Theorem List for Intuitionistic Logic Explorer - 6601-6700 *Has distinct variable
group(s)
Type | Label | Description |
Statement |
|
Theorem | iinerm 6601* |
The intersection of a nonempty family of equivalence relations is an
equivalence relation. (Contributed by Mario Carneiro, 27-Sep-2015.)
|
⊢ ((∃𝑦 𝑦 ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 𝑅 Er 𝐵) → ∩ 𝑥 ∈ 𝐴 𝑅 Er 𝐵) |
|
Theorem | riinerm 6602* |
The relative intersection of a family of equivalence relations is an
equivalence relation. (Contributed by Mario Carneiro, 27-Sep-2015.)
|
⊢ ((∃𝑦 𝑦 ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 𝑅 Er 𝐵) → ((𝐵 × 𝐵) ∩ ∩
𝑥 ∈ 𝐴 𝑅) Er 𝐵) |
|
Theorem | erinxp 6603 |
A restricted equivalence relation is an equivalence relation.
(Contributed by Mario Carneiro, 10-Jul-2015.) (Revised by Mario
Carneiro, 12-Aug-2015.)
|
⊢ (𝜑 → 𝑅 Er 𝐴)
& ⊢ (𝜑 → 𝐵 ⊆ 𝐴) ⇒ ⊢ (𝜑 → (𝑅 ∩ (𝐵 × 𝐵)) Er 𝐵) |
|
Theorem | ecinxp 6604 |
Restrict the relation in an equivalence class to a base set. (Contributed
by Mario Carneiro, 10-Jul-2015.)
|
⊢ (((𝑅 “ 𝐴) ⊆ 𝐴 ∧ 𝐵 ∈ 𝐴) → [𝐵]𝑅 = [𝐵](𝑅 ∩ (𝐴 × 𝐴))) |
|
Theorem | qsinxp 6605 |
Restrict the equivalence relation in a quotient set to the base set.
(Contributed by Mario Carneiro, 23-Feb-2015.)
|
⊢ ((𝑅 “ 𝐴) ⊆ 𝐴 → (𝐴 / 𝑅) = (𝐴 / (𝑅 ∩ (𝐴 × 𝐴)))) |
|
Theorem | qsel 6606 |
If an element of a quotient set contains a given element, it is equal to
the equivalence class of the element. (Contributed by Mario Carneiro,
12-Aug-2015.)
|
⊢ ((𝑅 Er 𝑋 ∧ 𝐵 ∈ (𝐴 / 𝑅) ∧ 𝐶 ∈ 𝐵) → 𝐵 = [𝐶]𝑅) |
|
Theorem | qliftlem 6607* |
𝐹,
a function lift, is a subset of 𝑅 × 𝑆. (Contributed by
Mario Carneiro, 23-Dec-2016.)
|
⊢ 𝐹 = ran (𝑥 ∈ 𝑋 ↦ 〈[𝑥]𝑅, 𝐴〉) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐴 ∈ 𝑌)
& ⊢ (𝜑 → 𝑅 Er 𝑋)
& ⊢ (𝜑 → 𝑋 ∈ V) ⇒ ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → [𝑥]𝑅 ∈ (𝑋 / 𝑅)) |
|
Theorem | qliftrel 6608* |
𝐹,
a function lift, is a subset of 𝑅 × 𝑆. (Contributed by
Mario Carneiro, 23-Dec-2016.)
|
⊢ 𝐹 = ran (𝑥 ∈ 𝑋 ↦ 〈[𝑥]𝑅, 𝐴〉) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐴 ∈ 𝑌)
& ⊢ (𝜑 → 𝑅 Er 𝑋)
& ⊢ (𝜑 → 𝑋 ∈ V) ⇒ ⊢ (𝜑 → 𝐹 ⊆ ((𝑋 / 𝑅) × 𝑌)) |
|
Theorem | qliftel 6609* |
Elementhood in the relation 𝐹. (Contributed by Mario Carneiro,
23-Dec-2016.)
|
⊢ 𝐹 = ran (𝑥 ∈ 𝑋 ↦ 〈[𝑥]𝑅, 𝐴〉) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐴 ∈ 𝑌)
& ⊢ (𝜑 → 𝑅 Er 𝑋)
& ⊢ (𝜑 → 𝑋 ∈ V) ⇒ ⊢ (𝜑 → ([𝐶]𝑅𝐹𝐷 ↔ ∃𝑥 ∈ 𝑋 (𝐶𝑅𝑥 ∧ 𝐷 = 𝐴))) |
|
Theorem | qliftel1 6610* |
Elementhood in the relation 𝐹. (Contributed by Mario Carneiro,
23-Dec-2016.)
|
⊢ 𝐹 = ran (𝑥 ∈ 𝑋 ↦ 〈[𝑥]𝑅, 𝐴〉) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐴 ∈ 𝑌)
& ⊢ (𝜑 → 𝑅 Er 𝑋)
& ⊢ (𝜑 → 𝑋 ∈ V) ⇒ ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → [𝑥]𝑅𝐹𝐴) |
|
Theorem | qliftfun 6611* |
The function 𝐹 is the unique function defined by
𝐹‘[𝑥] = 𝐴, provided that the well-definedness
condition
holds. (Contributed by Mario Carneiro, 23-Dec-2016.)
|
⊢ 𝐹 = ran (𝑥 ∈ 𝑋 ↦ 〈[𝑥]𝑅, 𝐴〉) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐴 ∈ 𝑌)
& ⊢ (𝜑 → 𝑅 Er 𝑋)
& ⊢ (𝜑 → 𝑋 ∈ V) & ⊢ (𝑥 = 𝑦 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → (Fun 𝐹 ↔ ∀𝑥∀𝑦(𝑥𝑅𝑦 → 𝐴 = 𝐵))) |
|
Theorem | qliftfund 6612* |
The function 𝐹 is the unique function defined by
𝐹‘[𝑥] = 𝐴, provided that the well-definedness
condition
holds. (Contributed by Mario Carneiro, 23-Dec-2016.)
|
⊢ 𝐹 = ran (𝑥 ∈ 𝑋 ↦ 〈[𝑥]𝑅, 𝐴〉) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐴 ∈ 𝑌)
& ⊢ (𝜑 → 𝑅 Er 𝑋)
& ⊢ (𝜑 → 𝑋 ∈ V) & ⊢ (𝑥 = 𝑦 → 𝐴 = 𝐵)
& ⊢ ((𝜑 ∧ 𝑥𝑅𝑦) → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → Fun 𝐹) |
|
Theorem | qliftfuns 6613* |
The function 𝐹 is the unique function defined by
𝐹‘[𝑥] = 𝐴, provided that the well-definedness
condition holds.
(Contributed by Mario Carneiro, 23-Dec-2016.)
|
⊢ 𝐹 = ran (𝑥 ∈ 𝑋 ↦ 〈[𝑥]𝑅, 𝐴〉) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐴 ∈ 𝑌)
& ⊢ (𝜑 → 𝑅 Er 𝑋)
& ⊢ (𝜑 → 𝑋 ∈ V) ⇒ ⊢ (𝜑 → (Fun 𝐹 ↔ ∀𝑦∀𝑧(𝑦𝑅𝑧 → ⦋𝑦 / 𝑥⦌𝐴 = ⦋𝑧 / 𝑥⦌𝐴))) |
|
Theorem | qliftf 6614* |
The domain and codomain of the function 𝐹. (Contributed by Mario
Carneiro, 23-Dec-2016.)
|
⊢ 𝐹 = ran (𝑥 ∈ 𝑋 ↦ 〈[𝑥]𝑅, 𝐴〉) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐴 ∈ 𝑌)
& ⊢ (𝜑 → 𝑅 Er 𝑋)
& ⊢ (𝜑 → 𝑋 ∈ V) ⇒ ⊢ (𝜑 → (Fun 𝐹 ↔ 𝐹:(𝑋 / 𝑅)⟶𝑌)) |
|
Theorem | qliftval 6615* |
The value of the function 𝐹. (Contributed by Mario Carneiro,
23-Dec-2016.)
|
⊢ 𝐹 = ran (𝑥 ∈ 𝑋 ↦ 〈[𝑥]𝑅, 𝐴〉) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐴 ∈ 𝑌)
& ⊢ (𝜑 → 𝑅 Er 𝑋)
& ⊢ (𝜑 → 𝑋 ∈ V) & ⊢ (𝑥 = 𝐶 → 𝐴 = 𝐵)
& ⊢ (𝜑 → Fun 𝐹) ⇒ ⊢ ((𝜑 ∧ 𝐶 ∈ 𝑋) → (𝐹‘[𝐶]𝑅) = 𝐵) |
|
Theorem | ecoptocl 6616* |
Implicit substitution of class for equivalence class of ordered pair.
(Contributed by NM, 23-Jul-1995.)
|
⊢ 𝑆 = ((𝐵 × 𝐶) / 𝑅)
& ⊢ ([〈𝑥, 𝑦〉]𝑅 = 𝐴 → (𝜑 ↔ 𝜓)) & ⊢ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶) → 𝜑) ⇒ ⊢ (𝐴 ∈ 𝑆 → 𝜓) |
|
Theorem | 2ecoptocl 6617* |
Implicit substitution of classes for equivalence classes of ordered
pairs. (Contributed by NM, 23-Jul-1995.)
|
⊢ 𝑆 = ((𝐶 × 𝐷) / 𝑅)
& ⊢ ([〈𝑥, 𝑦〉]𝑅 = 𝐴 → (𝜑 ↔ 𝜓)) & ⊢ ([〈𝑧, 𝑤〉]𝑅 = 𝐵 → (𝜓 ↔ 𝜒)) & ⊢ (((𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷) ∧ (𝑧 ∈ 𝐶 ∧ 𝑤 ∈ 𝐷)) → 𝜑) ⇒ ⊢ ((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → 𝜒) |
|
Theorem | 3ecoptocl 6618* |
Implicit substitution of classes for equivalence classes of ordered
pairs. (Contributed by NM, 9-Aug-1995.)
|
⊢ 𝑆 = ((𝐷 × 𝐷) / 𝑅)
& ⊢ ([〈𝑥, 𝑦〉]𝑅 = 𝐴 → (𝜑 ↔ 𝜓)) & ⊢ ([〈𝑧, 𝑤〉]𝑅 = 𝐵 → (𝜓 ↔ 𝜒)) & ⊢ ([〈𝑣, 𝑢〉]𝑅 = 𝐶 → (𝜒 ↔ 𝜃)) & ⊢ (((𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷) ∧ (𝑧 ∈ 𝐷 ∧ 𝑤 ∈ 𝐷) ∧ (𝑣 ∈ 𝐷 ∧ 𝑢 ∈ 𝐷)) → 𝜑) ⇒ ⊢ ((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆) → 𝜃) |
|
Theorem | brecop 6619* |
Binary relation on a quotient set. Lemma for real number construction.
(Contributed by NM, 29-Jan-1996.)
|
⊢ ∼ ∈
V
& ⊢ ∼ Er (𝐺 × 𝐺)
& ⊢ 𝐻 = ((𝐺 × 𝐺) / ∼ ) & ⊢ ≤ =
{〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐻 ∧ 𝑦 ∈ 𝐻) ∧ ∃𝑧∃𝑤∃𝑣∃𝑢((𝑥 = [〈𝑧, 𝑤〉] ∼ ∧ 𝑦 = [〈𝑣, 𝑢〉] ∼ ) ∧ 𝜑))} & ⊢ ((((𝑧 ∈ 𝐺 ∧ 𝑤 ∈ 𝐺) ∧ (𝐴 ∈ 𝐺 ∧ 𝐵 ∈ 𝐺)) ∧ ((𝑣 ∈ 𝐺 ∧ 𝑢 ∈ 𝐺) ∧ (𝐶 ∈ 𝐺 ∧ 𝐷 ∈ 𝐺))) → (([〈𝑧, 𝑤〉] ∼ = [〈𝐴, 𝐵〉] ∼ ∧ [〈𝑣, 𝑢〉] ∼ = [〈𝐶, 𝐷〉] ∼ ) → (𝜑 ↔ 𝜓))) ⇒ ⊢ (((𝐴 ∈ 𝐺 ∧ 𝐵 ∈ 𝐺) ∧ (𝐶 ∈ 𝐺 ∧ 𝐷 ∈ 𝐺)) → ([〈𝐴, 𝐵〉] ∼ ≤ [〈𝐶, 𝐷〉] ∼ ↔ 𝜓)) |
|
Theorem | eroveu 6620* |
Lemma for eroprf 6622. (Contributed by Jeff Madsen, 10-Jun-2010.)
(Revised by Mario Carneiro, 9-Jul-2014.)
|
⊢ 𝐽 = (𝐴 / 𝑅)
& ⊢ 𝐾 = (𝐵 / 𝑆)
& ⊢ (𝜑 → 𝑇 ∈ 𝑍)
& ⊢ (𝜑 → 𝑅 Er 𝑈)
& ⊢ (𝜑 → 𝑆 Er 𝑉)
& ⊢ (𝜑 → 𝑇 Er 𝑊)
& ⊢ (𝜑 → 𝐴 ⊆ 𝑈)
& ⊢ (𝜑 → 𝐵 ⊆ 𝑉)
& ⊢ (𝜑 → 𝐶 ⊆ 𝑊)
& ⊢ (𝜑 → + :(𝐴 × 𝐵)⟶𝐶)
& ⊢ ((𝜑 ∧ ((𝑟 ∈ 𝐴 ∧ 𝑠 ∈ 𝐴) ∧ (𝑡 ∈ 𝐵 ∧ 𝑢 ∈ 𝐵))) → ((𝑟𝑅𝑠 ∧ 𝑡𝑆𝑢) → (𝑟 + 𝑡)𝑇(𝑠 + 𝑢))) ⇒ ⊢ ((𝜑 ∧ (𝑋 ∈ 𝐽 ∧ 𝑌 ∈ 𝐾)) → ∃!𝑧∃𝑝 ∈ 𝐴 ∃𝑞 ∈ 𝐵 ((𝑋 = [𝑝]𝑅 ∧ 𝑌 = [𝑞]𝑆) ∧ 𝑧 = [(𝑝 + 𝑞)]𝑇)) |
|
Theorem | erovlem 6621* |
Lemma for eroprf 6622. (Contributed by Jeff Madsen, 10-Jun-2010.)
(Revised by Mario Carneiro, 30-Dec-2014.)
|
⊢ 𝐽 = (𝐴 / 𝑅)
& ⊢ 𝐾 = (𝐵 / 𝑆)
& ⊢ (𝜑 → 𝑇 ∈ 𝑍)
& ⊢ (𝜑 → 𝑅 Er 𝑈)
& ⊢ (𝜑 → 𝑆 Er 𝑉)
& ⊢ (𝜑 → 𝑇 Er 𝑊)
& ⊢ (𝜑 → 𝐴 ⊆ 𝑈)
& ⊢ (𝜑 → 𝐵 ⊆ 𝑉)
& ⊢ (𝜑 → 𝐶 ⊆ 𝑊)
& ⊢ (𝜑 → + :(𝐴 × 𝐵)⟶𝐶)
& ⊢ ((𝜑 ∧ ((𝑟 ∈ 𝐴 ∧ 𝑠 ∈ 𝐴) ∧ (𝑡 ∈ 𝐵 ∧ 𝑢 ∈ 𝐵))) → ((𝑟𝑅𝑠 ∧ 𝑡𝑆𝑢) → (𝑟 + 𝑡)𝑇(𝑠 + 𝑢))) & ⊢ ⨣ =
{〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ∃𝑝 ∈ 𝐴 ∃𝑞 ∈ 𝐵 ((𝑥 = [𝑝]𝑅 ∧ 𝑦 = [𝑞]𝑆) ∧ 𝑧 = [(𝑝 + 𝑞)]𝑇)} ⇒ ⊢ (𝜑 → ⨣ = (𝑥 ∈ 𝐽, 𝑦 ∈ 𝐾 ↦ (℩𝑧∃𝑝 ∈ 𝐴 ∃𝑞 ∈ 𝐵 ((𝑥 = [𝑝]𝑅 ∧ 𝑦 = [𝑞]𝑆) ∧ 𝑧 = [(𝑝 + 𝑞)]𝑇)))) |
|
Theorem | eroprf 6622* |
Functionality of an operation defined on equivalence classes.
(Contributed by Jeff Madsen, 10-Jun-2010.) (Revised by Mario Carneiro,
30-Dec-2014.)
|
⊢ 𝐽 = (𝐴 / 𝑅)
& ⊢ 𝐾 = (𝐵 / 𝑆)
& ⊢ (𝜑 → 𝑇 ∈ 𝑍)
& ⊢ (𝜑 → 𝑅 Er 𝑈)
& ⊢ (𝜑 → 𝑆 Er 𝑉)
& ⊢ (𝜑 → 𝑇 Er 𝑊)
& ⊢ (𝜑 → 𝐴 ⊆ 𝑈)
& ⊢ (𝜑 → 𝐵 ⊆ 𝑉)
& ⊢ (𝜑 → 𝐶 ⊆ 𝑊)
& ⊢ (𝜑 → + :(𝐴 × 𝐵)⟶𝐶)
& ⊢ ((𝜑 ∧ ((𝑟 ∈ 𝐴 ∧ 𝑠 ∈ 𝐴) ∧ (𝑡 ∈ 𝐵 ∧ 𝑢 ∈ 𝐵))) → ((𝑟𝑅𝑠 ∧ 𝑡𝑆𝑢) → (𝑟 + 𝑡)𝑇(𝑠 + 𝑢))) & ⊢ ⨣ =
{〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ∃𝑝 ∈ 𝐴 ∃𝑞 ∈ 𝐵 ((𝑥 = [𝑝]𝑅 ∧ 𝑦 = [𝑞]𝑆) ∧ 𝑧 = [(𝑝 + 𝑞)]𝑇)} & ⊢ (𝜑 → 𝑅 ∈ 𝑋)
& ⊢ (𝜑 → 𝑆 ∈ 𝑌)
& ⊢ 𝐿 = (𝐶 / 𝑇) ⇒ ⊢ (𝜑 → ⨣ :(𝐽 × 𝐾)⟶𝐿) |
|
Theorem | eroprf2 6623* |
Functionality of an operation defined on equivalence classes.
(Contributed by Jeff Madsen, 10-Jun-2010.)
|
⊢ 𝐽 = (𝐴 / ∼ ) & ⊢ ⨣ =
{〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ∃𝑝 ∈ 𝐴 ∃𝑞 ∈ 𝐴 ((𝑥 = [𝑝] ∼ ∧ 𝑦 = [𝑞] ∼ ) ∧ 𝑧 = [(𝑝 + 𝑞)] ∼ )} & ⊢ (𝜑 → ∼ ∈ 𝑋) & ⊢ (𝜑 → ∼ Er 𝑈) & ⊢ (𝜑 → 𝐴 ⊆ 𝑈)
& ⊢ (𝜑 → + :(𝐴 × 𝐴)⟶𝐴)
& ⊢ ((𝜑 ∧ ((𝑟 ∈ 𝐴 ∧ 𝑠 ∈ 𝐴) ∧ (𝑡 ∈ 𝐴 ∧ 𝑢 ∈ 𝐴))) → ((𝑟 ∼ 𝑠 ∧ 𝑡 ∼ 𝑢) → (𝑟 + 𝑡) ∼ (𝑠 + 𝑢))) ⇒ ⊢ (𝜑 → ⨣ :(𝐽 × 𝐽)⟶𝐽) |
|
Theorem | ecopoveq 6624* |
This is the first of several theorems about equivalence relations of
the kind used in construction of fractions and signed reals, involving
operations on equivalent classes of ordered pairs. This theorem
expresses the relation ∼ (specified
by the hypothesis) in terms
of its operation 𝐹. (Contributed by NM, 16-Aug-1995.)
|
⊢ ∼ = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (𝑆 × 𝑆) ∧ 𝑦 ∈ (𝑆 × 𝑆)) ∧ ∃𝑧∃𝑤∃𝑣∃𝑢((𝑥 = 〈𝑧, 𝑤〉 ∧ 𝑦 = 〈𝑣, 𝑢〉) ∧ (𝑧 + 𝑢) = (𝑤 + 𝑣)))} ⇒ ⊢ (((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) ∧ (𝐶 ∈ 𝑆 ∧ 𝐷 ∈ 𝑆)) → (〈𝐴, 𝐵〉 ∼ 〈𝐶, 𝐷〉 ↔ (𝐴 + 𝐷) = (𝐵 + 𝐶))) |
|
Theorem | ecopovsym 6625* |
Assuming the operation 𝐹 is commutative, show that the
relation
∼, specified
by the first hypothesis, is symmetric.
(Contributed by NM, 27-Aug-1995.) (Revised by Mario Carneiro,
26-Apr-2015.)
|
⊢ ∼ = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (𝑆 × 𝑆) ∧ 𝑦 ∈ (𝑆 × 𝑆)) ∧ ∃𝑧∃𝑤∃𝑣∃𝑢((𝑥 = 〈𝑧, 𝑤〉 ∧ 𝑦 = 〈𝑣, 𝑢〉) ∧ (𝑧 + 𝑢) = (𝑤 + 𝑣)))} & ⊢ (𝑥 + 𝑦) = (𝑦 + 𝑥) ⇒ ⊢ (𝐴 ∼ 𝐵 → 𝐵 ∼ 𝐴) |
|
Theorem | ecopovtrn 6626* |
Assuming that operation 𝐹 is commutative (second hypothesis),
closed (third hypothesis), associative (fourth hypothesis), and has
the cancellation property (fifth hypothesis), show that the relation
∼, specified
by the first hypothesis, is transitive.
(Contributed by NM, 11-Feb-1996.) (Revised by Mario Carneiro,
26-Apr-2015.)
|
⊢ ∼ = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (𝑆 × 𝑆) ∧ 𝑦 ∈ (𝑆 × 𝑆)) ∧ ∃𝑧∃𝑤∃𝑣∃𝑢((𝑥 = 〈𝑧, 𝑤〉 ∧ 𝑦 = 〈𝑣, 𝑢〉) ∧ (𝑧 + 𝑢) = (𝑤 + 𝑣)))} & ⊢ (𝑥 + 𝑦) = (𝑦 + 𝑥)
& ⊢ ((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) → (𝑥 + 𝑦) ∈ 𝑆)
& ⊢ ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧))
& ⊢ ((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) → ((𝑥 + 𝑦) = (𝑥 + 𝑧) → 𝑦 = 𝑧)) ⇒ ⊢ ((𝐴 ∼ 𝐵 ∧ 𝐵 ∼ 𝐶) → 𝐴 ∼ 𝐶) |
|
Theorem | ecopover 6627* |
Assuming that operation 𝐹 is commutative (second hypothesis),
closed (third hypothesis), associative (fourth hypothesis), and has
the cancellation property (fifth hypothesis), show that the relation
∼, specified
by the first hypothesis, is an equivalence
relation. (Contributed by NM, 16-Feb-1996.) (Revised by Mario
Carneiro, 12-Aug-2015.)
|
⊢ ∼ = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (𝑆 × 𝑆) ∧ 𝑦 ∈ (𝑆 × 𝑆)) ∧ ∃𝑧∃𝑤∃𝑣∃𝑢((𝑥 = 〈𝑧, 𝑤〉 ∧ 𝑦 = 〈𝑣, 𝑢〉) ∧ (𝑧 + 𝑢) = (𝑤 + 𝑣)))} & ⊢ (𝑥 + 𝑦) = (𝑦 + 𝑥)
& ⊢ ((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) → (𝑥 + 𝑦) ∈ 𝑆)
& ⊢ ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧))
& ⊢ ((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) → ((𝑥 + 𝑦) = (𝑥 + 𝑧) → 𝑦 = 𝑧)) ⇒ ⊢ ∼ Er (𝑆 × 𝑆) |
|
Theorem | ecopovsymg 6628* |
Assuming the operation 𝐹 is commutative, show that the
relation
∼, specified
by the first hypothesis, is symmetric.
(Contributed by Jim Kingdon, 1-Sep-2019.)
|
⊢ ∼ = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (𝑆 × 𝑆) ∧ 𝑦 ∈ (𝑆 × 𝑆)) ∧ ∃𝑧∃𝑤∃𝑣∃𝑢((𝑥 = 〈𝑧, 𝑤〉 ∧ 𝑦 = 〈𝑣, 𝑢〉) ∧ (𝑧 + 𝑢) = (𝑤 + 𝑣)))} & ⊢ ((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) → (𝑥 + 𝑦) = (𝑦 + 𝑥)) ⇒ ⊢ (𝐴 ∼ 𝐵 → 𝐵 ∼ 𝐴) |
|
Theorem | ecopovtrng 6629* |
Assuming that operation 𝐹 is commutative (second hypothesis),
closed (third hypothesis), associative (fourth hypothesis), and has
the cancellation property (fifth hypothesis), show that the relation
∼, specified
by the first hypothesis, is transitive.
(Contributed by Jim Kingdon, 1-Sep-2019.)
|
⊢ ∼ = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (𝑆 × 𝑆) ∧ 𝑦 ∈ (𝑆 × 𝑆)) ∧ ∃𝑧∃𝑤∃𝑣∃𝑢((𝑥 = 〈𝑧, 𝑤〉 ∧ 𝑦 = 〈𝑣, 𝑢〉) ∧ (𝑧 + 𝑢) = (𝑤 + 𝑣)))} & ⊢ ((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) → (𝑥 + 𝑦) = (𝑦 + 𝑥))
& ⊢ ((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) → (𝑥 + 𝑦) ∈ 𝑆)
& ⊢ ((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧))) & ⊢ ((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆) → ((𝑥 + 𝑦) = (𝑥 + 𝑧) → 𝑦 = 𝑧)) ⇒ ⊢ ((𝐴 ∼ 𝐵 ∧ 𝐵 ∼ 𝐶) → 𝐴 ∼ 𝐶) |
|
Theorem | ecopoverg 6630* |
Assuming that operation 𝐹 is commutative (second hypothesis),
closed (third hypothesis), associative (fourth hypothesis), and has
the cancellation property (fifth hypothesis), show that the relation
∼, specified
by the first hypothesis, is an equivalence
relation. (Contributed by Jim Kingdon, 1-Sep-2019.)
|
⊢ ∼ = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (𝑆 × 𝑆) ∧ 𝑦 ∈ (𝑆 × 𝑆)) ∧ ∃𝑧∃𝑤∃𝑣∃𝑢((𝑥 = 〈𝑧, 𝑤〉 ∧ 𝑦 = 〈𝑣, 𝑢〉) ∧ (𝑧 + 𝑢) = (𝑤 + 𝑣)))} & ⊢ ((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) → (𝑥 + 𝑦) = (𝑦 + 𝑥))
& ⊢ ((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) → (𝑥 + 𝑦) ∈ 𝑆)
& ⊢ ((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧))) & ⊢ ((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆) → ((𝑥 + 𝑦) = (𝑥 + 𝑧) → 𝑦 = 𝑧)) ⇒ ⊢ ∼ Er (𝑆 × 𝑆) |
|
Theorem | th3qlem1 6631* |
Lemma for Exercise 44 version of Theorem 3Q of [Enderton] p. 60. The
third hypothesis is the compatibility assumption. (Contributed by NM,
3-Aug-1995.) (Revised by Mario Carneiro, 9-Jul-2014.)
|
⊢ ∼ Er 𝑆 & ⊢ (((𝑦 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆) ∧ (𝑧 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆)) → ((𝑦 ∼ 𝑤 ∧ 𝑧 ∼ 𝑣) → (𝑦 + 𝑧) ∼ (𝑤 + 𝑣))) ⇒ ⊢ ((𝐴 ∈ (𝑆 / ∼ ) ∧ 𝐵 ∈ (𝑆 / ∼ )) →
∃*𝑥∃𝑦∃𝑧((𝐴 = [𝑦] ∼ ∧ 𝐵 = [𝑧] ∼ ) ∧ 𝑥 = [(𝑦 + 𝑧)] ∼
)) |
|
Theorem | th3qlem2 6632* |
Lemma for Exercise 44 version of Theorem 3Q of [Enderton] p. 60,
extended to operations on ordered pairs. The fourth hypothesis is the
compatibility assumption. (Contributed by NM, 4-Aug-1995.) (Revised by
Mario Carneiro, 12-Aug-2015.)
|
⊢ ∼ ∈
V
& ⊢ ∼ Er (𝑆 × 𝑆)
& ⊢ ((((𝑤 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆) ∧ (𝑢 ∈ 𝑆 ∧ 𝑡 ∈ 𝑆)) ∧ ((𝑠 ∈ 𝑆 ∧ 𝑓 ∈ 𝑆) ∧ (𝑔 ∈ 𝑆 ∧ ℎ ∈ 𝑆))) → ((〈𝑤, 𝑣〉 ∼ 〈𝑢, 𝑡〉 ∧ 〈𝑠, 𝑓〉 ∼ 〈𝑔, ℎ〉) → (〈𝑤, 𝑣〉 + 〈𝑠, 𝑓〉) ∼ (〈𝑢, 𝑡〉 + 〈𝑔, ℎ〉))) ⇒ ⊢ ((𝐴 ∈ ((𝑆 × 𝑆) / ∼ ) ∧ 𝐵 ∈ ((𝑆 × 𝑆) / ∼ )) →
∃*𝑧∃𝑤∃𝑣∃𝑢∃𝑡((𝐴 = [〈𝑤, 𝑣〉] ∼ ∧ 𝐵 = [〈𝑢, 𝑡〉] ∼ ) ∧ 𝑧 = [(〈𝑤, 𝑣〉 + 〈𝑢, 𝑡〉)] ∼
)) |
|
Theorem | th3qcor 6633* |
Corollary of Theorem 3Q of [Enderton] p. 60.
(Contributed by NM,
12-Nov-1995.) (Revised by David Abernethy, 4-Jun-2013.)
|
⊢ ∼ ∈
V
& ⊢ ∼ Er (𝑆 × 𝑆)
& ⊢ ((((𝑤 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆) ∧ (𝑢 ∈ 𝑆 ∧ 𝑡 ∈ 𝑆)) ∧ ((𝑠 ∈ 𝑆 ∧ 𝑓 ∈ 𝑆) ∧ (𝑔 ∈ 𝑆 ∧ ℎ ∈ 𝑆))) → ((〈𝑤, 𝑣〉 ∼ 〈𝑢, 𝑡〉 ∧ 〈𝑠, 𝑓〉 ∼ 〈𝑔, ℎ〉) → (〈𝑤, 𝑣〉 + 〈𝑠, 𝑓〉) ∼ (〈𝑢, 𝑡〉 + 〈𝑔, ℎ〉))) & ⊢ 𝐺 = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ ((𝑆 × 𝑆) / ∼ ) ∧ 𝑦 ∈ ((𝑆 × 𝑆) / ∼ )) ∧
∃𝑤∃𝑣∃𝑢∃𝑡((𝑥 = [〈𝑤, 𝑣〉] ∼ ∧ 𝑦 = [〈𝑢, 𝑡〉] ∼ ) ∧ 𝑧 = [(〈𝑤, 𝑣〉 + 〈𝑢, 𝑡〉)] ∼
))} ⇒ ⊢ Fun 𝐺 |
|
Theorem | th3q 6634* |
Theorem 3Q of [Enderton] p. 60, extended to
operations on ordered
pairs. (Contributed by NM, 4-Aug-1995.) (Revised by Mario Carneiro,
19-Dec-2013.)
|
⊢ ∼ ∈
V
& ⊢ ∼ Er (𝑆 × 𝑆)
& ⊢ ((((𝑤 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆) ∧ (𝑢 ∈ 𝑆 ∧ 𝑡 ∈ 𝑆)) ∧ ((𝑠 ∈ 𝑆 ∧ 𝑓 ∈ 𝑆) ∧ (𝑔 ∈ 𝑆 ∧ ℎ ∈ 𝑆))) → ((〈𝑤, 𝑣〉 ∼ 〈𝑢, 𝑡〉 ∧ 〈𝑠, 𝑓〉 ∼ 〈𝑔, ℎ〉) → (〈𝑤, 𝑣〉 + 〈𝑠, 𝑓〉) ∼ (〈𝑢, 𝑡〉 + 〈𝑔, ℎ〉))) & ⊢ 𝐺 = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ ((𝑆 × 𝑆) / ∼ ) ∧ 𝑦 ∈ ((𝑆 × 𝑆) / ∼ )) ∧
∃𝑤∃𝑣∃𝑢∃𝑡((𝑥 = [〈𝑤, 𝑣〉] ∼ ∧ 𝑦 = [〈𝑢, 𝑡〉] ∼ ) ∧ 𝑧 = [(〈𝑤, 𝑣〉 + 〈𝑢, 𝑡〉)] ∼
))} ⇒ ⊢ (((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) ∧ (𝐶 ∈ 𝑆 ∧ 𝐷 ∈ 𝑆)) → ([〈𝐴, 𝐵〉] ∼ 𝐺[〈𝐶, 𝐷〉] ∼ ) = [(〈𝐴, 𝐵〉 + 〈𝐶, 𝐷〉)] ∼ ) |
|
Theorem | oviec 6635* |
Express an operation on equivalence classes of ordered pairs in terms of
equivalence class of operations on ordered pairs. See iset.mm for
additional comments describing the hypotheses. (Unnecessary distinct
variable restrictions were removed by David Abernethy, 4-Jun-2013.)
(Contributed by NM, 6-Aug-1995.) (Revised by Mario Carneiro,
4-Jun-2013.)
|
⊢ (((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) ∧ (𝐶 ∈ 𝑆 ∧ 𝐷 ∈ 𝑆)) → 𝐻 ∈ (𝑆 × 𝑆)) & ⊢ (((𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝑆) ∧ (𝑔 ∈ 𝑆 ∧ ℎ ∈ 𝑆)) → 𝐾 ∈ (𝑆 × 𝑆)) & ⊢ (((𝑐 ∈ 𝑆 ∧ 𝑑 ∈ 𝑆) ∧ (𝑡 ∈ 𝑆 ∧ 𝑠 ∈ 𝑆)) → 𝐿 ∈ (𝑆 × 𝑆)) & ⊢ ∼
∈ V
& ⊢ ∼ Er (𝑆 × 𝑆)
& ⊢ ∼ = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (𝑆 × 𝑆) ∧ 𝑦 ∈ (𝑆 × 𝑆)) ∧ ∃𝑧∃𝑤∃𝑣∃𝑢((𝑥 = 〈𝑧, 𝑤〉 ∧ 𝑦 = 〈𝑣, 𝑢〉) ∧ 𝜑))} & ⊢ (((𝑧 = 𝑎 ∧ 𝑤 = 𝑏) ∧ (𝑣 = 𝑐 ∧ 𝑢 = 𝑑)) → (𝜑 ↔ 𝜓)) & ⊢ (((𝑧 = 𝑔 ∧ 𝑤 = ℎ) ∧ (𝑣 = 𝑡 ∧ 𝑢 = 𝑠)) → (𝜑 ↔ 𝜒)) & ⊢ + =
{〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ (𝑆 × 𝑆) ∧ 𝑦 ∈ (𝑆 × 𝑆)) ∧ ∃𝑤∃𝑣∃𝑢∃𝑓((𝑥 = 〈𝑤, 𝑣〉 ∧ 𝑦 = 〈𝑢, 𝑓〉) ∧ 𝑧 = 𝐽))} & ⊢ (((𝑤 = 𝑎 ∧ 𝑣 = 𝑏) ∧ (𝑢 = 𝑔 ∧ 𝑓 = ℎ)) → 𝐽 = 𝐾)
& ⊢ (((𝑤 = 𝑐 ∧ 𝑣 = 𝑑) ∧ (𝑢 = 𝑡 ∧ 𝑓 = 𝑠)) → 𝐽 = 𝐿)
& ⊢ (((𝑤 = 𝐴 ∧ 𝑣 = 𝐵) ∧ (𝑢 = 𝐶 ∧ 𝑓 = 𝐷)) → 𝐽 = 𝐻)
& ⊢ ⨣ =
{〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝑄 ∧ 𝑦 ∈ 𝑄) ∧ ∃𝑎∃𝑏∃𝑐∃𝑑((𝑥 = [〈𝑎, 𝑏〉] ∼ ∧ 𝑦 = [〈𝑐, 𝑑〉] ∼ ) ∧ 𝑧 = [(〈𝑎, 𝑏〉 + 〈𝑐, 𝑑〉)] ∼ ))} & ⊢ 𝑄 = ((𝑆 × 𝑆) / ∼ ) & ⊢ ((((𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝑆) ∧ (𝑐 ∈ 𝑆 ∧ 𝑑 ∈ 𝑆)) ∧ ((𝑔 ∈ 𝑆 ∧ ℎ ∈ 𝑆) ∧ (𝑡 ∈ 𝑆 ∧ 𝑠 ∈ 𝑆))) → ((𝜓 ∧ 𝜒) → 𝐾 ∼ 𝐿)) ⇒ ⊢ (((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) ∧ (𝐶 ∈ 𝑆 ∧ 𝐷 ∈ 𝑆)) → ([〈𝐴, 𝐵〉] ∼ ⨣ [〈𝐶, 𝐷〉] ∼ ) = [𝐻] ∼ ) |
|
Theorem | ecovcom 6636* |
Lemma used to transfer a commutative law via an equivalence relation.
Most uses will want ecovicom 6637 instead. (Contributed by NM,
29-Aug-1995.) (Revised by David Abernethy, 4-Jun-2013.)
|
⊢ 𝐶 = ((𝑆 × 𝑆) / ∼ ) & ⊢ (((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆)) → ([〈𝑥, 𝑦〉] ∼ + [〈𝑧, 𝑤〉] ∼ ) = [〈𝐷, 𝐺〉] ∼ ) & ⊢ (((𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆) ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → ([〈𝑧, 𝑤〉] ∼ + [〈𝑥, 𝑦〉] ∼ ) = [〈𝐻, 𝐽〉] ∼ ) & ⊢ 𝐷 = 𝐻
& ⊢ 𝐺 = 𝐽 ⇒ ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) → (𝐴 + 𝐵) = (𝐵 + 𝐴)) |
|
Theorem | ecovicom 6637* |
Lemma used to transfer a commutative law via an equivalence relation.
(Contributed by Jim Kingdon, 15-Sep-2019.)
|
⊢ 𝐶 = ((𝑆 × 𝑆) / ∼ ) & ⊢ (((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆)) → ([〈𝑥, 𝑦〉] ∼ + [〈𝑧, 𝑤〉] ∼ ) = [〈𝐷, 𝐺〉] ∼ ) & ⊢ (((𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆) ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → ([〈𝑧, 𝑤〉] ∼ + [〈𝑥, 𝑦〉] ∼ ) = [〈𝐻, 𝐽〉] ∼ ) & ⊢ (((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆)) → 𝐷 = 𝐻)
& ⊢ (((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆)) → 𝐺 = 𝐽) ⇒ ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) → (𝐴 + 𝐵) = (𝐵 + 𝐴)) |
|
Theorem | ecovass 6638* |
Lemma used to transfer an associative law via an equivalence relation.
In most cases ecoviass 6639 will be more useful. (Contributed by NM,
31-Aug-1995.) (Revised by David Abernethy, 4-Jun-2013.)
|
⊢ 𝐷 = ((𝑆 × 𝑆) / ∼ ) & ⊢ (((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆)) → ([〈𝑥, 𝑦〉] ∼ + [〈𝑧, 𝑤〉] ∼ ) = [〈𝐺, 𝐻〉] ∼ ) & ⊢ (((𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆) ∧ (𝑣 ∈ 𝑆 ∧ 𝑢 ∈ 𝑆)) → ([〈𝑧, 𝑤〉] ∼ + [〈𝑣, 𝑢〉] ∼ ) = [〈𝑁, 𝑄〉] ∼ ) & ⊢ (((𝐺 ∈ 𝑆 ∧ 𝐻 ∈ 𝑆) ∧ (𝑣 ∈ 𝑆 ∧ 𝑢 ∈ 𝑆)) → ([〈𝐺, 𝐻〉] ∼ + [〈𝑣, 𝑢〉] ∼ ) = [〈𝐽, 𝐾〉] ∼ ) & ⊢ (((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) ∧ (𝑁 ∈ 𝑆 ∧ 𝑄 ∈ 𝑆)) → ([〈𝑥, 𝑦〉] ∼ + [〈𝑁, 𝑄〉] ∼ ) = [〈𝐿, 𝑀〉] ∼ ) & ⊢ (((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆)) → (𝐺 ∈ 𝑆 ∧ 𝐻 ∈ 𝑆)) & ⊢ (((𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆) ∧ (𝑣 ∈ 𝑆 ∧ 𝑢 ∈ 𝑆)) → (𝑁 ∈ 𝑆 ∧ 𝑄 ∈ 𝑆)) & ⊢ 𝐽 = 𝐿
& ⊢ 𝐾 = 𝑀 ⇒ ⊢ ((𝐴 ∈ 𝐷 ∧ 𝐵 ∈ 𝐷 ∧ 𝐶 ∈ 𝐷) → ((𝐴 + 𝐵) + 𝐶) = (𝐴 + (𝐵 + 𝐶))) |
|
Theorem | ecoviass 6639* |
Lemma used to transfer an associative law via an equivalence relation.
(Contributed by Jim Kingdon, 16-Sep-2019.)
|
⊢ 𝐷 = ((𝑆 × 𝑆) / ∼ ) & ⊢ (((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆)) → ([〈𝑥, 𝑦〉] ∼ + [〈𝑧, 𝑤〉] ∼ ) = [〈𝐺, 𝐻〉] ∼ ) & ⊢ (((𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆) ∧ (𝑣 ∈ 𝑆 ∧ 𝑢 ∈ 𝑆)) → ([〈𝑧, 𝑤〉] ∼ + [〈𝑣, 𝑢〉] ∼ ) = [〈𝑁, 𝑄〉] ∼ ) & ⊢ (((𝐺 ∈ 𝑆 ∧ 𝐻 ∈ 𝑆) ∧ (𝑣 ∈ 𝑆 ∧ 𝑢 ∈ 𝑆)) → ([〈𝐺, 𝐻〉] ∼ + [〈𝑣, 𝑢〉] ∼ ) = [〈𝐽, 𝐾〉] ∼ ) & ⊢ (((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) ∧ (𝑁 ∈ 𝑆 ∧ 𝑄 ∈ 𝑆)) → ([〈𝑥, 𝑦〉] ∼ + [〈𝑁, 𝑄〉] ∼ ) = [〈𝐿, 𝑀〉] ∼ ) & ⊢ (((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆)) → (𝐺 ∈ 𝑆 ∧ 𝐻 ∈ 𝑆)) & ⊢ (((𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆) ∧ (𝑣 ∈ 𝑆 ∧ 𝑢 ∈ 𝑆)) → (𝑁 ∈ 𝑆 ∧ 𝑄 ∈ 𝑆)) & ⊢ (((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆) ∧ (𝑣 ∈ 𝑆 ∧ 𝑢 ∈ 𝑆)) → 𝐽 = 𝐿)
& ⊢ (((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆) ∧ (𝑣 ∈ 𝑆 ∧ 𝑢 ∈ 𝑆)) → 𝐾 = 𝑀) ⇒ ⊢ ((𝐴 ∈ 𝐷 ∧ 𝐵 ∈ 𝐷 ∧ 𝐶 ∈ 𝐷) → ((𝐴 + 𝐵) + 𝐶) = (𝐴 + (𝐵 + 𝐶))) |
|
Theorem | ecovdi 6640* |
Lemma used to transfer a distributive law via an equivalence relation.
Most likely ecovidi 6641 will be more helpful. (Contributed by NM,
2-Sep-1995.) (Revised by David Abernethy, 4-Jun-2013.)
|
⊢ 𝐷 = ((𝑆 × 𝑆) / ∼ ) & ⊢ (((𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆) ∧ (𝑣 ∈ 𝑆 ∧ 𝑢 ∈ 𝑆)) → ([〈𝑧, 𝑤〉] ∼ + [〈𝑣, 𝑢〉] ∼ ) = [〈𝑀, 𝑁〉] ∼ ) & ⊢ (((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) ∧ (𝑀 ∈ 𝑆 ∧ 𝑁 ∈ 𝑆)) → ([〈𝑥, 𝑦〉] ∼ · [〈𝑀, 𝑁〉] ∼ ) = [〈𝐻, 𝐽〉] ∼ ) & ⊢ (((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆)) → ([〈𝑥, 𝑦〉] ∼ · [〈𝑧, 𝑤〉] ∼ ) = [〈𝑊, 𝑋〉] ∼ ) & ⊢ (((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) ∧ (𝑣 ∈ 𝑆 ∧ 𝑢 ∈ 𝑆)) → ([〈𝑥, 𝑦〉] ∼ · [〈𝑣, 𝑢〉] ∼ ) = [〈𝑌, 𝑍〉] ∼ ) & ⊢ (((𝑊 ∈ 𝑆 ∧ 𝑋 ∈ 𝑆) ∧ (𝑌 ∈ 𝑆 ∧ 𝑍 ∈ 𝑆)) → ([〈𝑊, 𝑋〉] ∼ + [〈𝑌, 𝑍〉] ∼ ) = [〈𝐾, 𝐿〉] ∼ ) & ⊢ (((𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆) ∧ (𝑣 ∈ 𝑆 ∧ 𝑢 ∈ 𝑆)) → (𝑀 ∈ 𝑆 ∧ 𝑁 ∈ 𝑆)) & ⊢ (((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆)) → (𝑊 ∈ 𝑆 ∧ 𝑋 ∈ 𝑆)) & ⊢ (((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) ∧ (𝑣 ∈ 𝑆 ∧ 𝑢 ∈ 𝑆)) → (𝑌 ∈ 𝑆 ∧ 𝑍 ∈ 𝑆)) & ⊢ 𝐻 = 𝐾
& ⊢ 𝐽 = 𝐿 ⇒ ⊢ ((𝐴 ∈ 𝐷 ∧ 𝐵 ∈ 𝐷 ∧ 𝐶 ∈ 𝐷) → (𝐴 · (𝐵 + 𝐶)) = ((𝐴 · 𝐵) + (𝐴 · 𝐶))) |
|
Theorem | ecovidi 6641* |
Lemma used to transfer a distributive law via an equivalence relation.
(Contributed by Jim Kingdon, 17-Sep-2019.)
|
⊢ 𝐷 = ((𝑆 × 𝑆) / ∼ ) & ⊢ (((𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆) ∧ (𝑣 ∈ 𝑆 ∧ 𝑢 ∈ 𝑆)) → ([〈𝑧, 𝑤〉] ∼ + [〈𝑣, 𝑢〉] ∼ ) = [〈𝑀, 𝑁〉] ∼ ) & ⊢ (((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) ∧ (𝑀 ∈ 𝑆 ∧ 𝑁 ∈ 𝑆)) → ([〈𝑥, 𝑦〉] ∼ · [〈𝑀, 𝑁〉] ∼ ) = [〈𝐻, 𝐽〉] ∼ ) & ⊢ (((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆)) → ([〈𝑥, 𝑦〉] ∼ · [〈𝑧, 𝑤〉] ∼ ) = [〈𝑊, 𝑋〉] ∼ ) & ⊢ (((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) ∧ (𝑣 ∈ 𝑆 ∧ 𝑢 ∈ 𝑆)) → ([〈𝑥, 𝑦〉] ∼ · [〈𝑣, 𝑢〉] ∼ ) = [〈𝑌, 𝑍〉] ∼ ) & ⊢ (((𝑊 ∈ 𝑆 ∧ 𝑋 ∈ 𝑆) ∧ (𝑌 ∈ 𝑆 ∧ 𝑍 ∈ 𝑆)) → ([〈𝑊, 𝑋〉] ∼ + [〈𝑌, 𝑍〉] ∼ ) = [〈𝐾, 𝐿〉] ∼ ) & ⊢ (((𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆) ∧ (𝑣 ∈ 𝑆 ∧ 𝑢 ∈ 𝑆)) → (𝑀 ∈ 𝑆 ∧ 𝑁 ∈ 𝑆)) & ⊢ (((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆)) → (𝑊 ∈ 𝑆 ∧ 𝑋 ∈ 𝑆)) & ⊢ (((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) ∧ (𝑣 ∈ 𝑆 ∧ 𝑢 ∈ 𝑆)) → (𝑌 ∈ 𝑆 ∧ 𝑍 ∈ 𝑆)) & ⊢ (((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆) ∧ (𝑣 ∈ 𝑆 ∧ 𝑢 ∈ 𝑆)) → 𝐻 = 𝐾)
& ⊢ (((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆) ∧ (𝑣 ∈ 𝑆 ∧ 𝑢 ∈ 𝑆)) → 𝐽 = 𝐿) ⇒ ⊢ ((𝐴 ∈ 𝐷 ∧ 𝐵 ∈ 𝐷 ∧ 𝐶 ∈ 𝐷) → (𝐴 · (𝐵 + 𝐶)) = ((𝐴 · 𝐵) + (𝐴 · 𝐶))) |
|
2.6.26 The mapping operation
|
|
Syntax | cmap 6642 |
Extend the definition of a class to include the mapping operation. (Read
for 𝐴
↑𝑚 𝐵, "the set of all functions that
map from 𝐵 to
𝐴.)
|
class ↑𝑚 |
|
Syntax | cpm 6643 |
Extend the definition of a class to include the partial mapping operation.
(Read for 𝐴 ↑pm 𝐵, "the set of all
partial functions that map from
𝐵 to 𝐴.)
|
class ↑pm |
|
Definition | df-map 6644* |
Define the mapping operation or set exponentiation. The set of all
functions that map from 𝐵 to 𝐴 is written (𝐴
↑𝑚 𝐵) (see
mapval 6654). Many authors write 𝐴 followed by 𝐵 as a
superscript
for this operation and rely on context to avoid confusion other
exponentiation operations (e.g., Definition 10.42 of [TakeutiZaring]
p. 95). Other authors show 𝐵 as a prefixed superscript, which is
read "𝐴 pre 𝐵 " (e.g., definition
of [Enderton] p. 52).
Definition 8.21 of [Eisenberg] p. 125
uses the notation Map(𝐵,
𝐴) for our (𝐴 ↑𝑚
𝐵). The up-arrow is
used by Donald Knuth
for iterated exponentiation (Science 194, 1235-1242, 1976). We
adopt
the first case of his notation (simple exponentiation) and subscript it
with m to distinguish it from other kinds of exponentiation.
(Contributed by NM, 8-Dec-2003.)
|
⊢ ↑𝑚 = (𝑥 ∈ V, 𝑦 ∈ V ↦ {𝑓 ∣ 𝑓:𝑦⟶𝑥}) |
|
Definition | df-pm 6645* |
Define the partial mapping operation. A partial function from 𝐵 to
𝐴 is a function from a subset of 𝐵 to
𝐴.
The set of all
partial functions from 𝐵 to 𝐴 is written (𝐴
↑pm 𝐵) (see
pmvalg 6653). A notation for this operation apparently
does not appear in
the literature. We use ↑pm to distinguish it from the less
general
set exponentiation operation ↑𝑚 (df-map 6644) . See mapsspm 6676 for
its relationship to set exponentiation. (Contributed by NM,
15-Nov-2007.)
|
⊢ ↑pm = (𝑥 ∈ V, 𝑦 ∈ V ↦ {𝑓 ∈ 𝒫 (𝑦 × 𝑥) ∣ Fun 𝑓}) |
|
Theorem | mapprc 6646* |
When 𝐴 is a proper class, the class of all
functions mapping 𝐴
to 𝐵 is empty. Exercise 4.41 of [Mendelson] p. 255. (Contributed
by NM, 8-Dec-2003.)
|
⊢ (¬ 𝐴 ∈ V → {𝑓 ∣ 𝑓:𝐴⟶𝐵} = ∅) |
|
Theorem | pmex 6647* |
The class of all partial functions from one set to another is a set.
(Contributed by NM, 15-Nov-2007.)
|
⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → {𝑓 ∣ (Fun 𝑓 ∧ 𝑓 ⊆ (𝐴 × 𝐵))} ∈ V) |
|
Theorem | mapex 6648* |
The class of all functions mapping one set to another is a set. Remark
after Definition 10.24 of [Kunen] p. 31.
(Contributed by Raph Levien,
4-Dec-2003.)
|
⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → {𝑓 ∣ 𝑓:𝐴⟶𝐵} ∈ V) |
|
Theorem | fnmap 6649 |
Set exponentiation has a universal domain. (Contributed by NM,
8-Dec-2003.) (Revised by Mario Carneiro, 8-Sep-2013.)
|
⊢ ↑𝑚 Fn (V ×
V) |
|
Theorem | fnpm 6650 |
Partial function exponentiation has a universal domain. (Contributed by
Mario Carneiro, 14-Nov-2013.)
|
⊢ ↑pm Fn (V ×
V) |
|
Theorem | reldmmap 6651 |
Set exponentiation is a well-behaved binary operator. (Contributed by
Stefan O'Rear, 27-Feb-2015.)
|
⊢ Rel dom
↑𝑚 |
|
Theorem | mapvalg 6652* |
The value of set exponentiation. (𝐴 ↑𝑚 𝐵) is the set of all
functions that map from 𝐵 to 𝐴. Definition 10.24 of
[Kunen]
p. 24. (Contributed by NM, 8-Dec-2003.) (Revised by Mario Carneiro,
8-Sep-2013.)
|
⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (𝐴 ↑𝑚 𝐵) = {𝑓 ∣ 𝑓:𝐵⟶𝐴}) |
|
Theorem | pmvalg 6653* |
The value of the partial mapping operation. (𝐴 ↑pm 𝐵) is the set
of all partial functions that map from 𝐵 to 𝐴.
(Contributed by
NM, 15-Nov-2007.) (Revised by Mario Carneiro, 8-Sep-2013.)
|
⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (𝐴 ↑pm 𝐵) = {𝑓 ∈ 𝒫 (𝐵 × 𝐴) ∣ Fun 𝑓}) |
|
Theorem | mapval 6654* |
The value of set exponentiation (inference version). (𝐴 ↑𝑚
𝐵) is
the set of all functions that map from 𝐵 to 𝐴.
Definition
10.24 of [Kunen] p. 24. (Contributed by
NM, 8-Dec-2003.)
|
⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈
V ⇒ ⊢ (𝐴 ↑𝑚 𝐵) = {𝑓 ∣ 𝑓:𝐵⟶𝐴} |
|
Theorem | elmapg 6655 |
Membership relation for set exponentiation. (Contributed by NM,
17-Oct-2006.) (Revised by Mario Carneiro, 15-Nov-2014.)
|
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐶 ∈ (𝐴 ↑𝑚 𝐵) ↔ 𝐶:𝐵⟶𝐴)) |
|
Theorem | elmapd 6656 |
Deduction form of elmapg 6655. (Contributed by BJ, 11-Apr-2020.)
|
⊢ (𝜑 → 𝐴 ∈ 𝑉)
& ⊢ (𝜑 → 𝐵 ∈ 𝑊) ⇒ ⊢ (𝜑 → (𝐶 ∈ (𝐴 ↑𝑚 𝐵) ↔ 𝐶:𝐵⟶𝐴)) |
|
Theorem | mapdm0 6657 |
The empty set is the only map with empty domain. (Contributed by Glauco
Siliprandi, 11-Oct-2020.) (Proof shortened by Thierry Arnoux,
3-Dec-2021.)
|
⊢ (𝐵 ∈ 𝑉 → (𝐵 ↑𝑚 ∅) =
{∅}) |
|
Theorem | elpmg 6658 |
The predicate "is a partial function". (Contributed by Mario
Carneiro,
14-Nov-2013.)
|
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐶 ∈ (𝐴 ↑pm 𝐵) ↔ (Fun 𝐶 ∧ 𝐶 ⊆ (𝐵 × 𝐴)))) |
|
Theorem | elpm2g 6659 |
The predicate "is a partial function". (Contributed by NM,
31-Dec-2013.)
|
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐹 ∈ (𝐴 ↑pm 𝐵) ↔ (𝐹:dom 𝐹⟶𝐴 ∧ dom 𝐹 ⊆ 𝐵))) |
|
Theorem | elpm2r 6660 |
Sufficient condition for being a partial function. (Contributed by NM,
31-Dec-2013.)
|
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) ∧ (𝐹:𝐶⟶𝐴 ∧ 𝐶 ⊆ 𝐵)) → 𝐹 ∈ (𝐴 ↑pm 𝐵)) |
|
Theorem | elpmi 6661 |
A partial function is a function. (Contributed by Mario Carneiro,
15-Sep-2015.)
|
⊢ (𝐹 ∈ (𝐴 ↑pm 𝐵) → (𝐹:dom 𝐹⟶𝐴 ∧ dom 𝐹 ⊆ 𝐵)) |
|
Theorem | pmfun 6662 |
A partial function is a function. (Contributed by Mario Carneiro,
30-Jan-2014.) (Revised by Mario Carneiro, 26-Apr-2015.)
|
⊢ (𝐹 ∈ (𝐴 ↑pm 𝐵) → Fun 𝐹) |
|
Theorem | elmapex 6663 |
Eliminate antecedent for mapping theorems: domain can be taken to be a
set. (Contributed by Stefan O'Rear, 8-Oct-2014.)
|
⊢ (𝐴 ∈ (𝐵 ↑𝑚 𝐶) → (𝐵 ∈ V ∧ 𝐶 ∈ V)) |
|
Theorem | elmapi 6664 |
A mapping is a function, forward direction only with superfluous
antecedent removed. (Contributed by Stefan O'Rear, 10-Oct-2014.)
|
⊢ (𝐴 ∈ (𝐵 ↑𝑚 𝐶) → 𝐴:𝐶⟶𝐵) |
|
Theorem | elmapfn 6665 |
A mapping is a function with the appropriate domain. (Contributed by AV,
6-Apr-2019.)
|
⊢ (𝐴 ∈ (𝐵 ↑𝑚 𝐶) → 𝐴 Fn 𝐶) |
|
Theorem | elmapfun 6666 |
A mapping is always a function. (Contributed by Stefan O'Rear,
9-Oct-2014.) (Revised by Stefan O'Rear, 5-May-2015.)
|
⊢ (𝐴 ∈ (𝐵 ↑𝑚 𝐶) → Fun 𝐴) |
|
Theorem | elmapssres 6667 |
A restricted mapping is a mapping. (Contributed by Stefan O'Rear,
9-Oct-2014.) (Revised by Mario Carneiro, 5-May-2015.)
|
⊢ ((𝐴 ∈ (𝐵 ↑𝑚 𝐶) ∧ 𝐷 ⊆ 𝐶) → (𝐴 ↾ 𝐷) ∈ (𝐵 ↑𝑚 𝐷)) |
|
Theorem | fpmg 6668 |
A total function is a partial function. (Contributed by Mario Carneiro,
31-Dec-2013.)
|
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐹:𝐴⟶𝐵) → 𝐹 ∈ (𝐵 ↑pm 𝐴)) |
|
Theorem | pmss12g 6669 |
Subset relation for the set of partial functions. (Contributed by Mario
Carneiro, 31-Dec-2013.)
|
⊢ (((𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐷) ∧ (𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑊)) → (𝐴 ↑pm 𝐵) ⊆ (𝐶 ↑pm 𝐷)) |
|
Theorem | pmresg 6670 |
Elementhood of a restricted function in the set of partial functions.
(Contributed by Mario Carneiro, 31-Dec-2013.)
|
⊢ ((𝐵 ∈ 𝑉 ∧ 𝐹 ∈ (𝐴 ↑pm 𝐶)) → (𝐹 ↾ 𝐵) ∈ (𝐴 ↑pm 𝐵)) |
|
Theorem | elmap 6671 |
Membership relation for set exponentiation. (Contributed by NM,
8-Dec-2003.)
|
⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈
V ⇒ ⊢ (𝐹 ∈ (𝐴 ↑𝑚 𝐵) ↔ 𝐹:𝐵⟶𝐴) |
|
Theorem | mapval2 6672* |
Alternate expression for the value of set exponentiation. (Contributed
by NM, 3-Nov-2007.)
|
⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈
V ⇒ ⊢ (𝐴 ↑𝑚 𝐵) = (𝒫 (𝐵 × 𝐴) ∩ {𝑓 ∣ 𝑓 Fn 𝐵}) |
|
Theorem | elpm 6673 |
The predicate "is a partial function". (Contributed by NM,
15-Nov-2007.) (Revised by Mario Carneiro, 14-Nov-2013.)
|
⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈
V ⇒ ⊢ (𝐹 ∈ (𝐴 ↑pm 𝐵) ↔ (Fun 𝐹 ∧ 𝐹 ⊆ (𝐵 × 𝐴))) |
|
Theorem | elpm2 6674 |
The predicate "is a partial function". (Contributed by NM,
15-Nov-2007.) (Revised by Mario Carneiro, 31-Dec-2013.)
|
⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈
V ⇒ ⊢ (𝐹 ∈ (𝐴 ↑pm 𝐵) ↔ (𝐹:dom 𝐹⟶𝐴 ∧ dom 𝐹 ⊆ 𝐵)) |
|
Theorem | fpm 6675 |
A total function is a partial function. (Contributed by NM,
15-Nov-2007.) (Revised by Mario Carneiro, 31-Dec-2013.)
|
⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈
V ⇒ ⊢ (𝐹:𝐴⟶𝐵 → 𝐹 ∈ (𝐵 ↑pm 𝐴)) |
|
Theorem | mapsspm 6676 |
Set exponentiation is a subset of partial maps. (Contributed by NM,
15-Nov-2007.) (Revised by Mario Carneiro, 27-Feb-2016.)
|
⊢ (𝐴 ↑𝑚 𝐵) ⊆ (𝐴 ↑pm 𝐵) |
|
Theorem | pmsspw 6677 |
Partial maps are a subset of the power set of the Cartesian product of
its arguments. (Contributed by Mario Carneiro, 2-Jan-2017.)
|
⊢ (𝐴 ↑pm 𝐵) ⊆ 𝒫 (𝐵 × 𝐴) |
|
Theorem | mapsspw 6678 |
Set exponentiation is a subset of the power set of the Cartesian product
of its arguments. (Contributed by NM, 8-Dec-2006.) (Revised by Mario
Carneiro, 26-Apr-2015.)
|
⊢ (𝐴 ↑𝑚 𝐵) ⊆ 𝒫 (𝐵 × 𝐴) |
|
Theorem | fvmptmap 6679* |
Special case of fvmpt 5589 for operator theorems. (Contributed by NM,
27-Nov-2007.)
|
⊢ 𝐶 ∈ V & ⊢ 𝐷 ∈ V & ⊢ 𝑅 ∈ V & ⊢ (𝑥 = 𝐴 → 𝐵 = 𝐶)
& ⊢ 𝐹 = (𝑥 ∈ (𝑅 ↑𝑚 𝐷) ↦ 𝐵) ⇒ ⊢ (𝐴:𝐷⟶𝑅 → (𝐹‘𝐴) = 𝐶) |
|
Theorem | map0e 6680 |
Set exponentiation with an empty exponent (ordinal number 0) is ordinal
number 1. Exercise 4.42(a) of [Mendelson] p. 255. (Contributed by NM,
10-Dec-2003.) (Revised by Mario Carneiro, 30-Apr-2015.)
|
⊢ (𝐴 ∈ 𝑉 → (𝐴 ↑𝑚 ∅) =
1o) |
|
Theorem | map0b 6681 |
Set exponentiation with an empty base is the empty set, provided the
exponent is nonempty. Theorem 96 of [Suppes] p. 89. (Contributed by
NM, 10-Dec-2003.) (Revised by Mario Carneiro, 26-Apr-2015.)
|
⊢ (𝐴 ≠ ∅ → (∅
↑𝑚 𝐴) = ∅) |
|
Theorem | map0g 6682 |
Set exponentiation is empty iff the base is empty and the exponent is
not empty. Theorem 97 of [Suppes] p. 89.
(Contributed by Mario
Carneiro, 30-Apr-2015.)
|
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ((𝐴 ↑𝑚 𝐵) = ∅ ↔ (𝐴 = ∅ ∧ 𝐵 ≠
∅))) |
|
Theorem | map0 6683 |
Set exponentiation is empty iff the base is empty and the exponent is
not empty. Theorem 97 of [Suppes] p. 89.
(Contributed by NM,
10-Dec-2003.)
|
⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈
V ⇒ ⊢ ((𝐴 ↑𝑚 𝐵) = ∅ ↔ (𝐴 = ∅ ∧ 𝐵 ≠
∅)) |
|
Theorem | mapsn 6684* |
The value of set exponentiation with a singleton exponent. Theorem 98
of [Suppes] p. 89. (Contributed by NM,
10-Dec-2003.)
|
⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈
V ⇒ ⊢ (𝐴 ↑𝑚 {𝐵}) = {𝑓 ∣ ∃𝑦 ∈ 𝐴 𝑓 = {〈𝐵, 𝑦〉}} |
|
Theorem | mapss 6685 |
Subset inheritance for set exponentiation. Theorem 99 of [Suppes]
p. 89. (Contributed by NM, 10-Dec-2003.) (Revised by Mario Carneiro,
26-Apr-2015.)
|
⊢ ((𝐵 ∈ 𝑉 ∧ 𝐴 ⊆ 𝐵) → (𝐴 ↑𝑚 𝐶) ⊆ (𝐵 ↑𝑚 𝐶)) |
|
Theorem | fdiagfn 6686* |
Functionality of the diagonal map. (Contributed by Stefan O'Rear,
24-Jan-2015.)
|
⊢ 𝐹 = (𝑥 ∈ 𝐵 ↦ (𝐼 × {𝑥})) ⇒ ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊) → 𝐹:𝐵⟶(𝐵 ↑𝑚 𝐼)) |
|
Theorem | fvdiagfn 6687* |
Functionality of the diagonal map. (Contributed by Stefan O'Rear,
24-Jan-2015.)
|
⊢ 𝐹 = (𝑥 ∈ 𝐵 ↦ (𝐼 × {𝑥})) ⇒ ⊢ ((𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵) → (𝐹‘𝑋) = (𝐼 × {𝑋})) |
|
Theorem | mapsnconst 6688 |
Every singleton map is a constant function. (Contributed by Stefan
O'Rear, 25-Mar-2015.)
|
⊢ 𝑆 = {𝑋}
& ⊢ 𝐵 ∈ V & ⊢ 𝑋 ∈
V ⇒ ⊢ (𝐹 ∈ (𝐵 ↑𝑚 𝑆) → 𝐹 = (𝑆 × {(𝐹‘𝑋)})) |
|
Theorem | mapsncnv 6689* |
Expression for the inverse of the canonical map between a set and its
set of singleton functions. (Contributed by Stefan O'Rear,
21-Mar-2015.)
|
⊢ 𝑆 = {𝑋}
& ⊢ 𝐵 ∈ V & ⊢ 𝑋 ∈ V & ⊢ 𝐹 = (𝑥 ∈ (𝐵 ↑𝑚 𝑆) ↦ (𝑥‘𝑋)) ⇒ ⊢ ◡𝐹 = (𝑦 ∈ 𝐵 ↦ (𝑆 × {𝑦})) |
|
Theorem | mapsnf1o2 6690* |
Explicit bijection between a set and its singleton functions.
(Contributed by Stefan O'Rear, 21-Mar-2015.)
|
⊢ 𝑆 = {𝑋}
& ⊢ 𝐵 ∈ V & ⊢ 𝑋 ∈ V & ⊢ 𝐹 = (𝑥 ∈ (𝐵 ↑𝑚 𝑆) ↦ (𝑥‘𝑋)) ⇒ ⊢ 𝐹:(𝐵 ↑𝑚 𝑆)–1-1-onto→𝐵 |
|
Theorem | mapsnf1o3 6691* |
Explicit bijection in the reverse of mapsnf1o2 6690. (Contributed by
Stefan O'Rear, 24-Mar-2015.)
|
⊢ 𝑆 = {𝑋}
& ⊢ 𝐵 ∈ V & ⊢ 𝑋 ∈ V & ⊢ 𝐹 = (𝑦 ∈ 𝐵 ↦ (𝑆 × {𝑦})) ⇒ ⊢ 𝐹:𝐵–1-1-onto→(𝐵 ↑𝑚 𝑆) |
|
2.6.27 Infinite Cartesian products
|
|
Syntax | cixp 6692 |
Extend class notation to include infinite Cartesian products.
|
class X𝑥 ∈ 𝐴 𝐵 |
|
Definition | df-ixp 6693* |
Definition of infinite Cartesian product of [Enderton] p. 54. Enderton
uses a bold "X" with 𝑥 ∈ 𝐴 written underneath or as a
subscript, as
does Stoll p. 47. Some books use a capital pi, but we will reserve that
notation for products of numbers. Usually 𝐵 represents a class
expression containing 𝑥 free and thus can be thought of as
𝐵(𝑥). Normally, 𝑥 is not free in 𝐴,
although this is
not a requirement of the definition. (Contributed by NM,
28-Sep-2006.)
|
⊢ X𝑥 ∈ 𝐴 𝐵 = {𝑓 ∣ (𝑓 Fn {𝑥 ∣ 𝑥 ∈ 𝐴} ∧ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) ∈ 𝐵)} |
|
Theorem | dfixp 6694* |
Eliminate the expression {𝑥 ∣ 𝑥 ∈ 𝐴} in df-ixp 6693, under the
assumption that 𝐴 and 𝑥 are disjoint. This way,
we can say that
𝑥 is bound in X𝑥 ∈
𝐴𝐵 even if it appears free in 𝐴.
(Contributed by Mario Carneiro, 12-Aug-2016.)
|
⊢ X𝑥 ∈ 𝐴 𝐵 = {𝑓 ∣ (𝑓 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) ∈ 𝐵)} |
|
Theorem | ixpsnval 6695* |
The value of an infinite Cartesian product with a singleton.
(Contributed by AV, 3-Dec-2018.)
|
⊢ (𝑋 ∈ 𝑉 → X𝑥 ∈ {𝑋}𝐵 = {𝑓 ∣ (𝑓 Fn {𝑋} ∧ (𝑓‘𝑋) ∈ ⦋𝑋 / 𝑥⦌𝐵)}) |
|
Theorem | elixp2 6696* |
Membership in an infinite Cartesian product. See df-ixp 6693 for
discussion of the notation. (Contributed by NM, 28-Sep-2006.)
|
⊢ (𝐹 ∈ X𝑥 ∈ 𝐴 𝐵 ↔ (𝐹 ∈ V ∧ 𝐹 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵)) |
|
Theorem | fvixp 6697* |
Projection of a factor of an indexed Cartesian product. (Contributed by
Mario Carneiro, 11-Jun-2016.)
|
⊢ (𝑥 = 𝐶 → 𝐵 = 𝐷) ⇒ ⊢ ((𝐹 ∈ X𝑥 ∈ 𝐴 𝐵 ∧ 𝐶 ∈ 𝐴) → (𝐹‘𝐶) ∈ 𝐷) |
|
Theorem | ixpfn 6698* |
A nuple is a function. (Contributed by FL, 6-Jun-2011.) (Revised by
Mario Carneiro, 31-May-2014.)
|
⊢ (𝐹 ∈ X𝑥 ∈ 𝐴 𝐵 → 𝐹 Fn 𝐴) |
|
Theorem | elixp 6699* |
Membership in an infinite Cartesian product. (Contributed by NM,
28-Sep-2006.)
|
⊢ 𝐹 ∈ V ⇒ ⊢ (𝐹 ∈ X𝑥 ∈ 𝐴 𝐵 ↔ (𝐹 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵)) |
|
Theorem | elixpconst 6700* |
Membership in an infinite Cartesian product of a constant 𝐵.
(Contributed by NM, 12-Apr-2008.)
|
⊢ 𝐹 ∈ V ⇒ ⊢ (𝐹 ∈ X𝑥 ∈ 𝐴 𝐵 ↔ 𝐹:𝐴⟶𝐵) |