥 ∈ 𝐴 ∣ 𝜑} ≈ 1o) |
|
Theorem | euen1 6626 |
Two ways to express "exactly one". (Contributed by Stefan O'Rear,
28-Oct-2014.)
|
⊢ (∃!𝑥𝜑 ↔ {𝑥 ∣ 𝜑} ≈ 1o) |
|
Theorem | euen1b 6627* |
Two ways to express "𝐴 has a unique element".
(Contributed by
Mario Carneiro, 9-Apr-2015.)
|
⊢ (𝐴 ≈ 1o ↔ ∃!𝑥 𝑥 ∈ 𝐴) |
|
Theorem | en1uniel 6628 |
A singleton contains its sole element. (Contributed by Stefan O'Rear,
16-Aug-2015.)
|
⊢ (𝑆 ≈ 1o → ∪ 𝑆
∈ 𝑆) |
|
Theorem | 2dom 6629* |
A set that dominates ordinal 2 has at least 2 different members.
(Contributed by NM, 25-Jul-2004.)
|
⊢ (2o ≼ 𝐴 → ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 ¬ 𝑥 = 𝑦) |
|
Theorem | fundmen 6630 |
A function is equinumerous to its domain. Exercise 4 of [Suppes] p. 98.
(Contributed by NM, 28-Jul-2004.) (Revised by Mario Carneiro,
15-Nov-2014.)
|
⊢ 𝐹 ∈ V ⇒ ⊢ (Fun 𝐹 → dom 𝐹 ≈ 𝐹) |
|
Theorem | fundmeng 6631 |
A function is equinumerous to its domain. Exercise 4 of [Suppes] p. 98.
(Contributed by NM, 17-Sep-2013.)
|
⊢ ((𝐹 ∈ 𝑉 ∧ Fun 𝐹) → dom 𝐹 ≈ 𝐹) |
|
Theorem | cnven 6632 |
A relational set is equinumerous to its converse. (Contributed by Mario
Carneiro, 28-Dec-2014.)
|
⊢ ((Rel 𝐴 ∧ 𝐴 ∈ 𝑉) → 𝐴 ≈ ◡𝐴) |
|
Theorem | cnvct 6633 |
If a set is dominated by ω, so is its converse.
(Contributed by
Thierry Arnoux, 29-Dec-2016.)
|
⊢ (𝐴 ≼ ω → ◡𝐴 ≼ ω) |
|
Theorem | fndmeng 6634 |
A function is equinumerate to its domain. (Contributed by Paul Chapman,
22-Jun-2011.)
|
⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ∈ 𝐶) → 𝐴 ≈ 𝐹) |
|
Theorem | mapsnen 6635 |
Set exponentiation to a singleton exponent is equinumerous to its base.
Exercise 4.43 of [Mendelson] p. 255.
(Contributed by NM, 17-Dec-2003.)
(Revised by Mario Carneiro, 15-Nov-2014.)
|
⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈
V ⇒ ⊢ (𝐴 ↑𝑚 {𝐵}) ≈ 𝐴 |
|
Theorem | map1 6636 |
Set exponentiation: ordinal 1 to any set is equinumerous to ordinal 1.
Exercise 4.42(b) of [Mendelson] p.
255. (Contributed by NM,
17-Dec-2003.)
|
⊢ (𝐴 ∈ 𝑉 → (1o
↑𝑚 𝐴) ≈ 1o) |
|
Theorem | en2sn 6637 |
Two singletons are equinumerous. (Contributed by NM, 9-Nov-2003.)
|
⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → {𝐴} ≈ {𝐵}) |
|
Theorem | snfig 6638 |
A singleton is finite. For the proper class case, see snprc 3535.
(Contributed by Jim Kingdon, 13-Apr-2020.)
|
⊢ (𝐴 ∈ 𝑉 → {𝐴} ∈ Fin) |
|
Theorem | fiprc 6639 |
The class of finite sets is a proper class. (Contributed by Jeff
Hankins, 3-Oct-2008.)
|
⊢ Fin ∉ V |
|
Theorem | unen 6640 |
Equinumerosity of union of disjoint sets. Theorem 4 of [Suppes] p. 92.
(Contributed by NM, 11-Jun-1998.) (Revised by Mario Carneiro,
26-Apr-2015.)
|
⊢ (((𝐴 ≈ 𝐵 ∧ 𝐶 ≈ 𝐷) ∧ ((𝐴 ∩ 𝐶) = ∅ ∧ (𝐵 ∩ 𝐷) = ∅)) → (𝐴 ∪ 𝐶) ≈ (𝐵 ∪ 𝐷)) |
|
Theorem | ssct 6641 |
A subset of a set dominated by ω is dominated by
ω.
(Contributed by Thierry Arnoux, 31-Jan-2017.)
|
⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ≼ ω) → 𝐴 ≼ ω) |
|
Theorem | 1domsn 6642 |
A singleton (whether of a set or a proper class) is dominated by one.
(Contributed by Jim Kingdon, 1-Mar-2022.)
|
⊢ {𝐴} ≼ 1o |
|
Theorem | enm 6643* |
A set equinumerous to an inhabited set is inhabited. (Contributed by
Jim Kingdon, 19-May-2020.)
|
⊢ ((𝐴 ≈ 𝐵 ∧ ∃𝑥 𝑥 ∈ 𝐴) → ∃𝑦 𝑦 ∈ 𝐵) |
|
Theorem | xpsnen 6644 |
A set is equinumerous to its Cartesian product with a singleton.
Proposition 4.22(c) of [Mendelson] p.
254. (Contributed by NM,
4-Jan-2004.) (Revised by Mario Carneiro, 15-Nov-2014.)
|
⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈
V ⇒ ⊢ (𝐴 × {𝐵}) ≈ 𝐴 |
|
Theorem | xpsneng 6645 |
A set is equinumerous to its Cartesian product with a singleton.
Proposition 4.22(c) of [Mendelson] p.
254. (Contributed by NM,
22-Oct-2004.)
|
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 × {𝐵}) ≈ 𝐴) |
|
Theorem | xp1en 6646 |
One times a cardinal number. (Contributed by NM, 27-Sep-2004.) (Revised
by Mario Carneiro, 29-Apr-2015.)
|
⊢ (𝐴 ∈ 𝑉 → (𝐴 × 1o) ≈ 𝐴) |
|
Theorem | endisj 6647* |
Any two sets are equinumerous to disjoint sets. Exercise 4.39 of
[Mendelson] p. 255. (Contributed by
NM, 16-Apr-2004.)
|
⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈
V ⇒ ⊢ ∃𝑥∃𝑦((𝑥 ≈ 𝐴 ∧ 𝑦 ≈ 𝐵) ∧ (𝑥 ∩ 𝑦) = ∅) |
|
Theorem | xpcomf1o 6648* |
The canonical bijection from (𝐴 × 𝐵) to (𝐵 × 𝐴).
(Contributed by Mario Carneiro, 23-Apr-2014.)
|
⊢ 𝐹 = (𝑥 ∈ (𝐴 × 𝐵) ↦ ∪
◡{𝑥}) ⇒ ⊢ 𝐹:(𝐴 × 𝐵)–1-1-onto→(𝐵 × 𝐴) |
|
Theorem | xpcomco 6649* |
Composition with the bijection of xpcomf1o 6648 swaps the arguments to a
mapping. (Contributed by Mario Carneiro, 30-May-2015.)
|
⊢ 𝐹 = (𝑥 ∈ (𝐴 × 𝐵) ↦ ∪
◡{𝑥})
& ⊢ 𝐺 = (𝑦 ∈ 𝐵, 𝑧 ∈ 𝐴 ↦ 𝐶) ⇒ ⊢ (𝐺 ∘ 𝐹) = (𝑧 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) |
|
Theorem | xpcomen 6650 |
Commutative law for equinumerosity of Cartesian product. Proposition
4.22(d) of [Mendelson] p. 254.
(Contributed by NM, 5-Jan-2004.)
(Revised by Mario Carneiro, 15-Nov-2014.)
|
⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈
V ⇒ ⊢ (𝐴 × 𝐵) ≈ (𝐵 × 𝐴) |
|
Theorem | xpcomeng 6651 |
Commutative law for equinumerosity of Cartesian product. Proposition
4.22(d) of [Mendelson] p. 254.
(Contributed by NM, 27-Mar-2006.)
|
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 × 𝐵) ≈ (𝐵 × 𝐴)) |
|
Theorem | xpsnen2g 6652 |
A set is equinumerous to its Cartesian product with a singleton on the
left. (Contributed by Stefan O'Rear, 21-Nov-2014.)
|
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ({𝐴} × 𝐵) ≈ 𝐵) |
|
Theorem | xpassen 6653 |
Associative law for equinumerosity of Cartesian product. Proposition
4.22(e) of [Mendelson] p. 254.
(Contributed by NM, 22-Jan-2004.)
(Revised by Mario Carneiro, 15-Nov-2014.)
|
⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V & ⊢ 𝐶 ∈
V ⇒ ⊢ ((𝐴 × 𝐵) × 𝐶) ≈ (𝐴 × (𝐵 × 𝐶)) |
|
Theorem | xpdom2 6654 |
Dominance law for Cartesian product. Proposition 10.33(2) of
[TakeutiZaring] p. 92.
(Contributed by NM, 24-Jul-2004.) (Revised by
Mario Carneiro, 15-Nov-2014.)
|
⊢ 𝐶 ∈ V ⇒ ⊢ (𝐴 ≼ 𝐵 → (𝐶 × 𝐴) ≼ (𝐶 × 𝐵)) |
|
Theorem | xpdom2g 6655 |
Dominance law for Cartesian product. Theorem 6L(c) of [Enderton]
p. 149. (Contributed by Mario Carneiro, 26-Apr-2015.)
|
⊢ ((𝐶 ∈ 𝑉 ∧ 𝐴 ≼ 𝐵) → (𝐶 × 𝐴) ≼ (𝐶 × 𝐵)) |
|
Theorem | xpdom1g 6656 |
Dominance law for Cartesian product. Theorem 6L(c) of [Enderton]
p. 149. (Contributed by NM, 25-Mar-2006.) (Revised by Mario Carneiro,
26-Apr-2015.)
|
⊢ ((𝐶 ∈ 𝑉 ∧ 𝐴 ≼ 𝐵) → (𝐴 × 𝐶) ≼ (𝐵 × 𝐶)) |
|
Theorem | xpdom3m 6657* |
A set is dominated by its Cartesian product with an inhabited set.
Exercise 6 of [Suppes] p. 98.
(Contributed by Jim Kingdon,
15-Apr-2020.)
|
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ ∃𝑥 𝑥 ∈ 𝐵) → 𝐴 ≼ (𝐴 × 𝐵)) |
|
Theorem | xpdom1 6658 |
Dominance law for Cartesian product. Theorem 6L(c) of [Enderton]
p. 149. (Contributed by NM, 28-Sep-2004.) (Revised by NM,
29-Mar-2006.) (Revised by Mario Carneiro, 7-May-2015.)
|
⊢ 𝐶 ∈ V ⇒ ⊢ (𝐴 ≼ 𝐵 → (𝐴 × 𝐶) ≼ (𝐵 × 𝐶)) |
|
Theorem | fopwdom 6659 |
Covering implies injection on power sets. (Contributed by Stefan
O'Rear, 6-Nov-2014.) (Revised by Mario Carneiro, 24-Jun-2015.)
|
⊢ ((𝐹 ∈ V ∧ 𝐹:𝐴–onto→𝐵) → 𝒫 𝐵 ≼ 𝒫 𝐴) |
|
Theorem | 0domg 6660 |
Any set dominates the empty set. (Contributed by NM, 26-Oct-2003.)
(Revised by Mario Carneiro, 26-Apr-2015.)
|
⊢ (𝐴 ∈ 𝑉 → ∅ ≼ 𝐴) |
|
Theorem | dom0 6661 |
A set dominated by the empty set is empty. (Contributed by NM,
22-Nov-2004.)
|
⊢ (𝐴 ≼ ∅ ↔ 𝐴 = ∅) |
|
Theorem | 0dom 6662 |
Any set dominates the empty set. (Contributed by NM, 26-Oct-2003.)
(Revised by Mario Carneiro, 26-Apr-2015.)
|
⊢ 𝐴 ∈ V ⇒ ⊢ ∅ ≼ 𝐴 |
|
Theorem | enen1 6663 |
Equality-like theorem for equinumerosity. (Contributed by NM,
18-Dec-2003.)
|
⊢ (𝐴 ≈ 𝐵 → (𝐴 ≈ 𝐶 ↔ 𝐵 ≈ 𝐶)) |
|
Theorem | enen2 6664 |
Equality-like theorem for equinumerosity. (Contributed by NM,
18-Dec-2003.)
|
⊢ (𝐴 ≈ 𝐵 → (𝐶 ≈ 𝐴 ↔ 𝐶 ≈ 𝐵)) |
|
Theorem | domen1 6665 |
Equality-like theorem for equinumerosity and dominance. (Contributed by
NM, 8-Nov-2003.)
|
⊢ (𝐴 ≈ 𝐵 → (𝐴 ≼ 𝐶 ↔ 𝐵 ≼ 𝐶)) |
|
Theorem | domen2 6666 |
Equality-like theorem for equinumerosity and dominance. (Contributed by
NM, 8-Nov-2003.)
|
⊢ (𝐴 ≈ 𝐵 → (𝐶 ≼ 𝐴 ↔ 𝐶 ≼ 𝐵)) |
|
2.6.28 Equinumerosity (cont.)
|
|
Theorem | xpf1o 6667* |
Construct a bijection on a Cartesian product given bijections on the
factors. (Contributed by Mario Carneiro, 30-May-2015.)
|
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝑋):𝐴–1-1-onto→𝐵)
& ⊢ (𝜑 → (𝑦 ∈ 𝐶 ↦ 𝑌):𝐶–1-1-onto→𝐷) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐶 ↦ 〈𝑋, 𝑌〉):(𝐴 × 𝐶)–1-1-onto→(𝐵 × 𝐷)) |
|
Theorem | xpen 6668 |
Equinumerosity law for Cartesian product. Proposition 4.22(b) of
[Mendelson] p. 254. (Contributed by
NM, 24-Jul-2004.)
|
⊢ ((𝐴 ≈ 𝐵 ∧ 𝐶 ≈ 𝐷) → (𝐴 × 𝐶) ≈ (𝐵 × 𝐷)) |
|
Theorem | mapen 6669 |
Two set exponentiations are equinumerous when their bases and exponents
are equinumerous. Theorem 6H(c) of [Enderton] p. 139. (Contributed by
NM, 16-Dec-2003.) (Proof shortened by Mario Carneiro, 26-Apr-2015.)
|
⊢ ((𝐴 ≈ 𝐵 ∧ 𝐶 ≈ 𝐷) → (𝐴 ↑𝑚 𝐶) ≈ (𝐵 ↑𝑚 𝐷)) |
|
Theorem | mapdom1g 6670 |
Order-preserving property of set exponentiation. (Contributed by Jim
Kingdon, 15-Jul-2022.)
|
⊢ ((𝐴 ≼ 𝐵 ∧ 𝐶 ∈ 𝑉) → (𝐴 ↑𝑚 𝐶) ≼ (𝐵 ↑𝑚 𝐶)) |
|
Theorem | mapxpen 6671 |
Equinumerosity law for double set exponentiation. Proposition 10.45 of
[TakeutiZaring] p. 96.
(Contributed by NM, 21-Feb-2004.) (Revised by
Mario Carneiro, 24-Jun-2015.)
|
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) → ((𝐴 ↑𝑚 𝐵) ↑𝑚
𝐶) ≈ (𝐴 ↑𝑚
(𝐵 × 𝐶))) |
|
Theorem | xpmapenlem 6672* |
Lemma for xpmapen 6673. (Contributed by NM, 1-May-2004.) (Revised
by
Mario Carneiro, 16-Nov-2014.)
|
⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V & ⊢ 𝐶 ∈ V & ⊢ 𝐷 = (𝑧 ∈ 𝐶 ↦ (1st ‘(𝑥‘𝑧))) & ⊢ 𝑅 = (𝑧 ∈ 𝐶 ↦ (2nd ‘(𝑥‘𝑧))) & ⊢ 𝑆 = (𝑧 ∈ 𝐶 ↦ 〈((1st
‘𝑦)‘𝑧), ((2nd
‘𝑦)‘𝑧)〉) ⇒ ⊢ ((𝐴 × 𝐵) ↑𝑚 𝐶) ≈ ((𝐴 ↑𝑚 𝐶) × (𝐵 ↑𝑚 𝐶)) |
|
Theorem | xpmapen 6673 |
Equinumerosity law for set exponentiation of a Cartesian product.
Exercise 4.47 of [Mendelson] p. 255.
(Contributed by NM, 23-Feb-2004.)
(Proof shortened by Mario Carneiro, 16-Nov-2014.)
|
⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V & ⊢ 𝐶 ∈
V ⇒ ⊢ ((𝐴 × 𝐵) ↑𝑚 𝐶) ≈ ((𝐴 ↑𝑚 𝐶) × (𝐵 ↑𝑚 𝐶)) |
|
Theorem | ssenen 6674* |
Equinumerosity of equinumerous subsets of a set. (Contributed by NM,
30-Sep-2004.) (Revised by Mario Carneiro, 16-Nov-2014.)
|
⊢ (𝐴 ≈ 𝐵 → {𝑥 ∣ (𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ 𝐶)} ≈ {𝑥 ∣ (𝑥 ⊆ 𝐵 ∧ 𝑥 ≈ 𝐶)}) |
|
2.6.29 Pigeonhole Principle
|
|
Theorem | phplem1 6675 |
Lemma for Pigeonhole Principle. If we join a natural number to itself
minus an element, we end up with its successor minus the same element.
(Contributed by NM, 25-May-1998.)
|
⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ 𝐴) → ({𝐴} ∪ (𝐴 ∖ {𝐵})) = (suc 𝐴 ∖ {𝐵})) |
|
Theorem | phplem2 6676 |
Lemma for Pigeonhole Principle. A natural number is equinumerous to its
successor minus one of its elements. (Contributed by NM, 11-Jun-1998.)
(Revised by Mario Carneiro, 16-Nov-2014.)
|
⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈
V ⇒ ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ 𝐴) → 𝐴 ≈ (suc 𝐴 ∖ {𝐵})) |
|
Theorem | phplem3 6677 |
Lemma for Pigeonhole Principle. A natural number is equinumerous to its
successor minus any element of the successor. For a version without the
redundant hypotheses, see phplem3g 6679. (Contributed by NM,
26-May-1998.)
|
⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈
V ⇒ ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ suc 𝐴) → 𝐴 ≈ (suc 𝐴 ∖ {𝐵})) |
|
Theorem | phplem4 6678 |
Lemma for Pigeonhole Principle. Equinumerosity of successors implies
equinumerosity of the original natural numbers. (Contributed by NM,
28-May-1998.) (Revised by Mario Carneiro, 24-Jun-2015.)
|
⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈
V ⇒ ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (suc 𝐴 ≈ suc 𝐵 → 𝐴 ≈ 𝐵)) |
|
Theorem | phplem3g 6679 |
A natural number is equinumerous to its successor minus any element of
the successor. Version of phplem3 6677 with unnecessary hypotheses
removed. (Contributed by Jim Kingdon, 1-Sep-2021.)
|
⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ suc 𝐴) → 𝐴 ≈ (suc 𝐴 ∖ {𝐵})) |
|
Theorem | nneneq 6680 |
Two equinumerous natural numbers are equal. Proposition 10.20 of
[TakeutiZaring] p. 90 and its
converse. Also compare Corollary 6E of
[Enderton] p. 136. (Contributed by NM,
28-May-1998.)
|
⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ≈ 𝐵 ↔ 𝐴 = 𝐵)) |
|
Theorem | php5 6681 |
A natural number is not equinumerous to its successor. Corollary
10.21(1) of [TakeutiZaring] p. 90.
(Contributed by NM, 26-Jul-2004.)
|
⊢ (𝐴 ∈ ω → ¬ 𝐴 ≈ suc 𝐴) |
|
Theorem | snnen2og 6682 |
A singleton {𝐴} is never equinumerous with the
ordinal number 2. If
𝐴 is a proper class, see snnen2oprc 6683. (Contributed by Jim Kingdon,
1-Sep-2021.)
|
⊢ (𝐴 ∈ 𝑉 → ¬ {𝐴} ≈ 2o) |
|
Theorem | snnen2oprc 6683 |
A singleton {𝐴} is never equinumerous with the
ordinal number 2. If
𝐴 is a set, see snnen2og 6682. (Contributed by Jim Kingdon,
1-Sep-2021.)
|
⊢ (¬ 𝐴 ∈ V → ¬ {𝐴} ≈ 2o) |
|
Theorem | 1nen2 6684 |
One and two are not equinumerous. (Contributed by Jim Kingdon,
25-Jan-2022.)
|
⊢ ¬ 1o ≈
2o |
|
Theorem | phplem4dom 6685 |
Dominance of successors implies dominance of the original natural
numbers. (Contributed by Jim Kingdon, 1-Sep-2021.)
|
⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (suc 𝐴 ≼ suc 𝐵 → 𝐴 ≼ 𝐵)) |
|
Theorem | php5dom 6686 |
A natural number does not dominate its successor. (Contributed by Jim
Kingdon, 1-Sep-2021.)
|
⊢ (𝐴 ∈ ω → ¬ suc 𝐴 ≼ 𝐴) |
|
Theorem | nndomo 6687 |
Cardinal ordering agrees with natural number ordering. Example 3 of
[Enderton] p. 146. (Contributed by NM,
17-Jun-1998.)
|
⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ≼ 𝐵 ↔ 𝐴 ⊆ 𝐵)) |
|
Theorem | phpm 6688* |
Pigeonhole Principle. A natural number is not equinumerous to a proper
subset of itself. By "proper subset" here we mean that there
is an
element which is in the natural number and not in the subset, or in
symbols ∃𝑥𝑥 ∈ (𝐴 ∖ 𝐵) (which is stronger than not being
equal
in the absence of excluded middle). Theorem (Pigeonhole Principle) of
[Enderton] p. 134. The theorem is
so-called because you can't put n +
1 pigeons into n holes (if each hole holds only one pigeon). The
proof consists of lemmas phplem1 6675 through phplem4 6678, nneneq 6680, and
this final piece of the proof. (Contributed by NM, 29-May-1998.)
|
⊢ ((𝐴 ∈ ω ∧ 𝐵 ⊆ 𝐴 ∧ ∃𝑥 𝑥 ∈ (𝐴 ∖ 𝐵)) → ¬ 𝐴 ≈ 𝐵) |
|
Theorem | phpelm 6689 |
Pigeonhole Principle. A natural number is not equinumerous to an
element of itself. (Contributed by Jim Kingdon, 6-Sep-2021.)
|
⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ 𝐴) → ¬ 𝐴 ≈ 𝐵) |
|
Theorem | phplem4on 6690 |
Equinumerosity of successors of an ordinal and a natural number implies
equinumerosity of the originals. (Contributed by Jim Kingdon,
5-Sep-2021.)
|
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ ω) → (suc 𝐴 ≈ suc 𝐵 → 𝐴 ≈ 𝐵)) |
|
2.6.30 Finite sets
|
|
Theorem | fict 6691 |
A finite set is dominated by ω. Also see finct 6915. (Contributed
by Thierry Arnoux, 27-Mar-2018.)
|
⊢ (𝐴 ∈ Fin → 𝐴 ≼ ω) |
|
Theorem | fidceq 6692 |
Equality of members of a finite set is decidable. This may be
counterintuitive: cannot any two sets be elements of a finite set?
Well, to show, for example, that {𝐵, 𝐶} is finite would require
showing it is equinumerous to 1o or
to 2o but to show that you'd
need to know 𝐵 = 𝐶 or ¬ 𝐵 = 𝐶, respectively. (Contributed by
Jim Kingdon, 5-Sep-2021.)
|
⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴) → DECID 𝐵 = 𝐶) |
|
Theorem | fidifsnen 6693 |
All decrements of a finite set are equinumerous. (Contributed by Jim
Kingdon, 9-Sep-2021.)
|
⊢ ((𝑋 ∈ Fin ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝑋 ∖ {𝐴}) ≈ (𝑋 ∖ {𝐵})) |
|
Theorem | fidifsnid 6694 |
If we remove a single element from a finite set then put it back in, we
end up with the original finite set. This strengthens difsnss 3613 from
subset to equality when the set is finite. (Contributed by Jim Kingdon,
9-Sep-2021.)
|
⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ 𝐴) → ((𝐴 ∖ {𝐵}) ∪ {𝐵}) = 𝐴) |
|
Theorem | nnfi 6695 |
Natural numbers are finite sets. (Contributed by Stefan O'Rear,
21-Mar-2015.)
|
⊢ (𝐴 ∈ ω → 𝐴 ∈ Fin) |
|
Theorem | enfi 6696 |
Equinumerous sets have the same finiteness. (Contributed by NM,
22-Aug-2008.)
|
⊢ (𝐴 ≈ 𝐵 → (𝐴 ∈ Fin ↔ 𝐵 ∈ Fin)) |
|
Theorem | enfii 6697 |
A set equinumerous to a finite set is finite. (Contributed by Mario
Carneiro, 12-Mar-2015.)
|
⊢ ((𝐵 ∈ Fin ∧ 𝐴 ≈ 𝐵) → 𝐴 ∈ Fin) |
|
Theorem | ssfilem 6698* |
Lemma for ssfiexmid 6699. (Contributed by Jim Kingdon, 3-Feb-2022.)
|
⊢ {𝑧 ∈ {∅} ∣ 𝜑} ∈ Fin ⇒ ⊢ (𝜑 ∨ ¬ 𝜑) |
|
Theorem | ssfiexmid 6699* |
If any subset of a finite set is finite, excluded middle follows. One
direction of Theorem 2.1 of [Bauer], p.
485. (Contributed by Jim
Kingdon, 19-May-2020.)
|
⊢ ∀𝑥∀𝑦((𝑥 ∈ Fin ∧ 𝑦 ⊆ 𝑥) → 𝑦 ∈ Fin) ⇒ ⊢ (𝜑 ∨ ¬ 𝜑) |
|
Theorem | infiexmid 6700* |
If the intersection of any finite set and any other set is finite,
excluded middle follows. (Contributed by Jim Kingdon, 5-Feb-2022.)
|
⊢ (𝑥 ∈ Fin → (𝑥 ∩ 𝑦) ∈ Fin) ⇒ ⊢ (𝜑 ∨ ¬ 𝜑) |