Type | Label | Description |
Statement |
|
Theorem | ectocl 6601* |
Implicit substitution of class for equivalence class. (Contributed by
NM, 23-Jul-1995.) (Revised by Mario Carneiro, 9-Jul-2014.)
|
âĒ ð = (ðĩ / ð
)
& âĒ ([ðĨ]ð
= ðī â (ð â ð)) & âĒ (ðĨ â ðĩ â ð) â âĒ (ðī â ð â ð) |
|
Theorem | elqsn0m 6602* |
An element of a quotient set is inhabited. (Contributed by Jim Kingdon,
21-Aug-2019.)
|
âĒ ((dom ð
= ðī ⧠ðĩ â (ðī / ð
)) â âðĨ ðĨ â ðĩ) |
|
Theorem | elqsn0 6603 |
A quotient set doesn't contain the empty set. (Contributed by NM,
24-Aug-1995.)
|
âĒ ((dom ð
= ðī ⧠ðĩ â (ðī / ð
)) â ðĩ â â
) |
|
Theorem | ecelqsdm 6604 |
Membership of an equivalence class in a quotient set. (Contributed by
NM, 30-Jul-1995.)
|
âĒ ((dom ð
= ðī ⧠[ðĩ]ð
â (ðī / ð
)) â ðĩ â ðī) |
|
Theorem | xpider 6605 |
A square Cartesian product is an equivalence relation (in general it's not
a poset). (Contributed by FL, 31-Jul-2009.) (Revised by Mario Carneiro,
12-Aug-2015.)
|
âĒ (ðī Ã ðī) Er ðī |
|
Theorem | iinerm 6606* |
The intersection of a nonempty family of equivalence relations is an
equivalence relation. (Contributed by Mario Carneiro, 27-Sep-2015.)
|
âĒ ((âðĶ ðĶ â ðī ⧠âðĨ â ðī ð
Er ðĩ) â âĐ ðĨ â ðī ð
Er ðĩ) |
|
Theorem | riinerm 6607* |
The relative intersection of a family of equivalence relations is an
equivalence relation. (Contributed by Mario Carneiro, 27-Sep-2015.)
|
âĒ ((âðĶ ðĶ â ðī ⧠âðĨ â ðī ð
Er ðĩ) â ((ðĩ à ðĩ) âĐ âĐ
ðĨ â ðī ð
) Er ðĩ) |
|
Theorem | erinxp 6608 |
A restricted equivalence relation is an equivalence relation.
(Contributed by Mario Carneiro, 10-Jul-2015.) (Revised by Mario
Carneiro, 12-Aug-2015.)
|
âĒ (ð â ð
Er ðī)
& âĒ (ð â ðĩ â ðī) â âĒ (ð â (ð
âĐ (ðĩ à ðĩ)) Er ðĩ) |
|
Theorem | ecinxp 6609 |
Restrict the relation in an equivalence class to a base set. (Contributed
by Mario Carneiro, 10-Jul-2015.)
|
âĒ (((ð
â ðī) â ðī ⧠ðĩ â ðī) â [ðĩ]ð
= [ðĩ](ð
âĐ (ðī à ðī))) |
|
Theorem | qsinxp 6610 |
Restrict the equivalence relation in a quotient set to the base set.
(Contributed by Mario Carneiro, 23-Feb-2015.)
|
âĒ ((ð
â ðī) â ðī â (ðī / ð
) = (ðī / (ð
âĐ (ðī à ðī)))) |
|
Theorem | qsel 6611 |
If an element of a quotient set contains a given element, it is equal to
the equivalence class of the element. (Contributed by Mario Carneiro,
12-Aug-2015.)
|
âĒ ((ð
Er ð ⧠ðĩ â (ðī / ð
) ⧠ðķ â ðĩ) â ðĩ = [ðķ]ð
) |
|
Theorem | qliftlem 6612* |
ðđ,
a function lift, is a subset of ð
à ð. (Contributed by
Mario Carneiro, 23-Dec-2016.)
|
âĒ ðđ = ran (ðĨ â ð âĶ âĻ[ðĨ]ð
, ðīâĐ) & âĒ ((ð ⧠ðĨ â ð) â ðī â ð)
& âĒ (ð â ð
Er ð)
& âĒ (ð â ð â V) â âĒ ((ð ⧠ðĨ â ð) â [ðĨ]ð
â (ð / ð
)) |
|
Theorem | qliftrel 6613* |
ðđ,
a function lift, is a subset of ð
à ð. (Contributed by
Mario Carneiro, 23-Dec-2016.)
|
âĒ ðđ = ran (ðĨ â ð âĶ âĻ[ðĨ]ð
, ðīâĐ) & âĒ ((ð ⧠ðĨ â ð) â ðī â ð)
& âĒ (ð â ð
Er ð)
& âĒ (ð â ð â V) â âĒ (ð â ðđ â ((ð / ð
) Ã ð)) |
|
Theorem | qliftel 6614* |
Elementhood in the relation ðđ. (Contributed by Mario Carneiro,
23-Dec-2016.)
|
âĒ ðđ = ran (ðĨ â ð âĶ âĻ[ðĨ]ð
, ðīâĐ) & âĒ ((ð ⧠ðĨ â ð) â ðī â ð)
& âĒ (ð â ð
Er ð)
& âĒ (ð â ð â V) â âĒ (ð â ([ðķ]ð
ðđð· â âðĨ â ð (ðķð
ðĨ ⧠ð· = ðī))) |
|
Theorem | qliftel1 6615* |
Elementhood in the relation ðđ. (Contributed by Mario Carneiro,
23-Dec-2016.)
|
âĒ ðđ = ran (ðĨ â ð âĶ âĻ[ðĨ]ð
, ðīâĐ) & âĒ ((ð ⧠ðĨ â ð) â ðī â ð)
& âĒ (ð â ð
Er ð)
& âĒ (ð â ð â V) â âĒ ((ð ⧠ðĨ â ð) â [ðĨ]ð
ðđðī) |
|
Theorem | qliftfun 6616* |
The function ðđ is the unique function defined by
ðđâ[ðĨ] = ðī, provided that the well-definedness
condition
holds. (Contributed by Mario Carneiro, 23-Dec-2016.)
|
âĒ ðđ = ran (ðĨ â ð âĶ âĻ[ðĨ]ð
, ðīâĐ) & âĒ ((ð ⧠ðĨ â ð) â ðī â ð)
& âĒ (ð â ð
Er ð)
& âĒ (ð â ð â V) & âĒ (ðĨ = ðĶ â ðī = ðĩ) â âĒ (ð â (Fun ðđ â âðĨâðĶ(ðĨð
ðĶ â ðī = ðĩ))) |
|
Theorem | qliftfund 6617* |
The function ðđ is the unique function defined by
ðđâ[ðĨ] = ðī, provided that the well-definedness
condition
holds. (Contributed by Mario Carneiro, 23-Dec-2016.)
|
âĒ ðđ = ran (ðĨ â ð âĶ âĻ[ðĨ]ð
, ðīâĐ) & âĒ ((ð ⧠ðĨ â ð) â ðī â ð)
& âĒ (ð â ð
Er ð)
& âĒ (ð â ð â V) & âĒ (ðĨ = ðĶ â ðī = ðĩ)
& âĒ ((ð ⧠ðĨð
ðĶ) â ðī = ðĩ) â âĒ (ð â Fun ðđ) |
|
Theorem | qliftfuns 6618* |
The function ðđ is the unique function defined by
ðđâ[ðĨ] = ðī, provided that the well-definedness
condition holds.
(Contributed by Mario Carneiro, 23-Dec-2016.)
|
âĒ ðđ = ran (ðĨ â ð âĶ âĻ[ðĨ]ð
, ðīâĐ) & âĒ ((ð ⧠ðĨ â ð) â ðī â ð)
& âĒ (ð â ð
Er ð)
& âĒ (ð â ð â V) â âĒ (ð â (Fun ðđ â âðĶâð§(ðĶð
ð§ â âĶðĶ / ðĨâĶðī = âĶð§ / ðĨâĶðī))) |
|
Theorem | qliftf 6619* |
The domain and codomain of the function ðđ. (Contributed by Mario
Carneiro, 23-Dec-2016.)
|
âĒ ðđ = ran (ðĨ â ð âĶ âĻ[ðĨ]ð
, ðīâĐ) & âĒ ((ð ⧠ðĨ â ð) â ðī â ð)
& âĒ (ð â ð
Er ð)
& âĒ (ð â ð â V) â âĒ (ð â (Fun ðđ â ðđ:(ð / ð
)âķð)) |
|
Theorem | qliftval 6620* |
The value of the function ðđ. (Contributed by Mario Carneiro,
23-Dec-2016.)
|
âĒ ðđ = ran (ðĨ â ð âĶ âĻ[ðĨ]ð
, ðīâĐ) & âĒ ((ð ⧠ðĨ â ð) â ðī â ð)
& âĒ (ð â ð
Er ð)
& âĒ (ð â ð â V) & âĒ (ðĨ = ðķ â ðī = ðĩ)
& âĒ (ð â Fun ðđ) â âĒ ((ð ⧠ðķ â ð) â (ðđâ[ðķ]ð
) = ðĩ) |
|
Theorem | ecoptocl 6621* |
Implicit substitution of class for equivalence class of ordered pair.
(Contributed by NM, 23-Jul-1995.)
|
âĒ ð = ((ðĩ Ã ðķ) / ð
)
& âĒ ([âĻðĨ, ðĶâĐ]ð
= ðī â (ð â ð)) & âĒ ((ðĨ â ðĩ ⧠ðĶ â ðķ) â ð) â âĒ (ðī â ð â ð) |
|
Theorem | 2ecoptocl 6622* |
Implicit substitution of classes for equivalence classes of ordered
pairs. (Contributed by NM, 23-Jul-1995.)
|
âĒ ð = ((ðķ Ã ð·) / ð
)
& âĒ ([âĻðĨ, ðĶâĐ]ð
= ðī â (ð â ð)) & âĒ ([âĻð§, ðĪâĐ]ð
= ðĩ â (ð â ð)) & âĒ (((ðĨ â ðķ ⧠ðĶ â ð·) ⧠(ð§ â ðķ ⧠ðĪ â ð·)) â ð) â âĒ ((ðī â ð ⧠ðĩ â ð) â ð) |
|
Theorem | 3ecoptocl 6623* |
Implicit substitution of classes for equivalence classes of ordered
pairs. (Contributed by NM, 9-Aug-1995.)
|
âĒ ð = ((ð· Ã ð·) / ð
)
& âĒ ([âĻðĨ, ðĶâĐ]ð
= ðī â (ð â ð)) & âĒ ([âĻð§, ðĪâĐ]ð
= ðĩ â (ð â ð)) & âĒ ([âĻðĢ, ðĒâĐ]ð
= ðķ â (ð â ð)) & âĒ (((ðĨ â ð· ⧠ðĶ â ð·) ⧠(ð§ â ð· ⧠ðĪ â ð·) ⧠(ðĢ â ð· ⧠ðĒ â ð·)) â ð) â âĒ ((ðī â ð ⧠ðĩ â ð ⧠ðķ â ð) â ð) |
|
Theorem | brecop 6624* |
Binary relation on a quotient set. Lemma for real number construction.
(Contributed by NM, 29-Jan-1996.)
|
âĒ âž â
V
& âĒ âž Er (ðš Ã ðš)
& âĒ ðŧ = ((ðš Ã ðš) / âž ) & âĒ âĪ =
{âĻðĨ, ðĶâĐ âĢ ((ðĨ â ðŧ ⧠ðĶ â ðŧ) ⧠âð§âðĪâðĢâðĒ((ðĨ = [âĻð§, ðĪâĐ] ➠⧠ðĶ = [âĻðĢ, ðĒâĐ] âž ) ⧠ð))} & âĒ ((((ð§ â ðš ⧠ðĪ â ðš) ⧠(ðī â ðš ⧠ðĩ â ðš)) ⧠((ðĢ â ðš ⧠ðĒ â ðš) ⧠(ðķ â ðš ⧠ð· â ðš))) â (([âĻð§, ðĪâĐ] âž = [âĻðī, ðĩâĐ] ➠⧠[âĻðĢ, ðĒâĐ] âž = [âĻðķ, ð·âĐ] âž ) â (ð â ð))) â âĒ (((ðī â ðš ⧠ðĩ â ðš) ⧠(ðķ â ðš ⧠ð· â ðš)) â ([âĻðī, ðĩâĐ] âž âĪ [âĻðķ, ð·âĐ] âž â ð)) |
|
Theorem | eroveu 6625* |
Lemma for eroprf 6627. (Contributed by Jeff Madsen, 10-Jun-2010.)
(Revised by Mario Carneiro, 9-Jul-2014.)
|
âĒ ð― = (ðī / ð
)
& âĒ ðū = (ðĩ / ð)
& âĒ (ð â ð â ð)
& âĒ (ð â ð
Er ð)
& âĒ (ð â ð Er ð)
& âĒ (ð â ð Er ð)
& âĒ (ð â ðī â ð)
& âĒ (ð â ðĩ â ð)
& âĒ (ð â ðķ â ð)
& âĒ (ð â + :(ðī Ã ðĩ)âķðķ)
& âĒ ((ð ⧠((ð â ðī ⧠ð â ðī) ⧠(ðĄ â ðĩ ⧠ðĒ â ðĩ))) â ((ðð
ð ⧠ðĄððĒ) â (ð + ðĄ)ð(ð + ðĒ))) â âĒ ((ð ⧠(ð â ð― ⧠ð â ðū)) â â!ð§âð â ðī âð â ðĩ ((ð = [ð]ð
⧠ð = [ð]ð) ⧠ð§ = [(ð + ð)]ð)) |
|
Theorem | erovlem 6626* |
Lemma for eroprf 6627. (Contributed by Jeff Madsen, 10-Jun-2010.)
(Revised by Mario Carneiro, 30-Dec-2014.)
|
âĒ ð― = (ðī / ð
)
& âĒ ðū = (ðĩ / ð)
& âĒ (ð â ð â ð)
& âĒ (ð â ð
Er ð)
& âĒ (ð â ð Er ð)
& âĒ (ð â ð Er ð)
& âĒ (ð â ðī â ð)
& âĒ (ð â ðĩ â ð)
& âĒ (ð â ðķ â ð)
& âĒ (ð â + :(ðī Ã ðĩ)âķðķ)
& âĒ ((ð ⧠((ð â ðī ⧠ð â ðī) ⧠(ðĄ â ðĩ ⧠ðĒ â ðĩ))) â ((ðð
ð ⧠ðĄððĒ) â (ð + ðĄ)ð(ð + ðĒ))) & âĒ âĻĢ =
{âĻâĻðĨ, ðĶâĐ, ð§âĐ âĢ âð â ðī âð â ðĩ ((ðĨ = [ð]ð
⧠ðĶ = [ð]ð) ⧠ð§ = [(ð + ð)]ð)} â âĒ (ð â âĻĢ = (ðĨ â ð―, ðĶ â ðū âĶ (âĐð§âð â ðī âð â ðĩ ((ðĨ = [ð]ð
⧠ðĶ = [ð]ð) ⧠ð§ = [(ð + ð)]ð)))) |
|
Theorem | eroprf 6627* |
Functionality of an operation defined on equivalence classes.
(Contributed by Jeff Madsen, 10-Jun-2010.) (Revised by Mario Carneiro,
30-Dec-2014.)
|
âĒ ð― = (ðī / ð
)
& âĒ ðū = (ðĩ / ð)
& âĒ (ð â ð â ð)
& âĒ (ð â ð
Er ð)
& âĒ (ð â ð Er ð)
& âĒ (ð â ð Er ð)
& âĒ (ð â ðī â ð)
& âĒ (ð â ðĩ â ð)
& âĒ (ð â ðķ â ð)
& âĒ (ð â + :(ðī Ã ðĩ)âķðķ)
& âĒ ((ð ⧠((ð â ðī ⧠ð â ðī) ⧠(ðĄ â ðĩ ⧠ðĒ â ðĩ))) â ((ðð
ð ⧠ðĄððĒ) â (ð + ðĄ)ð(ð + ðĒ))) & âĒ âĻĢ =
{âĻâĻðĨ, ðĶâĐ, ð§âĐ âĢ âð â ðī âð â ðĩ ((ðĨ = [ð]ð
⧠ðĶ = [ð]ð) ⧠ð§ = [(ð + ð)]ð)} & âĒ (ð â ð
â ð)
& âĒ (ð â ð â ð)
& âĒ ðŋ = (ðķ / ð) â âĒ (ð â âĻĢ :(ð― Ã ðū)âķðŋ) |
|
Theorem | eroprf2 6628* |
Functionality of an operation defined on equivalence classes.
(Contributed by Jeff Madsen, 10-Jun-2010.)
|
âĒ ð― = (ðī / âž ) & âĒ âĻĢ =
{âĻâĻðĨ, ðĶâĐ, ð§âĐ âĢ âð â ðī âð â ðī ((ðĨ = [ð] ➠⧠ðĶ = [ð] âž ) ⧠ð§ = [(ð + ð)] âž )} & âĒ (ð â âž â ð) & âĒ (ð â âž Er ð) & âĒ (ð â ðī â ð)
& âĒ (ð â + :(ðī Ã ðī)âķðī)
& âĒ ((ð ⧠((ð â ðī ⧠ð â ðī) ⧠(ðĄ â ðī ⧠ðĒ â ðī))) â ((ð âž ð ⧠ðĄ âž ðĒ) â (ð + ðĄ) âž (ð + ðĒ))) â âĒ (ð â âĻĢ :(ð― à ð―)âķð―) |
|
Theorem | ecopoveq 6629* |
This is the first of several theorems about equivalence relations of
the kind used in construction of fractions and signed reals, involving
operations on equivalent classes of ordered pairs. This theorem
expresses the relation âž (specified
by the hypothesis) in terms
of its operation ðđ. (Contributed by NM, 16-Aug-1995.)
|
âĒ âž = {âĻðĨ, ðĶâĐ âĢ ((ðĨ â (ð à ð) ⧠ðĶ â (ð à ð)) ⧠âð§âðĪâðĢâðĒ((ðĨ = âĻð§, ðĪâР⧠ðĶ = âĻðĢ, ðĒâĐ) ⧠(ð§ + ðĒ) = (ðĪ + ðĢ)))} â âĒ (((ðī â ð ⧠ðĩ â ð) ⧠(ðķ â ð ⧠ð· â ð)) â (âĻðī, ðĩâĐ âž âĻðķ, ð·âĐ â (ðī + ð·) = (ðĩ + ðķ))) |
|
Theorem | ecopovsym 6630* |
Assuming the operation ðđ is commutative, show that the
relation
âž, specified
by the first hypothesis, is symmetric.
(Contributed by NM, 27-Aug-1995.) (Revised by Mario Carneiro,
26-Apr-2015.)
|
âĒ âž = {âĻðĨ, ðĶâĐ âĢ ((ðĨ â (ð à ð) ⧠ðĶ â (ð à ð)) ⧠âð§âðĪâðĢâðĒ((ðĨ = âĻð§, ðĪâР⧠ðĶ = âĻðĢ, ðĒâĐ) ⧠(ð§ + ðĒ) = (ðĪ + ðĢ)))} & âĒ (ðĨ + ðĶ) = (ðĶ + ðĨ) â âĒ (ðī âž ðĩ â ðĩ âž ðī) |
|
Theorem | ecopovtrn 6631* |
Assuming that operation ðđ is commutative (second hypothesis),
closed (third hypothesis), associative (fourth hypothesis), and has
the cancellation property (fifth hypothesis), show that the relation
âž, specified
by the first hypothesis, is transitive.
(Contributed by NM, 11-Feb-1996.) (Revised by Mario Carneiro,
26-Apr-2015.)
|
âĒ âž = {âĻðĨ, ðĶâĐ âĢ ((ðĨ â (ð à ð) ⧠ðĶ â (ð à ð)) ⧠âð§âðĪâðĢâðĒ((ðĨ = âĻð§, ðĪâР⧠ðĶ = âĻðĢ, ðĒâĐ) ⧠(ð§ + ðĒ) = (ðĪ + ðĢ)))} & âĒ (ðĨ + ðĶ) = (ðĶ + ðĨ)
& âĒ ((ðĨ â ð ⧠ðĶ â ð) â (ðĨ + ðĶ) â ð)
& âĒ ((ðĨ + ðĶ) + ð§) = (ðĨ + (ðĶ + ð§))
& âĒ ((ðĨ â ð ⧠ðĶ â ð) â ((ðĨ + ðĶ) = (ðĨ + ð§) â ðĶ = ð§)) â âĒ ((ðī âž ðĩ ⧠ðĩ âž ðķ) â ðī âž ðķ) |
|
Theorem | ecopover 6632* |
Assuming that operation ðđ is commutative (second hypothesis),
closed (third hypothesis), associative (fourth hypothesis), and has
the cancellation property (fifth hypothesis), show that the relation
âž, specified
by the first hypothesis, is an equivalence
relation. (Contributed by NM, 16-Feb-1996.) (Revised by Mario
Carneiro, 12-Aug-2015.)
|
âĒ âž = {âĻðĨ, ðĶâĐ âĢ ((ðĨ â (ð à ð) ⧠ðĶ â (ð à ð)) ⧠âð§âðĪâðĢâðĒ((ðĨ = âĻð§, ðĪâР⧠ðĶ = âĻðĢ, ðĒâĐ) ⧠(ð§ + ðĒ) = (ðĪ + ðĢ)))} & âĒ (ðĨ + ðĶ) = (ðĶ + ðĨ)
& âĒ ((ðĨ â ð ⧠ðĶ â ð) â (ðĨ + ðĶ) â ð)
& âĒ ((ðĨ + ðĶ) + ð§) = (ðĨ + (ðĶ + ð§))
& âĒ ((ðĨ â ð ⧠ðĶ â ð) â ((ðĨ + ðĶ) = (ðĨ + ð§) â ðĶ = ð§)) â âĒ âž Er (ð à ð) |
|
Theorem | ecopovsymg 6633* |
Assuming the operation ðđ is commutative, show that the
relation
âž, specified
by the first hypothesis, is symmetric.
(Contributed by Jim Kingdon, 1-Sep-2019.)
|
âĒ âž = {âĻðĨ, ðĶâĐ âĢ ((ðĨ â (ð à ð) ⧠ðĶ â (ð à ð)) ⧠âð§âðĪâðĢâðĒ((ðĨ = âĻð§, ðĪâР⧠ðĶ = âĻðĢ, ðĒâĐ) ⧠(ð§ + ðĒ) = (ðĪ + ðĢ)))} & âĒ ((ðĨ â ð ⧠ðĶ â ð) â (ðĨ + ðĶ) = (ðĶ + ðĨ)) â âĒ (ðī âž ðĩ â ðĩ âž ðī) |
|
Theorem | ecopovtrng 6634* |
Assuming that operation ðđ is commutative (second hypothesis),
closed (third hypothesis), associative (fourth hypothesis), and has
the cancellation property (fifth hypothesis), show that the relation
âž, specified
by the first hypothesis, is transitive.
(Contributed by Jim Kingdon, 1-Sep-2019.)
|
âĒ âž = {âĻðĨ, ðĶâĐ âĢ ((ðĨ â (ð à ð) ⧠ðĶ â (ð à ð)) ⧠âð§âðĪâðĢâðĒ((ðĨ = âĻð§, ðĪâР⧠ðĶ = âĻðĢ, ðĒâĐ) ⧠(ð§ + ðĒ) = (ðĪ + ðĢ)))} & âĒ ((ðĨ â ð ⧠ðĶ â ð) â (ðĨ + ðĶ) = (ðĶ + ðĨ))
& âĒ ((ðĨ â ð ⧠ðĶ â ð) â (ðĨ + ðĶ) â ð)
& âĒ ((ðĨ â ð ⧠ðĶ â ð ⧠ð§ â ð) â ((ðĨ + ðĶ) + ð§) = (ðĨ + (ðĶ + ð§))) & âĒ ((ðĨ â ð ⧠ðĶ â ð ⧠ð§ â ð) â ((ðĨ + ðĶ) = (ðĨ + ð§) â ðĶ = ð§)) â âĒ ((ðī âž ðĩ ⧠ðĩ âž ðķ) â ðī âž ðķ) |
|
Theorem | ecopoverg 6635* |
Assuming that operation ðđ is commutative (second hypothesis),
closed (third hypothesis), associative (fourth hypothesis), and has
the cancellation property (fifth hypothesis), show that the relation
âž, specified
by the first hypothesis, is an equivalence
relation. (Contributed by Jim Kingdon, 1-Sep-2019.)
|
âĒ âž = {âĻðĨ, ðĶâĐ âĢ ((ðĨ â (ð à ð) ⧠ðĶ â (ð à ð)) ⧠âð§âðĪâðĢâðĒ((ðĨ = âĻð§, ðĪâР⧠ðĶ = âĻðĢ, ðĒâĐ) ⧠(ð§ + ðĒ) = (ðĪ + ðĢ)))} & âĒ ((ðĨ â ð ⧠ðĶ â ð) â (ðĨ + ðĶ) = (ðĶ + ðĨ))
& âĒ ((ðĨ â ð ⧠ðĶ â ð) â (ðĨ + ðĶ) â ð)
& âĒ ((ðĨ â ð ⧠ðĶ â ð ⧠ð§ â ð) â ((ðĨ + ðĶ) + ð§) = (ðĨ + (ðĶ + ð§))) & âĒ ((ðĨ â ð ⧠ðĶ â ð ⧠ð§ â ð) â ((ðĨ + ðĶ) = (ðĨ + ð§) â ðĶ = ð§)) â âĒ âž Er (ð à ð) |
|
Theorem | th3qlem1 6636* |
Lemma for Exercise 44 version of Theorem 3Q of [Enderton] p. 60. The
third hypothesis is the compatibility assumption. (Contributed by NM,
3-Aug-1995.) (Revised by Mario Carneiro, 9-Jul-2014.)
|
âĒ âž Er ð & âĒ (((ðĶ â ð ⧠ðĪ â ð) ⧠(ð§ â ð ⧠ðĢ â ð)) â ((ðĶ âž ðĪ ⧠ð§ âž ðĢ) â (ðĶ + ð§) âž (ðĪ + ðĢ))) â âĒ ((ðī â (ð / âž ) ⧠ðĩ â (ð / âž )) â
â*ðĨâðĶâð§((ðī = [ðĶ] ➠⧠ðĩ = [ð§] âž ) ⧠ðĨ = [(ðĶ + ð§)] âž
)) |
|
Theorem | th3qlem2 6637* |
Lemma for Exercise 44 version of Theorem 3Q of [Enderton] p. 60,
extended to operations on ordered pairs. The fourth hypothesis is the
compatibility assumption. (Contributed by NM, 4-Aug-1995.) (Revised by
Mario Carneiro, 12-Aug-2015.)
|
âĒ âž â
V
& âĒ âž Er (ð Ã ð)
& âĒ ((((ðĪ â ð ⧠ðĢ â ð) ⧠(ðĒ â ð ⧠ðĄ â ð)) ⧠((ð â ð ⧠ð â ð) ⧠(ð â ð ⧠â â ð))) â ((âĻðĪ, ðĢâĐ âž âĻðĒ, ðĄâР⧠âĻð , ðâĐ âž âĻð, ââĐ) â (âĻðĪ, ðĢâĐ + âĻð , ðâĐ) âž (âĻðĒ, ðĄâĐ + âĻð, ââĐ))) â âĒ ((ðī â ((ð à ð) / âž ) ⧠ðĩ â ((ð à ð) / âž )) â
â*ð§âðĪâðĢâðĒâðĄ((ðī = [âĻðĪ, ðĢâĐ] ➠⧠ðĩ = [âĻðĒ, ðĄâĐ] âž ) ⧠ð§ = [(âĻðĪ, ðĢâĐ + âĻðĒ, ðĄâĐ)] âž
)) |
|
Theorem | th3qcor 6638* |
Corollary of Theorem 3Q of [Enderton] p. 60.
(Contributed by NM,
12-Nov-1995.) (Revised by David Abernethy, 4-Jun-2013.)
|
âĒ âž â
V
& âĒ âž Er (ð Ã ð)
& âĒ ((((ðĪ â ð ⧠ðĢ â ð) ⧠(ðĒ â ð ⧠ðĄ â ð)) ⧠((ð â ð ⧠ð â ð) ⧠(ð â ð ⧠â â ð))) â ((âĻðĪ, ðĢâĐ âž âĻðĒ, ðĄâР⧠âĻð , ðâĐ âž âĻð, ââĐ) â (âĻðĪ, ðĢâĐ + âĻð , ðâĐ) âž (âĻðĒ, ðĄâĐ + âĻð, ââĐ))) & âĒ ðš = {âĻâĻðĨ, ðĶâĐ, ð§âĐ âĢ ((ðĨ â ((ð à ð) / âž ) ⧠ðĶ â ((ð à ð) / âž )) â§
âðĪâðĢâðĒâðĄ((ðĨ = [âĻðĪ, ðĢâĐ] ➠⧠ðĶ = [âĻðĒ, ðĄâĐ] âž ) ⧠ð§ = [(âĻðĪ, ðĢâĐ + âĻðĒ, ðĄâĐ)] âž
))} â âĒ Fun ðš |
|
Theorem | th3q 6639* |
Theorem 3Q of [Enderton] p. 60, extended to
operations on ordered
pairs. (Contributed by NM, 4-Aug-1995.) (Revised by Mario Carneiro,
19-Dec-2013.)
|
âĒ âž â
V
& âĒ âž Er (ð Ã ð)
& âĒ ((((ðĪ â ð ⧠ðĢ â ð) ⧠(ðĒ â ð ⧠ðĄ â ð)) ⧠((ð â ð ⧠ð â ð) ⧠(ð â ð ⧠â â ð))) â ((âĻðĪ, ðĢâĐ âž âĻðĒ, ðĄâР⧠âĻð , ðâĐ âž âĻð, ââĐ) â (âĻðĪ, ðĢâĐ + âĻð , ðâĐ) âž (âĻðĒ, ðĄâĐ + âĻð, ââĐ))) & âĒ ðš = {âĻâĻðĨ, ðĶâĐ, ð§âĐ âĢ ((ðĨ â ((ð à ð) / âž ) ⧠ðĶ â ((ð à ð) / âž )) â§
âðĪâðĢâðĒâðĄ((ðĨ = [âĻðĪ, ðĢâĐ] ➠⧠ðĶ = [âĻðĒ, ðĄâĐ] âž ) ⧠ð§ = [(âĻðĪ, ðĢâĐ + âĻðĒ, ðĄâĐ)] âž
))} â âĒ (((ðī â ð ⧠ðĩ â ð) ⧠(ðķ â ð ⧠ð· â ð)) â ([âĻðī, ðĩâĐ] âž ðš[âĻðķ, ð·âĐ] âž ) = [(âĻðī, ðĩâĐ + âĻðķ, ð·âĐ)] âž ) |
|
Theorem | oviec 6640* |
Express an operation on equivalence classes of ordered pairs in terms of
equivalence class of operations on ordered pairs. See iset.mm for
additional comments describing the hypotheses. (Unnecessary distinct
variable restrictions were removed by David Abernethy, 4-Jun-2013.)
(Contributed by NM, 6-Aug-1995.) (Revised by Mario Carneiro,
4-Jun-2013.)
|
âĒ (((ðī â ð ⧠ðĩ â ð) ⧠(ðķ â ð ⧠ð· â ð)) â ðŧ â (ð à ð)) & âĒ (((ð â ð ⧠ð â ð) ⧠(ð â ð ⧠â â ð)) â ðū â (ð à ð)) & âĒ (((ð â ð ⧠ð â ð) ⧠(ðĄ â ð ⧠ð â ð)) â ðŋ â (ð à ð)) & âĒ âž
â V
& âĒ âž Er (ð Ã ð)
& âĒ âž = {âĻðĨ, ðĶâĐ âĢ ((ðĨ â (ð à ð) ⧠ðĶ â (ð à ð)) ⧠âð§âðĪâðĢâðĒ((ðĨ = âĻð§, ðĪâР⧠ðĶ = âĻðĢ, ðĒâĐ) ⧠ð))} & âĒ (((ð§ = ð ⧠ðĪ = ð) ⧠(ðĢ = ð ⧠ðĒ = ð)) â (ð â ð)) & âĒ (((ð§ = ð ⧠ðĪ = â) ⧠(ðĢ = ðĄ ⧠ðĒ = ð )) â (ð â ð)) & âĒ + =
{âĻâĻðĨ, ðĶâĐ, ð§âĐ âĢ ((ðĨ â (ð à ð) ⧠ðĶ â (ð à ð)) ⧠âðĪâðĢâðĒâð((ðĨ = âĻðĪ, ðĢâР⧠ðĶ = âĻðĒ, ðâĐ) ⧠ð§ = ð―))} & âĒ (((ðĪ = ð ⧠ðĢ = ð) ⧠(ðĒ = ð ⧠ð = â)) â ð― = ðū)
& âĒ (((ðĪ = ð ⧠ðĢ = ð) ⧠(ðĒ = ðĄ ⧠ð = ð )) â ð― = ðŋ)
& âĒ (((ðĪ = ðī ⧠ðĢ = ðĩ) ⧠(ðĒ = ðķ ⧠ð = ð·)) â ð― = ðŧ)
& âĒ âĻĢ =
{âĻâĻðĨ, ðĶâĐ, ð§âĐ âĢ ((ðĨ â ð ⧠ðĶ â ð) ⧠âðâðâðâð((ðĨ = [âĻð, ðâĐ] ➠⧠ðĶ = [âĻð, ðâĐ] âž ) ⧠ð§ = [(âĻð, ðâĐ + âĻð, ðâĐ)] âž ))} & âĒ ð = ((ð à ð) / âž ) & âĒ ((((ð â ð ⧠ð â ð) ⧠(ð â ð ⧠ð â ð)) ⧠((ð â ð ⧠â â ð) ⧠(ðĄ â ð ⧠ð â ð))) â ((ð ⧠ð) â ðū âž ðŋ)) â âĒ (((ðī â ð ⧠ðĩ â ð) ⧠(ðķ â ð ⧠ð· â ð)) â ([âĻðī, ðĩâĐ] âž âĻĢ [âĻðķ, ð·âĐ] âž ) = [ðŧ] âž ) |
|
Theorem | ecovcom 6641* |
Lemma used to transfer a commutative law via an equivalence relation.
Most uses will want ecovicom 6642 instead. (Contributed by NM,
29-Aug-1995.) (Revised by David Abernethy, 4-Jun-2013.)
|
âĒ ðķ = ((ð à ð) / âž ) & âĒ (((ðĨ â ð ⧠ðĶ â ð) ⧠(ð§ â ð ⧠ðĪ â ð)) â ([âĻðĨ, ðĶâĐ] âž + [âĻð§, ðĪâĐ] âž ) = [âĻð·, ðšâĐ] âž ) & âĒ (((ð§ â ð ⧠ðĪ â ð) ⧠(ðĨ â ð ⧠ðĶ â ð)) â ([âĻð§, ðĪâĐ] âž + [âĻðĨ, ðĶâĐ] âž ) = [âĻðŧ, ð―âĐ] âž ) & âĒ ð· = ðŧ
& âĒ ðš = ð― â âĒ ((ðī â ðķ ⧠ðĩ â ðķ) â (ðī + ðĩ) = (ðĩ + ðī)) |
|
Theorem | ecovicom 6642* |
Lemma used to transfer a commutative law via an equivalence relation.
(Contributed by Jim Kingdon, 15-Sep-2019.)
|
âĒ ðķ = ((ð à ð) / âž ) & âĒ (((ðĨ â ð ⧠ðĶ â ð) ⧠(ð§ â ð ⧠ðĪ â ð)) â ([âĻðĨ, ðĶâĐ] âž + [âĻð§, ðĪâĐ] âž ) = [âĻð·, ðšâĐ] âž ) & âĒ (((ð§ â ð ⧠ðĪ â ð) ⧠(ðĨ â ð ⧠ðĶ â ð)) â ([âĻð§, ðĪâĐ] âž + [âĻðĨ, ðĶâĐ] âž ) = [âĻðŧ, ð―âĐ] âž ) & âĒ (((ðĨ â ð ⧠ðĶ â ð) ⧠(ð§ â ð ⧠ðĪ â ð)) â ð· = ðŧ)
& âĒ (((ðĨ â ð ⧠ðĶ â ð) ⧠(ð§ â ð ⧠ðĪ â ð)) â ðš = ð―) â âĒ ((ðī â ðķ ⧠ðĩ â ðķ) â (ðī + ðĩ) = (ðĩ + ðī)) |
|
Theorem | ecovass 6643* |
Lemma used to transfer an associative law via an equivalence relation.
In most cases ecoviass 6644 will be more useful. (Contributed by NM,
31-Aug-1995.) (Revised by David Abernethy, 4-Jun-2013.)
|
âĒ ð· = ((ð à ð) / âž ) & âĒ (((ðĨ â ð ⧠ðĶ â ð) ⧠(ð§ â ð ⧠ðĪ â ð)) â ([âĻðĨ, ðĶâĐ] âž + [âĻð§, ðĪâĐ] âž ) = [âĻðš, ðŧâĐ] âž ) & âĒ (((ð§ â ð ⧠ðĪ â ð) ⧠(ðĢ â ð ⧠ðĒ â ð)) â ([âĻð§, ðĪâĐ] âž + [âĻðĢ, ðĒâĐ] âž ) = [âĻð, ðâĐ] âž ) & âĒ (((ðš â ð ⧠ðŧ â ð) ⧠(ðĢ â ð ⧠ðĒ â ð)) â ([âĻðš, ðŧâĐ] âž + [âĻðĢ, ðĒâĐ] âž ) = [âĻð―, ðūâĐ] âž ) & âĒ (((ðĨ â ð ⧠ðĶ â ð) ⧠(ð â ð ⧠ð â ð)) â ([âĻðĨ, ðĶâĐ] âž + [âĻð, ðâĐ] âž ) = [âĻðŋ, ðâĐ] âž ) & âĒ (((ðĨ â ð ⧠ðĶ â ð) ⧠(ð§ â ð ⧠ðĪ â ð)) â (ðš â ð ⧠ðŧ â ð)) & âĒ (((ð§ â ð ⧠ðĪ â ð) ⧠(ðĢ â ð ⧠ðĒ â ð)) â (ð â ð ⧠ð â ð)) & âĒ ð― = ðŋ
& âĒ ðū = ð â âĒ ((ðī â ð· ⧠ðĩ â ð· ⧠ðķ â ð·) â ((ðī + ðĩ) + ðķ) = (ðī + (ðĩ + ðķ))) |
|
Theorem | ecoviass 6644* |
Lemma used to transfer an associative law via an equivalence relation.
(Contributed by Jim Kingdon, 16-Sep-2019.)
|
âĒ ð· = ((ð à ð) / âž ) & âĒ (((ðĨ â ð ⧠ðĶ â ð) ⧠(ð§ â ð ⧠ðĪ â ð)) â ([âĻðĨ, ðĶâĐ] âž + [âĻð§, ðĪâĐ] âž ) = [âĻðš, ðŧâĐ] âž ) & âĒ (((ð§ â ð ⧠ðĪ â ð) ⧠(ðĢ â ð ⧠ðĒ â ð)) â ([âĻð§, ðĪâĐ] âž + [âĻðĢ, ðĒâĐ] âž ) = [âĻð, ðâĐ] âž ) & âĒ (((ðš â ð ⧠ðŧ â ð) ⧠(ðĢ â ð ⧠ðĒ â ð)) â ([âĻðš, ðŧâĐ] âž + [âĻðĢ, ðĒâĐ] âž ) = [âĻð―, ðūâĐ] âž ) & âĒ (((ðĨ â ð ⧠ðĶ â ð) ⧠(ð â ð ⧠ð â ð)) â ([âĻðĨ, ðĶâĐ] âž + [âĻð, ðâĐ] âž ) = [âĻðŋ, ðâĐ] âž ) & âĒ (((ðĨ â ð ⧠ðĶ â ð) ⧠(ð§ â ð ⧠ðĪ â ð)) â (ðš â ð ⧠ðŧ â ð)) & âĒ (((ð§ â ð ⧠ðĪ â ð) ⧠(ðĢ â ð ⧠ðĒ â ð)) â (ð â ð ⧠ð â ð)) & âĒ (((ðĨ â ð ⧠ðĶ â ð) ⧠(ð§ â ð ⧠ðĪ â ð) ⧠(ðĢ â ð ⧠ðĒ â ð)) â ð― = ðŋ)
& âĒ (((ðĨ â ð ⧠ðĶ â ð) ⧠(ð§ â ð ⧠ðĪ â ð) ⧠(ðĢ â ð ⧠ðĒ â ð)) â ðū = ð) â âĒ ((ðī â ð· ⧠ðĩ â ð· ⧠ðķ â ð·) â ((ðī + ðĩ) + ðķ) = (ðī + (ðĩ + ðķ))) |
|
Theorem | ecovdi 6645* |
Lemma used to transfer a distributive law via an equivalence relation.
Most likely ecovidi 6646 will be more helpful. (Contributed by NM,
2-Sep-1995.) (Revised by David Abernethy, 4-Jun-2013.)
|
âĒ ð· = ((ð à ð) / âž ) & âĒ (((ð§ â ð ⧠ðĪ â ð) ⧠(ðĢ â ð ⧠ðĒ â ð)) â ([âĻð§, ðĪâĐ] âž + [âĻðĢ, ðĒâĐ] âž ) = [âĻð, ðâĐ] âž ) & âĒ (((ðĨ â ð ⧠ðĶ â ð) ⧠(ð â ð ⧠ð â ð)) â ([âĻðĨ, ðĶâĐ] ➠· [âĻð, ðâĐ] âž ) = [âĻðŧ, ð―âĐ] âž ) & âĒ (((ðĨ â ð ⧠ðĶ â ð) ⧠(ð§ â ð ⧠ðĪ â ð)) â ([âĻðĨ, ðĶâĐ] ➠· [âĻð§, ðĪâĐ] âž ) = [âĻð, ðâĐ] âž ) & âĒ (((ðĨ â ð ⧠ðĶ â ð) ⧠(ðĢ â ð ⧠ðĒ â ð)) â ([âĻðĨ, ðĶâĐ] ➠· [âĻðĢ, ðĒâĐ] âž ) = [âĻð, ðâĐ] âž ) & âĒ (((ð â ð ⧠ð â ð) ⧠(ð â ð ⧠ð â ð)) â ([âĻð, ðâĐ] âž + [âĻð, ðâĐ] âž ) = [âĻðū, ðŋâĐ] âž ) & âĒ (((ð§ â ð ⧠ðĪ â ð) ⧠(ðĢ â ð ⧠ðĒ â ð)) â (ð â ð ⧠ð â ð)) & âĒ (((ðĨ â ð ⧠ðĶ â ð) ⧠(ð§ â ð ⧠ðĪ â ð)) â (ð â ð ⧠ð â ð)) & âĒ (((ðĨ â ð ⧠ðĶ â ð) ⧠(ðĢ â ð ⧠ðĒ â ð)) â (ð â ð ⧠ð â ð)) & âĒ ðŧ = ðū
& âĒ ð― = ðŋ â âĒ ((ðī â ð· ⧠ðĩ â ð· ⧠ðķ â ð·) â (ðī · (ðĩ + ðķ)) = ((ðī · ðĩ) + (ðī · ðķ))) |
|
Theorem | ecovidi 6646* |
Lemma used to transfer a distributive law via an equivalence relation.
(Contributed by Jim Kingdon, 17-Sep-2019.)
|
âĒ ð· = ((ð à ð) / âž ) & âĒ (((ð§ â ð ⧠ðĪ â ð) ⧠(ðĢ â ð ⧠ðĒ â ð)) â ([âĻð§, ðĪâĐ] âž + [âĻðĢ, ðĒâĐ] âž ) = [âĻð, ðâĐ] âž ) & âĒ (((ðĨ â ð ⧠ðĶ â ð) ⧠(ð â ð ⧠ð â ð)) â ([âĻðĨ, ðĶâĐ] ➠· [âĻð, ðâĐ] âž ) = [âĻðŧ, ð―âĐ] âž ) & âĒ (((ðĨ â ð ⧠ðĶ â ð) ⧠(ð§ â ð ⧠ðĪ â ð)) â ([âĻðĨ, ðĶâĐ] ➠· [âĻð§, ðĪâĐ] âž ) = [âĻð, ðâĐ] âž ) & âĒ (((ðĨ â ð ⧠ðĶ â ð) ⧠(ðĢ â ð ⧠ðĒ â ð)) â ([âĻðĨ, ðĶâĐ] ➠· [âĻðĢ, ðĒâĐ] âž ) = [âĻð, ðâĐ] âž ) & âĒ (((ð â ð ⧠ð â ð) ⧠(ð â ð ⧠ð â ð)) â ([âĻð, ðâĐ] âž + [âĻð, ðâĐ] âž ) = [âĻðū, ðŋâĐ] âž ) & âĒ (((ð§ â ð ⧠ðĪ â ð) ⧠(ðĢ â ð ⧠ðĒ â ð)) â (ð â ð ⧠ð â ð)) & âĒ (((ðĨ â ð ⧠ðĶ â ð) ⧠(ð§ â ð ⧠ðĪ â ð)) â (ð â ð ⧠ð â ð)) & âĒ (((ðĨ â ð ⧠ðĶ â ð) ⧠(ðĢ â ð ⧠ðĒ â ð)) â (ð â ð ⧠ð â ð)) & âĒ (((ðĨ â ð ⧠ðĶ â ð) ⧠(ð§ â ð ⧠ðĪ â ð) ⧠(ðĢ â ð ⧠ðĒ â ð)) â ðŧ = ðū)
& âĒ (((ðĨ â ð ⧠ðĶ â ð) ⧠(ð§ â ð ⧠ðĪ â ð) ⧠(ðĢ â ð ⧠ðĒ â ð)) â ð― = ðŋ) â âĒ ((ðī â ð· ⧠ðĩ â ð· ⧠ðķ â ð·) â (ðī · (ðĩ + ðķ)) = ((ðī · ðĩ) + (ðī · ðķ))) |
|
2.6.26 The mapping operation
|
|
Syntax | cmap 6647 |
Extend the definition of a class to include the mapping operation. (Read
for ðī
âð ðĩ, "the set of all functions that
map from ðĩ to
ðī.)
|
class âð |
|
Syntax | cpm 6648 |
Extend the definition of a class to include the partial mapping operation.
(Read for ðī âpm ðĩ, "the set of all
partial functions that map from
ðĩ to ðī.)
|
class âpm |
|
Definition | df-map 6649* |
Define the mapping operation or set exponentiation. The set of all
functions that map from ðĩ to ðī is written (ðī
âð ðĩ) (see
mapval 6659). Many authors write ðī followed by ðĩ as a
superscript
for this operation and rely on context to avoid confusion other
exponentiation operations (e.g., Definition 10.42 of [TakeutiZaring]
p. 95). Other authors show ðĩ as a prefixed superscript, which is
read "ðī pre ðĩ " (e.g., definition
of [Enderton] p. 52).
Definition 8.21 of [Eisenberg] p. 125
uses the notation Map(ðĩ,
ðī) for our (ðī âð
ðĩ). The up-arrow is
used by Donald Knuth
for iterated exponentiation (Science 194, 1235-1242, 1976). We
adopt
the first case of his notation (simple exponentiation) and subscript it
with m to distinguish it from other kinds of exponentiation.
(Contributed by NM, 8-Dec-2003.)
|
âĒ âð = (ðĨ â V, ðĶ â V âĶ {ð âĢ ð:ðĶâķðĨ}) |
|
Definition | df-pm 6650* |
Define the partial mapping operation. A partial function from ðĩ to
ðī is a function from a subset of ðĩ to
ðī.
The set of all
partial functions from ðĩ to ðī is written (ðī
âpm ðĩ) (see
pmvalg 6658). A notation for this operation apparently
does not appear in
the literature. We use âpm to distinguish it from the less
general
set exponentiation operation âð (df-map 6649) . See mapsspm 6681 for
its relationship to set exponentiation. (Contributed by NM,
15-Nov-2007.)
|
âĒ âpm = (ðĨ â V, ðĶ â V âĶ {ð â ðŦ (ðĶ Ã ðĨ) âĢ Fun ð}) |
|
Theorem | mapprc 6651* |
When ðī is a proper class, the class of all
functions mapping ðī
to ðĩ is empty. Exercise 4.41 of [Mendelson] p. 255. (Contributed
by NM, 8-Dec-2003.)
|
âĒ (ÂŽ ðī â V â {ð âĢ ð:ðīâķðĩ} = â
) |
|
Theorem | pmex 6652* |
The class of all partial functions from one set to another is a set.
(Contributed by NM, 15-Nov-2007.)
|
âĒ ((ðī â ðķ ⧠ðĩ â ð·) â {ð âĢ (Fun ð ⧠ð â (ðī à ðĩ))} â V) |
|
Theorem | mapex 6653* |
The class of all functions mapping one set to another is a set. Remark
after Definition 10.24 of [Kunen] p. 31.
(Contributed by Raph Levien,
4-Dec-2003.)
|
âĒ ((ðī â ðķ ⧠ðĩ â ð·) â {ð âĢ ð:ðīâķðĩ} â V) |
|
Theorem | fnmap 6654 |
Set exponentiation has a universal domain. (Contributed by NM,
8-Dec-2003.) (Revised by Mario Carneiro, 8-Sep-2013.)
|
âĒ âð Fn (V Ã
V) |
|
Theorem | fnpm 6655 |
Partial function exponentiation has a universal domain. (Contributed by
Mario Carneiro, 14-Nov-2013.)
|
âĒ âpm Fn (V Ã
V) |
|
Theorem | reldmmap 6656 |
Set exponentiation is a well-behaved binary operator. (Contributed by
Stefan O'Rear, 27-Feb-2015.)
|
âĒ Rel dom
âð |
|
Theorem | mapvalg 6657* |
The value of set exponentiation. (ðī âð ðĩ) is the set of all
functions that map from ðĩ to ðī. Definition 10.24 of
[Kunen]
p. 24. (Contributed by NM, 8-Dec-2003.) (Revised by Mario Carneiro,
8-Sep-2013.)
|
âĒ ((ðī â ðķ ⧠ðĩ â ð·) â (ðī âð ðĩ) = {ð âĢ ð:ðĩâķðī}) |
|
Theorem | pmvalg 6658* |
The value of the partial mapping operation. (ðī âpm ðĩ) is the set
of all partial functions that map from ðĩ to ðī.
(Contributed by
NM, 15-Nov-2007.) (Revised by Mario Carneiro, 8-Sep-2013.)
|
âĒ ((ðī â ðķ ⧠ðĩ â ð·) â (ðī âpm ðĩ) = {ð â ðŦ (ðĩ à ðī) âĢ Fun ð}) |
|
Theorem | mapval 6659* |
The value of set exponentiation (inference version). (ðī âð
ðĩ) is
the set of all functions that map from ðĩ to ðī.
Definition
10.24 of [Kunen] p. 24. (Contributed by
NM, 8-Dec-2003.)
|
âĒ ðī â V & âĒ ðĩ â
V â âĒ (ðī âð ðĩ) = {ð âĢ ð:ðĩâķðī} |
|
Theorem | elmapg 6660 |
Membership relation for set exponentiation. (Contributed by NM,
17-Oct-2006.) (Revised by Mario Carneiro, 15-Nov-2014.)
|
âĒ ((ðī â ð ⧠ðĩ â ð) â (ðķ â (ðī âð ðĩ) â ðķ:ðĩâķðī)) |
|
Theorem | elmapd 6661 |
Deduction form of elmapg 6660. (Contributed by BJ, 11-Apr-2020.)
|
âĒ (ð â ðī â ð)
& âĒ (ð â ðĩ â ð) â âĒ (ð â (ðķ â (ðī âð ðĩ) â ðķ:ðĩâķðī)) |
|
Theorem | mapdm0 6662 |
The empty set is the only map with empty domain. (Contributed by Glauco
Siliprandi, 11-Oct-2020.) (Proof shortened by Thierry Arnoux,
3-Dec-2021.)
|
âĒ (ðĩ â ð â (ðĩ âð â
) =
{â
}) |
|
Theorem | elpmg 6663 |
The predicate "is a partial function". (Contributed by Mario
Carneiro,
14-Nov-2013.)
|
âĒ ((ðī â ð ⧠ðĩ â ð) â (ðķ â (ðī âpm ðĩ) â (Fun ðķ ⧠ðķ â (ðĩ à ðī)))) |
|
Theorem | elpm2g 6664 |
The predicate "is a partial function". (Contributed by NM,
31-Dec-2013.)
|
âĒ ((ðī â ð ⧠ðĩ â ð) â (ðđ â (ðī âpm ðĩ) â (ðđ:dom ðđâķðī ⧠dom ðđ â ðĩ))) |
|
Theorem | elpm2r 6665 |
Sufficient condition for being a partial function. (Contributed by NM,
31-Dec-2013.)
|
âĒ (((ðī â ð ⧠ðĩ â ð) ⧠(ðđ:ðķâķðī ⧠ðķ â ðĩ)) â ðđ â (ðī âpm ðĩ)) |
|
Theorem | elpmi 6666 |
A partial function is a function. (Contributed by Mario Carneiro,
15-Sep-2015.)
|
âĒ (ðđ â (ðī âpm ðĩ) â (ðđ:dom ðđâķðī ⧠dom ðđ â ðĩ)) |
|
Theorem | pmfun 6667 |
A partial function is a function. (Contributed by Mario Carneiro,
30-Jan-2014.) (Revised by Mario Carneiro, 26-Apr-2015.)
|
âĒ (ðđ â (ðī âpm ðĩ) â Fun ðđ) |
|
Theorem | elmapex 6668 |
Eliminate antecedent for mapping theorems: domain can be taken to be a
set. (Contributed by Stefan O'Rear, 8-Oct-2014.)
|
âĒ (ðī â (ðĩ âð ðķ) â (ðĩ â V ⧠ðķ â V)) |
|
Theorem | elmapi 6669 |
A mapping is a function, forward direction only with superfluous
antecedent removed. (Contributed by Stefan O'Rear, 10-Oct-2014.)
|
âĒ (ðī â (ðĩ âð ðķ) â ðī:ðķâķðĩ) |
|
Theorem | elmapfn 6670 |
A mapping is a function with the appropriate domain. (Contributed by AV,
6-Apr-2019.)
|
âĒ (ðī â (ðĩ âð ðķ) â ðī Fn ðķ) |
|
Theorem | elmapfun 6671 |
A mapping is always a function. (Contributed by Stefan O'Rear,
9-Oct-2014.) (Revised by Stefan O'Rear, 5-May-2015.)
|
âĒ (ðī â (ðĩ âð ðķ) â Fun ðī) |
|
Theorem | elmapssres 6672 |
A restricted mapping is a mapping. (Contributed by Stefan O'Rear,
9-Oct-2014.) (Revised by Mario Carneiro, 5-May-2015.)
|
âĒ ((ðī â (ðĩ âð ðķ) ⧠ð· â ðķ) â (ðī âū ð·) â (ðĩ âð ð·)) |
|
Theorem | fpmg 6673 |
A total function is a partial function. (Contributed by Mario Carneiro,
31-Dec-2013.)
|
âĒ ((ðī â ð ⧠ðĩ â ð ⧠ðđ:ðīâķðĩ) â ðđ â (ðĩ âpm ðī)) |
|
Theorem | pmss12g 6674 |
Subset relation for the set of partial functions. (Contributed by Mario
Carneiro, 31-Dec-2013.)
|
âĒ (((ðī â ðķ ⧠ðĩ â ð·) ⧠(ðķ â ð ⧠ð· â ð)) â (ðī âpm ðĩ) â (ðķ âpm ð·)) |
|
Theorem | pmresg 6675 |
Elementhood of a restricted function in the set of partial functions.
(Contributed by Mario Carneiro, 31-Dec-2013.)
|
âĒ ((ðĩ â ð ⧠ðđ â (ðī âpm ðķ)) â (ðđ âū ðĩ) â (ðī âpm ðĩ)) |
|
Theorem | elmap 6676 |
Membership relation for set exponentiation. (Contributed by NM,
8-Dec-2003.)
|
âĒ ðī â V & âĒ ðĩ â
V â âĒ (ðđ â (ðī âð ðĩ) â ðđ:ðĩâķðī) |
|
Theorem | mapval2 6677* |
Alternate expression for the value of set exponentiation. (Contributed
by NM, 3-Nov-2007.)
|
âĒ ðī â V & âĒ ðĩ â
V â âĒ (ðī âð ðĩ) = (ðŦ (ðĩ à ðī) âĐ {ð âĢ ð Fn ðĩ}) |
|
Theorem | elpm 6678 |
The predicate "is a partial function". (Contributed by NM,
15-Nov-2007.) (Revised by Mario Carneiro, 14-Nov-2013.)
|
âĒ ðī â V & âĒ ðĩ â
V â âĒ (ðđ â (ðī âpm ðĩ) â (Fun ðđ ⧠ðđ â (ðĩ à ðī))) |
|
Theorem | elpm2 6679 |
The predicate "is a partial function". (Contributed by NM,
15-Nov-2007.) (Revised by Mario Carneiro, 31-Dec-2013.)
|
âĒ ðī â V & âĒ ðĩ â
V â âĒ (ðđ â (ðī âpm ðĩ) â (ðđ:dom ðđâķðī ⧠dom ðđ â ðĩ)) |
|
Theorem | fpm 6680 |
A total function is a partial function. (Contributed by NM,
15-Nov-2007.) (Revised by Mario Carneiro, 31-Dec-2013.)
|
âĒ ðī â V & âĒ ðĩ â
V â âĒ (ðđ:ðīâķðĩ â ðđ â (ðĩ âpm ðī)) |
|
Theorem | mapsspm 6681 |
Set exponentiation is a subset of partial maps. (Contributed by NM,
15-Nov-2007.) (Revised by Mario Carneiro, 27-Feb-2016.)
|
âĒ (ðī âð ðĩ) â (ðī âpm ðĩ) |
|
Theorem | pmsspw 6682 |
Partial maps are a subset of the power set of the Cartesian product of
its arguments. (Contributed by Mario Carneiro, 2-Jan-2017.)
|
âĒ (ðī âpm ðĩ) â ðŦ (ðĩ Ã ðī) |
|
Theorem | mapsspw 6683 |
Set exponentiation is a subset of the power set of the Cartesian product
of its arguments. (Contributed by NM, 8-Dec-2006.) (Revised by Mario
Carneiro, 26-Apr-2015.)
|
âĒ (ðī âð ðĩ) â ðŦ (ðĩ Ã ðī) |
|
Theorem | fvmptmap 6684* |
Special case of fvmpt 5593 for operator theorems. (Contributed by NM,
27-Nov-2007.)
|
âĒ ðķ â V & âĒ ð· â V & âĒ ð
â V & âĒ (ðĨ = ðī â ðĩ = ðķ)
& âĒ ðđ = (ðĨ â (ð
âð ð·) âĶ ðĩ) â âĒ (ðī:ð·âķð
â (ðđâðī) = ðķ) |
|
Theorem | map0e 6685 |
Set exponentiation with an empty exponent (ordinal number 0) is ordinal
number 1. Exercise 4.42(a) of [Mendelson] p. 255. (Contributed by NM,
10-Dec-2003.) (Revised by Mario Carneiro, 30-Apr-2015.)
|
âĒ (ðī â ð â (ðī âð â
) =
1o) |
|
Theorem | map0b 6686 |
Set exponentiation with an empty base is the empty set, provided the
exponent is nonempty. Theorem 96 of [Suppes] p. 89. (Contributed by
NM, 10-Dec-2003.) (Revised by Mario Carneiro, 26-Apr-2015.)
|
âĒ (ðī â â
â (â
âð ðī) = â
) |
|
Theorem | map0g 6687 |
Set exponentiation is empty iff the base is empty and the exponent is
not empty. Theorem 97 of [Suppes] p. 89.
(Contributed by Mario
Carneiro, 30-Apr-2015.)
|
âĒ ((ðī â ð ⧠ðĩ â ð) â ((ðī âð ðĩ) = â
â (ðī = â
⧠ðĩ â
â
))) |
|
Theorem | map0 6688 |
Set exponentiation is empty iff the base is empty and the exponent is
not empty. Theorem 97 of [Suppes] p. 89.
(Contributed by NM,
10-Dec-2003.)
|
âĒ ðī â V & âĒ ðĩ â
V â âĒ ((ðī âð ðĩ) = â
â (ðī = â
⧠ðĩ â
â
)) |
|
Theorem | mapsn 6689* |
The value of set exponentiation with a singleton exponent. Theorem 98
of [Suppes] p. 89. (Contributed by NM,
10-Dec-2003.)
|
âĒ ðī â V & âĒ ðĩ â
V â âĒ (ðī âð {ðĩ}) = {ð âĢ âðĶ â ðī ð = {âĻðĩ, ðĶâĐ}} |
|
Theorem | mapss 6690 |
Subset inheritance for set exponentiation. Theorem 99 of [Suppes]
p. 89. (Contributed by NM, 10-Dec-2003.) (Revised by Mario Carneiro,
26-Apr-2015.)
|
âĒ ((ðĩ â ð ⧠ðī â ðĩ) â (ðī âð ðķ) â (ðĩ âð ðķ)) |
|
Theorem | fdiagfn 6691* |
Functionality of the diagonal map. (Contributed by Stefan O'Rear,
24-Jan-2015.)
|
âĒ ðđ = (ðĨ â ðĩ âĶ (ðž à {ðĨ})) â âĒ ((ðĩ â ð ⧠ðž â ð) â ðđ:ðĩâķ(ðĩ âð ðž)) |
|
Theorem | fvdiagfn 6692* |
Functionality of the diagonal map. (Contributed by Stefan O'Rear,
24-Jan-2015.)
|
âĒ ðđ = (ðĨ â ðĩ âĶ (ðž à {ðĨ})) â âĒ ((ðž â ð ⧠ð â ðĩ) â (ðđâð) = (ðž à {ð})) |
|
Theorem | mapsnconst 6693 |
Every singleton map is a constant function. (Contributed by Stefan
O'Rear, 25-Mar-2015.)
|
âĒ ð = {ð}
& âĒ ðĩ â V & âĒ ð â
V â âĒ (ðđ â (ðĩ âð ð) â ðđ = (ð Ã {(ðđâð)})) |
|
Theorem | mapsncnv 6694* |
Expression for the inverse of the canonical map between a set and its
set of singleton functions. (Contributed by Stefan O'Rear,
21-Mar-2015.)
|
âĒ ð = {ð}
& âĒ ðĩ â V & âĒ ð â V & âĒ ðđ = (ðĨ â (ðĩ âð ð) âĶ (ðĨâð)) â âĒ âĄðđ = (ðĶ â ðĩ âĶ (ð à {ðĶ})) |
|
Theorem | mapsnf1o2 6695* |
Explicit bijection between a set and its singleton functions.
(Contributed by Stefan O'Rear, 21-Mar-2015.)
|
âĒ ð = {ð}
& âĒ ðĩ â V & âĒ ð â V & âĒ ðđ = (ðĨ â (ðĩ âð ð) âĶ (ðĨâð)) â âĒ ðđ:(ðĩ âð ð)â1-1-ontoâðĩ |
|
Theorem | mapsnf1o3 6696* |
Explicit bijection in the reverse of mapsnf1o2 6695. (Contributed by
Stefan O'Rear, 24-Mar-2015.)
|
âĒ ð = {ð}
& âĒ ðĩ â V & âĒ ð â V & âĒ ðđ = (ðĶ â ðĩ âĶ (ð Ã {ðĶ})) â âĒ ðđ:ðĩâ1-1-ontoâ(ðĩ âð ð) |
|
2.6.27 Infinite Cartesian products
|
|
Syntax | cixp 6697 |
Extend class notation to include infinite Cartesian products.
|
class XðĨ â ðī ðĩ |
|
Definition | df-ixp 6698* |
Definition of infinite Cartesian product of [Enderton] p. 54. Enderton
uses a bold "X" with ðĨ â ðī written underneath or as a
subscript, as
does Stoll p. 47. Some books use a capital pi, but we will reserve that
notation for products of numbers. Usually ðĩ represents a class
expression containing ðĨ free and thus can be thought of as
ðĩ(ðĨ). Normally, ðĨ is not free in ðī,
although this is
not a requirement of the definition. (Contributed by NM,
28-Sep-2006.)
|
âĒ XðĨ â ðī ðĩ = {ð âĢ (ð Fn {ðĨ âĢ ðĨ â ðī} ⧠âðĨ â ðī (ðâðĨ) â ðĩ)} |
|
Theorem | dfixp 6699* |
Eliminate the expression {ðĨ âĢ ðĨ â ðī} in df-ixp 6698, under the
assumption that ðī and ðĨ are disjoint. This way,
we can say that
ðĨ is bound in XðĨ â
ðīðĩ even if it appears free in ðī.
(Contributed by Mario Carneiro, 12-Aug-2016.)
|
âĒ XðĨ â ðī ðĩ = {ð âĢ (ð Fn ðī ⧠âðĨ â ðī (ðâðĨ) â ðĩ)} |
|
Theorem | ixpsnval 6700* |
The value of an infinite Cartesian product with a singleton.
(Contributed by AV, 3-Dec-2018.)
|
âĒ (ð â ð â XðĨ â {ð}ðĩ = {ð âĢ (ð Fn {ð} ⧠(ðâð) â âĶð / ðĨâĶðĩ)}) |