HomeHome Intuitionistic Logic Explorer
Theorem List (p. 67 of 149)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 6601-6700   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremectocl 6601* Implicit substitution of class for equivalence class. (Contributed by NM, 23-Jul-1995.) (Revised by Mario Carneiro, 9-Jul-2014.)
𝑆 = (ðĩ / 𝑅)    &   ([ð‘Ĩ]𝑅 = ðī → (𝜑 ↔ 𝜓))    &   (ð‘Ĩ ∈ ðĩ → 𝜑)    ⇒   (ðī ∈ 𝑆 → 𝜓)
 
Theoremelqsn0m 6602* An element of a quotient set is inhabited. (Contributed by Jim Kingdon, 21-Aug-2019.)
((dom 𝑅 = ðī ∧ ðĩ ∈ (ðī / 𝑅)) → ∃ð‘Ĩ ð‘Ĩ ∈ ðĩ)
 
Theoremelqsn0 6603 A quotient set doesn't contain the empty set. (Contributed by NM, 24-Aug-1995.)
((dom 𝑅 = ðī ∧ ðĩ ∈ (ðī / 𝑅)) → ðĩ ≠ ∅)
 
Theoremecelqsdm 6604 Membership of an equivalence class in a quotient set. (Contributed by NM, 30-Jul-1995.)
((dom 𝑅 = ðī ∧ [ðĩ]𝑅 ∈ (ðī / 𝑅)) → ðĩ ∈ ðī)
 
Theoremxpider 6605 A square Cartesian product is an equivalence relation (in general it's not a poset). (Contributed by FL, 31-Jul-2009.) (Revised by Mario Carneiro, 12-Aug-2015.)
(ðī × ðī) Er ðī
 
Theoremiinerm 6606* The intersection of a nonempty family of equivalence relations is an equivalence relation. (Contributed by Mario Carneiro, 27-Sep-2015.)
((∃ð‘Ķ ð‘Ķ ∈ ðī ∧ ∀ð‘Ĩ ∈ ðī 𝑅 Er ðĩ) → âˆĐ ð‘Ĩ ∈ ðī 𝑅 Er ðĩ)
 
Theoremriinerm 6607* The relative intersection of a family of equivalence relations is an equivalence relation. (Contributed by Mario Carneiro, 27-Sep-2015.)
((∃ð‘Ķ ð‘Ķ ∈ ðī ∧ ∀ð‘Ĩ ∈ ðī 𝑅 Er ðĩ) → ((ðĩ × ðĩ) âˆĐ âˆĐ ð‘Ĩ ∈ ðī 𝑅) Er ðĩ)
 
Theoremerinxp 6608 A restricted equivalence relation is an equivalence relation. (Contributed by Mario Carneiro, 10-Jul-2015.) (Revised by Mario Carneiro, 12-Aug-2015.)
(𝜑 → 𝑅 Er ðī)    &   (𝜑 → ðĩ ⊆ ðī)    ⇒   (𝜑 → (𝑅 âˆĐ (ðĩ × ðĩ)) Er ðĩ)
 
Theoremecinxp 6609 Restrict the relation in an equivalence class to a base set. (Contributed by Mario Carneiro, 10-Jul-2015.)
(((𝑅 “ ðī) ⊆ ðī ∧ ðĩ ∈ ðī) → [ðĩ]𝑅 = [ðĩ](𝑅 âˆĐ (ðī × ðī)))
 
Theoremqsinxp 6610 Restrict the equivalence relation in a quotient set to the base set. (Contributed by Mario Carneiro, 23-Feb-2015.)
((𝑅 “ ðī) ⊆ ðī → (ðī / 𝑅) = (ðī / (𝑅 âˆĐ (ðī × ðī))))
 
Theoremqsel 6611 If an element of a quotient set contains a given element, it is equal to the equivalence class of the element. (Contributed by Mario Carneiro, 12-Aug-2015.)
((𝑅 Er 𝑋 ∧ ðĩ ∈ (ðī / 𝑅) ∧ ðķ ∈ ðĩ) → ðĩ = [ðķ]𝑅)
 
Theoremqliftlem 6612* ðđ, a function lift, is a subset of 𝑅 × 𝑆. (Contributed by Mario Carneiro, 23-Dec-2016.)
ðđ = ran (ð‘Ĩ ∈ 𝑋 â†Ķ âŸĻ[ð‘Ĩ]𝑅, ðīâŸĐ)    &   ((𝜑 ∧ ð‘Ĩ ∈ 𝑋) → ðī ∈ 𝑌)    &   (𝜑 → 𝑅 Er 𝑋)    &   (𝜑 → 𝑋 ∈ V)    ⇒   ((𝜑 ∧ ð‘Ĩ ∈ 𝑋) → [ð‘Ĩ]𝑅 ∈ (𝑋 / 𝑅))
 
Theoremqliftrel 6613* ðđ, a function lift, is a subset of 𝑅 × 𝑆. (Contributed by Mario Carneiro, 23-Dec-2016.)
ðđ = ran (ð‘Ĩ ∈ 𝑋 â†Ķ âŸĻ[ð‘Ĩ]𝑅, ðīâŸĐ)    &   ((𝜑 ∧ ð‘Ĩ ∈ 𝑋) → ðī ∈ 𝑌)    &   (𝜑 → 𝑅 Er 𝑋)    &   (𝜑 → 𝑋 ∈ V)    ⇒   (𝜑 → ðđ ⊆ ((𝑋 / 𝑅) × 𝑌))
 
Theoremqliftel 6614* Elementhood in the relation ðđ. (Contributed by Mario Carneiro, 23-Dec-2016.)
ðđ = ran (ð‘Ĩ ∈ 𝑋 â†Ķ âŸĻ[ð‘Ĩ]𝑅, ðīâŸĐ)    &   ((𝜑 ∧ ð‘Ĩ ∈ 𝑋) → ðī ∈ 𝑌)    &   (𝜑 → 𝑅 Er 𝑋)    &   (𝜑 → 𝑋 ∈ V)    ⇒   (𝜑 → ([ðķ]𝑅ðđ𝐷 ↔ ∃ð‘Ĩ ∈ 𝑋 (ðķ𝑅ð‘Ĩ ∧ 𝐷 = ðī)))
 
Theoremqliftel1 6615* Elementhood in the relation ðđ. (Contributed by Mario Carneiro, 23-Dec-2016.)
ðđ = ran (ð‘Ĩ ∈ 𝑋 â†Ķ âŸĻ[ð‘Ĩ]𝑅, ðīâŸĐ)    &   ((𝜑 ∧ ð‘Ĩ ∈ 𝑋) → ðī ∈ 𝑌)    &   (𝜑 → 𝑅 Er 𝑋)    &   (𝜑 → 𝑋 ∈ V)    ⇒   ((𝜑 ∧ ð‘Ĩ ∈ 𝑋) → [ð‘Ĩ]𝑅ðđðī)
 
Theoremqliftfun 6616* The function ðđ is the unique function defined by ðđ‘[ð‘Ĩ] = ðī, provided that the well-definedness condition holds. (Contributed by Mario Carneiro, 23-Dec-2016.)
ðđ = ran (ð‘Ĩ ∈ 𝑋 â†Ķ âŸĻ[ð‘Ĩ]𝑅, ðīâŸĐ)    &   ((𝜑 ∧ ð‘Ĩ ∈ 𝑋) → ðī ∈ 𝑌)    &   (𝜑 → 𝑅 Er 𝑋)    &   (𝜑 → 𝑋 ∈ V)    &   (ð‘Ĩ = ð‘Ķ → ðī = ðĩ)    ⇒   (𝜑 → (Fun ðđ ↔ ∀ð‘Ĩ∀ð‘Ķ(ð‘Ĩ𝑅ð‘Ķ → ðī = ðĩ)))
 
Theoremqliftfund 6617* The function ðđ is the unique function defined by ðđ‘[ð‘Ĩ] = ðī, provided that the well-definedness condition holds. (Contributed by Mario Carneiro, 23-Dec-2016.)
ðđ = ran (ð‘Ĩ ∈ 𝑋 â†Ķ âŸĻ[ð‘Ĩ]𝑅, ðīâŸĐ)    &   ((𝜑 ∧ ð‘Ĩ ∈ 𝑋) → ðī ∈ 𝑌)    &   (𝜑 → 𝑅 Er 𝑋)    &   (𝜑 → 𝑋 ∈ V)    &   (ð‘Ĩ = ð‘Ķ → ðī = ðĩ)    &   ((𝜑 ∧ ð‘Ĩ𝑅ð‘Ķ) → ðī = ðĩ)    ⇒   (𝜑 → Fun ðđ)
 
Theoremqliftfuns 6618* The function ðđ is the unique function defined by ðđ‘[ð‘Ĩ] = ðī, provided that the well-definedness condition holds. (Contributed by Mario Carneiro, 23-Dec-2016.)
ðđ = ran (ð‘Ĩ ∈ 𝑋 â†Ķ âŸĻ[ð‘Ĩ]𝑅, ðīâŸĐ)    &   ((𝜑 ∧ ð‘Ĩ ∈ 𝑋) → ðī ∈ 𝑌)    &   (𝜑 → 𝑅 Er 𝑋)    &   (𝜑 → 𝑋 ∈ V)    ⇒   (𝜑 → (Fun ðđ ↔ ∀ð‘Ķ∀𝑧(ð‘Ķ𝑅𝑧 → âĶ‹ð‘Ķ / ð‘ĨâĶŒðī = âĶ‹ð‘§ / ð‘ĨâĶŒðī)))
 
Theoremqliftf 6619* The domain and codomain of the function ðđ. (Contributed by Mario Carneiro, 23-Dec-2016.)
ðđ = ran (ð‘Ĩ ∈ 𝑋 â†Ķ âŸĻ[ð‘Ĩ]𝑅, ðīâŸĐ)    &   ((𝜑 ∧ ð‘Ĩ ∈ 𝑋) → ðī ∈ 𝑌)    &   (𝜑 → 𝑅 Er 𝑋)    &   (𝜑 → 𝑋 ∈ V)    ⇒   (𝜑 → (Fun ðđ ↔ ðđ:(𝑋 / 𝑅)âŸķ𝑌))
 
Theoremqliftval 6620* The value of the function ðđ. (Contributed by Mario Carneiro, 23-Dec-2016.)
ðđ = ran (ð‘Ĩ ∈ 𝑋 â†Ķ âŸĻ[ð‘Ĩ]𝑅, ðīâŸĐ)    &   ((𝜑 ∧ ð‘Ĩ ∈ 𝑋) → ðī ∈ 𝑌)    &   (𝜑 → 𝑅 Er 𝑋)    &   (𝜑 → 𝑋 ∈ V)    &   (ð‘Ĩ = ðķ → ðī = ðĩ)    &   (𝜑 → Fun ðđ)    ⇒   ((𝜑 ∧ ðķ ∈ 𝑋) → (ðđ‘[ðķ]𝑅) = ðĩ)
 
Theoremecoptocl 6621* Implicit substitution of class for equivalence class of ordered pair. (Contributed by NM, 23-Jul-1995.)
𝑆 = ((ðĩ × ðķ) / 𝑅)    &   ([âŸĻð‘Ĩ, ð‘ĶâŸĐ]𝑅 = ðī → (𝜑 ↔ 𝜓))    &   ((ð‘Ĩ ∈ ðĩ ∧ ð‘Ķ ∈ ðķ) → 𝜑)    ⇒   (ðī ∈ 𝑆 → 𝜓)
 
Theorem2ecoptocl 6622* Implicit substitution of classes for equivalence classes of ordered pairs. (Contributed by NM, 23-Jul-1995.)
𝑆 = ((ðķ × 𝐷) / 𝑅)    &   ([âŸĻð‘Ĩ, ð‘ĶâŸĐ]𝑅 = ðī → (𝜑 ↔ 𝜓))    &   ([âŸĻ𝑧, ð‘ĪâŸĐ]𝑅 = ðĩ → (𝜓 ↔ 𝜒))    &   (((ð‘Ĩ ∈ ðķ ∧ ð‘Ķ ∈ 𝐷) ∧ (𝑧 ∈ ðķ ∧ ð‘Ī ∈ 𝐷)) → 𝜑)    ⇒   ((ðī ∈ 𝑆 ∧ ðĩ ∈ 𝑆) → 𝜒)
 
Theorem3ecoptocl 6623* Implicit substitution of classes for equivalence classes of ordered pairs. (Contributed by NM, 9-Aug-1995.)
𝑆 = ((𝐷 × 𝐷) / 𝑅)    &   ([âŸĻð‘Ĩ, ð‘ĶâŸĐ]𝑅 = ðī → (𝜑 ↔ 𝜓))    &   ([âŸĻ𝑧, ð‘ĪâŸĐ]𝑅 = ðĩ → (𝜓 ↔ 𝜒))    &   ([âŸĻð‘Ģ, ð‘ĒâŸĐ]𝑅 = ðķ → (𝜒 ↔ 𝜃))    &   (((ð‘Ĩ ∈ 𝐷 ∧ ð‘Ķ ∈ 𝐷) ∧ (𝑧 ∈ 𝐷 ∧ ð‘Ī ∈ 𝐷) ∧ (ð‘Ģ ∈ 𝐷 ∧ ð‘Ē ∈ 𝐷)) → 𝜑)    ⇒   ((ðī ∈ 𝑆 ∧ ðĩ ∈ 𝑆 ∧ ðķ ∈ 𝑆) → 𝜃)
 
Theorembrecop 6624* Binary relation on a quotient set. Lemma for real number construction. (Contributed by NM, 29-Jan-1996.)
∞ ∈ V    &    ∞ Er (𝐚 × 𝐚)    &   ðŧ = ((𝐚 × 𝐚) / ∞ )    &    â‰Ī = {âŸĻð‘Ĩ, ð‘ĶâŸĐ âˆĢ ((ð‘Ĩ ∈ ðŧ ∧ ð‘Ķ ∈ ðŧ) ∧ ∃𝑧∃ð‘Ī∃ð‘Ģ∃ð‘Ē((ð‘Ĩ = [âŸĻ𝑧, ð‘ĪâŸĐ] ∞ ∧ ð‘Ķ = [âŸĻð‘Ģ, ð‘ĒâŸĐ] ∞ ) ∧ 𝜑))}    &   ((((𝑧 ∈ 𝐚 ∧ ð‘Ī ∈ 𝐚) ∧ (ðī ∈ 𝐚 ∧ ðĩ ∈ 𝐚)) ∧ ((ð‘Ģ ∈ 𝐚 ∧ ð‘Ē ∈ 𝐚) ∧ (ðķ ∈ 𝐚 ∧ 𝐷 ∈ 𝐚))) → (([âŸĻ𝑧, ð‘ĪâŸĐ] ∞ = [âŸĻðī, ðĩâŸĐ] ∞ ∧ [âŸĻð‘Ģ, ð‘ĒâŸĐ] ∞ = [âŸĻðķ, 𝐷âŸĐ] ∞ ) → (𝜑 ↔ 𝜓)))    ⇒   (((ðī ∈ 𝐚 ∧ ðĩ ∈ 𝐚) ∧ (ðķ ∈ 𝐚 ∧ 𝐷 ∈ 𝐚)) → ([âŸĻðī, ðĩâŸĐ] ∞ â‰Ī [âŸĻðķ, 𝐷âŸĐ] ∞ ↔ 𝜓))
 
Theoremeroveu 6625* Lemma for eroprf 6627. (Contributed by Jeff Madsen, 10-Jun-2010.) (Revised by Mario Carneiro, 9-Jul-2014.)
ð― = (ðī / 𝑅)    &   ðū = (ðĩ / 𝑆)    &   (𝜑 → 𝑇 ∈ 𝑍)    &   (𝜑 → 𝑅 Er 𝑈)    &   (𝜑 → 𝑆 Er 𝑉)    &   (𝜑 → 𝑇 Er 𝑊)    &   (𝜑 → ðī ⊆ 𝑈)    &   (𝜑 → ðĩ ⊆ 𝑉)    &   (𝜑 → ðķ ⊆ 𝑊)    &   (𝜑 → + :(ðī × ðĩ)âŸķðķ)    &   ((𝜑 ∧ ((𝑟 ∈ ðī ∧ 𝑠 ∈ ðī) ∧ (ð‘Ą ∈ ðĩ ∧ ð‘Ē ∈ ðĩ))) → ((𝑟𝑅𝑠 ∧ ð‘Ąð‘†ð‘Ē) → (𝑟 + ð‘Ą)𝑇(𝑠 + ð‘Ē)))    ⇒   ((𝜑 ∧ (𝑋 ∈ ð― ∧ 𝑌 ∈ ðū)) → ∃!𝑧∃𝑝 ∈ ðī ∃𝑞 ∈ ðĩ ((𝑋 = [𝑝]𝑅 ∧ 𝑌 = [𝑞]𝑆) ∧ 𝑧 = [(𝑝 + 𝑞)]𝑇))
 
Theoremerovlem 6626* Lemma for eroprf 6627. (Contributed by Jeff Madsen, 10-Jun-2010.) (Revised by Mario Carneiro, 30-Dec-2014.)
ð― = (ðī / 𝑅)    &   ðū = (ðĩ / 𝑆)    &   (𝜑 → 𝑇 ∈ 𝑍)    &   (𝜑 → 𝑅 Er 𝑈)    &   (𝜑 → 𝑆 Er 𝑉)    &   (𝜑 → 𝑇 Er 𝑊)    &   (𝜑 → ðī ⊆ 𝑈)    &   (𝜑 → ðĩ ⊆ 𝑉)    &   (𝜑 → ðķ ⊆ 𝑊)    &   (𝜑 → + :(ðī × ðĩ)âŸķðķ)    &   ((𝜑 ∧ ((𝑟 ∈ ðī ∧ 𝑠 ∈ ðī) ∧ (ð‘Ą ∈ ðĩ ∧ ð‘Ē ∈ ðĩ))) → ((𝑟𝑅𝑠 ∧ ð‘Ąð‘†ð‘Ē) → (𝑟 + ð‘Ą)𝑇(𝑠 + ð‘Ē)))    &    âĻĢ = {âŸĻâŸĻð‘Ĩ, ð‘ĶâŸĐ, 𝑧âŸĐ âˆĢ ∃𝑝 ∈ ðī ∃𝑞 ∈ ðĩ ((ð‘Ĩ = [𝑝]𝑅 ∧ ð‘Ķ = [𝑞]𝑆) ∧ 𝑧 = [(𝑝 + 𝑞)]𝑇)}    ⇒   (𝜑 → âĻĢ = (ð‘Ĩ ∈ ð―, ð‘Ķ ∈ ðū â†Ķ (â„Đ𝑧∃𝑝 ∈ ðī ∃𝑞 ∈ ðĩ ((ð‘Ĩ = [𝑝]𝑅 ∧ ð‘Ķ = [𝑞]𝑆) ∧ 𝑧 = [(𝑝 + 𝑞)]𝑇))))
 
Theoremeroprf 6627* Functionality of an operation defined on equivalence classes. (Contributed by Jeff Madsen, 10-Jun-2010.) (Revised by Mario Carneiro, 30-Dec-2014.)
ð― = (ðī / 𝑅)    &   ðū = (ðĩ / 𝑆)    &   (𝜑 → 𝑇 ∈ 𝑍)    &   (𝜑 → 𝑅 Er 𝑈)    &   (𝜑 → 𝑆 Er 𝑉)    &   (𝜑 → 𝑇 Er 𝑊)    &   (𝜑 → ðī ⊆ 𝑈)    &   (𝜑 → ðĩ ⊆ 𝑉)    &   (𝜑 → ðķ ⊆ 𝑊)    &   (𝜑 → + :(ðī × ðĩ)âŸķðķ)    &   ((𝜑 ∧ ((𝑟 ∈ ðī ∧ 𝑠 ∈ ðī) ∧ (ð‘Ą ∈ ðĩ ∧ ð‘Ē ∈ ðĩ))) → ((𝑟𝑅𝑠 ∧ ð‘Ąð‘†ð‘Ē) → (𝑟 + ð‘Ą)𝑇(𝑠 + ð‘Ē)))    &    âĻĢ = {âŸĻâŸĻð‘Ĩ, ð‘ĶâŸĐ, 𝑧âŸĐ âˆĢ ∃𝑝 ∈ ðī ∃𝑞 ∈ ðĩ ((ð‘Ĩ = [𝑝]𝑅 ∧ ð‘Ķ = [𝑞]𝑆) ∧ 𝑧 = [(𝑝 + 𝑞)]𝑇)}    &   (𝜑 → 𝑅 ∈ 𝑋)    &   (𝜑 → 𝑆 ∈ 𝑌)    &   ðŋ = (ðķ / 𝑇)    ⇒   (𝜑 → âĻĢ :(ð― × ðū)âŸķðŋ)
 
Theoremeroprf2 6628* Functionality of an operation defined on equivalence classes. (Contributed by Jeff Madsen, 10-Jun-2010.)
ð― = (ðī / ∞ )    &    âĻĢ = {âŸĻâŸĻð‘Ĩ, ð‘ĶâŸĐ, 𝑧âŸĐ âˆĢ ∃𝑝 ∈ ðī ∃𝑞 ∈ ðī ((ð‘Ĩ = [𝑝] ∞ ∧ ð‘Ķ = [𝑞] ∞ ) ∧ 𝑧 = [(𝑝 + 𝑞)] ∞ )}    &   (𝜑 → ∞ ∈ 𝑋)    &   (𝜑 → ∞ Er 𝑈)    &   (𝜑 → ðī ⊆ 𝑈)    &   (𝜑 → + :(ðī × ðī)âŸķðī)    &   ((𝜑 ∧ ((𝑟 ∈ ðī ∧ 𝑠 ∈ ðī) ∧ (ð‘Ą ∈ ðī ∧ ð‘Ē ∈ ðī))) → ((𝑟 ∞ 𝑠 ∧ ð‘Ą ∞ ð‘Ē) → (𝑟 + ð‘Ą) ∞ (𝑠 + ð‘Ē)))    ⇒   (𝜑 → âĻĢ :(ð― × ð―)âŸķð―)
 
Theoremecopoveq 6629* This is the first of several theorems about equivalence relations of the kind used in construction of fractions and signed reals, involving operations on equivalent classes of ordered pairs. This theorem expresses the relation ∞ (specified by the hypothesis) in terms of its operation ðđ. (Contributed by NM, 16-Aug-1995.)
∞ = {âŸĻð‘Ĩ, ð‘ĶâŸĐ âˆĢ ((ð‘Ĩ ∈ (𝑆 × 𝑆) ∧ ð‘Ķ ∈ (𝑆 × 𝑆)) ∧ ∃𝑧∃ð‘Ī∃ð‘Ģ∃ð‘Ē((ð‘Ĩ = âŸĻ𝑧, ð‘ĪâŸĐ ∧ ð‘Ķ = âŸĻð‘Ģ, ð‘ĒâŸĐ) ∧ (𝑧 + ð‘Ē) = (ð‘Ī + ð‘Ģ)))}    ⇒   (((ðī ∈ 𝑆 ∧ ðĩ ∈ 𝑆) ∧ (ðķ ∈ 𝑆 ∧ 𝐷 ∈ 𝑆)) → (âŸĻðī, ðĩâŸĐ ∞ âŸĻðķ, 𝐷âŸĐ ↔ (ðī + 𝐷) = (ðĩ + ðķ)))
 
Theoremecopovsym 6630* Assuming the operation ðđ is commutative, show that the relation ∞, specified by the first hypothesis, is symmetric. (Contributed by NM, 27-Aug-1995.) (Revised by Mario Carneiro, 26-Apr-2015.)
∞ = {âŸĻð‘Ĩ, ð‘ĶâŸĐ âˆĢ ((ð‘Ĩ ∈ (𝑆 × 𝑆) ∧ ð‘Ķ ∈ (𝑆 × 𝑆)) ∧ ∃𝑧∃ð‘Ī∃ð‘Ģ∃ð‘Ē((ð‘Ĩ = âŸĻ𝑧, ð‘ĪâŸĐ ∧ ð‘Ķ = âŸĻð‘Ģ, ð‘ĒâŸĐ) ∧ (𝑧 + ð‘Ē) = (ð‘Ī + ð‘Ģ)))}    &   (ð‘Ĩ + ð‘Ķ) = (ð‘Ķ + ð‘Ĩ)    ⇒   (ðī ∞ ðĩ → ðĩ ∞ ðī)
 
Theoremecopovtrn 6631* Assuming that operation ðđ is commutative (second hypothesis), closed (third hypothesis), associative (fourth hypothesis), and has the cancellation property (fifth hypothesis), show that the relation ∞, specified by the first hypothesis, is transitive. (Contributed by NM, 11-Feb-1996.) (Revised by Mario Carneiro, 26-Apr-2015.)
∞ = {âŸĻð‘Ĩ, ð‘ĶâŸĐ âˆĢ ((ð‘Ĩ ∈ (𝑆 × 𝑆) ∧ ð‘Ķ ∈ (𝑆 × 𝑆)) ∧ ∃𝑧∃ð‘Ī∃ð‘Ģ∃ð‘Ē((ð‘Ĩ = âŸĻ𝑧, ð‘ĪâŸĐ ∧ ð‘Ķ = âŸĻð‘Ģ, ð‘ĒâŸĐ) ∧ (𝑧 + ð‘Ē) = (ð‘Ī + ð‘Ģ)))}    &   (ð‘Ĩ + ð‘Ķ) = (ð‘Ķ + ð‘Ĩ)    &   ((ð‘Ĩ ∈ 𝑆 ∧ ð‘Ķ ∈ 𝑆) → (ð‘Ĩ + ð‘Ķ) ∈ 𝑆)    &   ((ð‘Ĩ + ð‘Ķ) + 𝑧) = (ð‘Ĩ + (ð‘Ķ + 𝑧))    &   ((ð‘Ĩ ∈ 𝑆 ∧ ð‘Ķ ∈ 𝑆) → ((ð‘Ĩ + ð‘Ķ) = (ð‘Ĩ + 𝑧) → ð‘Ķ = 𝑧))    ⇒   ((ðī ∞ ðĩ ∧ ðĩ ∞ ðķ) → ðī ∞ ðķ)
 
Theoremecopover 6632* Assuming that operation ðđ is commutative (second hypothesis), closed (third hypothesis), associative (fourth hypothesis), and has the cancellation property (fifth hypothesis), show that the relation ∞, specified by the first hypothesis, is an equivalence relation. (Contributed by NM, 16-Feb-1996.) (Revised by Mario Carneiro, 12-Aug-2015.)
∞ = {âŸĻð‘Ĩ, ð‘ĶâŸĐ âˆĢ ((ð‘Ĩ ∈ (𝑆 × 𝑆) ∧ ð‘Ķ ∈ (𝑆 × 𝑆)) ∧ ∃𝑧∃ð‘Ī∃ð‘Ģ∃ð‘Ē((ð‘Ĩ = âŸĻ𝑧, ð‘ĪâŸĐ ∧ ð‘Ķ = âŸĻð‘Ģ, ð‘ĒâŸĐ) ∧ (𝑧 + ð‘Ē) = (ð‘Ī + ð‘Ģ)))}    &   (ð‘Ĩ + ð‘Ķ) = (ð‘Ķ + ð‘Ĩ)    &   ((ð‘Ĩ ∈ 𝑆 ∧ ð‘Ķ ∈ 𝑆) → (ð‘Ĩ + ð‘Ķ) ∈ 𝑆)    &   ((ð‘Ĩ + ð‘Ķ) + 𝑧) = (ð‘Ĩ + (ð‘Ķ + 𝑧))    &   ((ð‘Ĩ ∈ 𝑆 ∧ ð‘Ķ ∈ 𝑆) → ((ð‘Ĩ + ð‘Ķ) = (ð‘Ĩ + 𝑧) → ð‘Ķ = 𝑧))    ⇒    ∞ Er (𝑆 × 𝑆)
 
Theoremecopovsymg 6633* Assuming the operation ðđ is commutative, show that the relation ∞, specified by the first hypothesis, is symmetric. (Contributed by Jim Kingdon, 1-Sep-2019.)
∞ = {âŸĻð‘Ĩ, ð‘ĶâŸĐ âˆĢ ((ð‘Ĩ ∈ (𝑆 × 𝑆) ∧ ð‘Ķ ∈ (𝑆 × 𝑆)) ∧ ∃𝑧∃ð‘Ī∃ð‘Ģ∃ð‘Ē((ð‘Ĩ = âŸĻ𝑧, ð‘ĪâŸĐ ∧ ð‘Ķ = âŸĻð‘Ģ, ð‘ĒâŸĐ) ∧ (𝑧 + ð‘Ē) = (ð‘Ī + ð‘Ģ)))}    &   ((ð‘Ĩ ∈ 𝑆 ∧ ð‘Ķ ∈ 𝑆) → (ð‘Ĩ + ð‘Ķ) = (ð‘Ķ + ð‘Ĩ))    ⇒   (ðī ∞ ðĩ → ðĩ ∞ ðī)
 
Theoremecopovtrng 6634* Assuming that operation ðđ is commutative (second hypothesis), closed (third hypothesis), associative (fourth hypothesis), and has the cancellation property (fifth hypothesis), show that the relation ∞, specified by the first hypothesis, is transitive. (Contributed by Jim Kingdon, 1-Sep-2019.)
∞ = {âŸĻð‘Ĩ, ð‘ĶâŸĐ âˆĢ ((ð‘Ĩ ∈ (𝑆 × 𝑆) ∧ ð‘Ķ ∈ (𝑆 × 𝑆)) ∧ ∃𝑧∃ð‘Ī∃ð‘Ģ∃ð‘Ē((ð‘Ĩ = âŸĻ𝑧, ð‘ĪâŸĐ ∧ ð‘Ķ = âŸĻð‘Ģ, ð‘ĒâŸĐ) ∧ (𝑧 + ð‘Ē) = (ð‘Ī + ð‘Ģ)))}    &   ((ð‘Ĩ ∈ 𝑆 ∧ ð‘Ķ ∈ 𝑆) → (ð‘Ĩ + ð‘Ķ) = (ð‘Ķ + ð‘Ĩ))    &   ((ð‘Ĩ ∈ 𝑆 ∧ ð‘Ķ ∈ 𝑆) → (ð‘Ĩ + ð‘Ķ) ∈ 𝑆)    &   ((ð‘Ĩ ∈ 𝑆 ∧ ð‘Ķ ∈ 𝑆 ∧ 𝑧 ∈ 𝑆) → ((ð‘Ĩ + ð‘Ķ) + 𝑧) = (ð‘Ĩ + (ð‘Ķ + 𝑧)))    &   ((ð‘Ĩ ∈ 𝑆 ∧ ð‘Ķ ∈ 𝑆 ∧ 𝑧 ∈ 𝑆) → ((ð‘Ĩ + ð‘Ķ) = (ð‘Ĩ + 𝑧) → ð‘Ķ = 𝑧))    ⇒   ((ðī ∞ ðĩ ∧ ðĩ ∞ ðķ) → ðī ∞ ðķ)
 
Theoremecopoverg 6635* Assuming that operation ðđ is commutative (second hypothesis), closed (third hypothesis), associative (fourth hypothesis), and has the cancellation property (fifth hypothesis), show that the relation ∞, specified by the first hypothesis, is an equivalence relation. (Contributed by Jim Kingdon, 1-Sep-2019.)
∞ = {âŸĻð‘Ĩ, ð‘ĶâŸĐ âˆĢ ((ð‘Ĩ ∈ (𝑆 × 𝑆) ∧ ð‘Ķ ∈ (𝑆 × 𝑆)) ∧ ∃𝑧∃ð‘Ī∃ð‘Ģ∃ð‘Ē((ð‘Ĩ = âŸĻ𝑧, ð‘ĪâŸĐ ∧ ð‘Ķ = âŸĻð‘Ģ, ð‘ĒâŸĐ) ∧ (𝑧 + ð‘Ē) = (ð‘Ī + ð‘Ģ)))}    &   ((ð‘Ĩ ∈ 𝑆 ∧ ð‘Ķ ∈ 𝑆) → (ð‘Ĩ + ð‘Ķ) = (ð‘Ķ + ð‘Ĩ))    &   ((ð‘Ĩ ∈ 𝑆 ∧ ð‘Ķ ∈ 𝑆) → (ð‘Ĩ + ð‘Ķ) ∈ 𝑆)    &   ((ð‘Ĩ ∈ 𝑆 ∧ ð‘Ķ ∈ 𝑆 ∧ 𝑧 ∈ 𝑆) → ((ð‘Ĩ + ð‘Ķ) + 𝑧) = (ð‘Ĩ + (ð‘Ķ + 𝑧)))    &   ((ð‘Ĩ ∈ 𝑆 ∧ ð‘Ķ ∈ 𝑆 ∧ 𝑧 ∈ 𝑆) → ((ð‘Ĩ + ð‘Ķ) = (ð‘Ĩ + 𝑧) → ð‘Ķ = 𝑧))    ⇒    ∞ Er (𝑆 × 𝑆)
 
Theoremth3qlem1 6636* Lemma for Exercise 44 version of Theorem 3Q of [Enderton] p. 60. The third hypothesis is the compatibility assumption. (Contributed by NM, 3-Aug-1995.) (Revised by Mario Carneiro, 9-Jul-2014.)
∞ Er 𝑆    &   (((ð‘Ķ ∈ 𝑆 ∧ ð‘Ī ∈ 𝑆) ∧ (𝑧 ∈ 𝑆 ∧ ð‘Ģ ∈ 𝑆)) → ((ð‘Ķ ∞ ð‘Ī ∧ 𝑧 ∞ ð‘Ģ) → (ð‘Ķ + 𝑧) ∞ (ð‘Ī + ð‘Ģ)))    ⇒   ((ðī ∈ (𝑆 / ∞ ) ∧ ðĩ ∈ (𝑆 / ∞ )) → ∃*ð‘Ĩ∃ð‘Ķ∃𝑧((ðī = [ð‘Ķ] ∞ ∧ ðĩ = [𝑧] ∞ ) ∧ ð‘Ĩ = [(ð‘Ķ + 𝑧)] ∞ ))
 
Theoremth3qlem2 6637* Lemma for Exercise 44 version of Theorem 3Q of [Enderton] p. 60, extended to operations on ordered pairs. The fourth hypothesis is the compatibility assumption. (Contributed by NM, 4-Aug-1995.) (Revised by Mario Carneiro, 12-Aug-2015.)
∞ ∈ V    &    ∞ Er (𝑆 × 𝑆)    &   ((((ð‘Ī ∈ 𝑆 ∧ ð‘Ģ ∈ 𝑆) ∧ (ð‘Ē ∈ 𝑆 ∧ ð‘Ą ∈ 𝑆)) ∧ ((𝑠 ∈ 𝑆 ∧ 𝑓 ∈ 𝑆) ∧ (𝑔 ∈ 𝑆 ∧ ℎ ∈ 𝑆))) → ((âŸĻð‘Ī, ð‘ĢâŸĐ ∞ âŸĻð‘Ē, ð‘ĄâŸĐ ∧ âŸĻ𝑠, 𝑓âŸĐ ∞ âŸĻ𝑔, ℎâŸĐ) → (âŸĻð‘Ī, ð‘ĢâŸĐ + âŸĻ𝑠, 𝑓âŸĐ) ∞ (âŸĻð‘Ē, ð‘ĄâŸĐ + âŸĻ𝑔, ℎâŸĐ)))    ⇒   ((ðī ∈ ((𝑆 × 𝑆) / ∞ ) ∧ ðĩ ∈ ((𝑆 × 𝑆) / ∞ )) → ∃*𝑧∃ð‘Ī∃ð‘Ģ∃ð‘Ēâˆƒð‘Ą((ðī = [âŸĻð‘Ī, ð‘ĢâŸĐ] ∞ ∧ ðĩ = [âŸĻð‘Ē, ð‘ĄâŸĐ] ∞ ) ∧ 𝑧 = [(âŸĻð‘Ī, ð‘ĢâŸĐ + âŸĻð‘Ē, ð‘ĄâŸĐ)] ∞ ))
 
Theoremth3qcor 6638* Corollary of Theorem 3Q of [Enderton] p. 60. (Contributed by NM, 12-Nov-1995.) (Revised by David Abernethy, 4-Jun-2013.)
∞ ∈ V    &    ∞ Er (𝑆 × 𝑆)    &   ((((ð‘Ī ∈ 𝑆 ∧ ð‘Ģ ∈ 𝑆) ∧ (ð‘Ē ∈ 𝑆 ∧ ð‘Ą ∈ 𝑆)) ∧ ((𝑠 ∈ 𝑆 ∧ 𝑓 ∈ 𝑆) ∧ (𝑔 ∈ 𝑆 ∧ ℎ ∈ 𝑆))) → ((âŸĻð‘Ī, ð‘ĢâŸĐ ∞ âŸĻð‘Ē, ð‘ĄâŸĐ ∧ âŸĻ𝑠, 𝑓âŸĐ ∞ âŸĻ𝑔, ℎâŸĐ) → (âŸĻð‘Ī, ð‘ĢâŸĐ + âŸĻ𝑠, 𝑓âŸĐ) ∞ (âŸĻð‘Ē, ð‘ĄâŸĐ + âŸĻ𝑔, ℎâŸĐ)))    &   ðš = {âŸĻâŸĻð‘Ĩ, ð‘ĶâŸĐ, 𝑧âŸĐ âˆĢ ((ð‘Ĩ ∈ ((𝑆 × 𝑆) / ∞ ) ∧ ð‘Ķ ∈ ((𝑆 × 𝑆) / ∞ )) ∧ ∃ð‘Ī∃ð‘Ģ∃ð‘Ēâˆƒð‘Ą((ð‘Ĩ = [âŸĻð‘Ī, ð‘ĢâŸĐ] ∞ ∧ ð‘Ķ = [âŸĻð‘Ē, ð‘ĄâŸĐ] ∞ ) ∧ 𝑧 = [(âŸĻð‘Ī, ð‘ĢâŸĐ + âŸĻð‘Ē, ð‘ĄâŸĐ)] ∞ ))}    ⇒   Fun 𝐚
 
Theoremth3q 6639* Theorem 3Q of [Enderton] p. 60, extended to operations on ordered pairs. (Contributed by NM, 4-Aug-1995.) (Revised by Mario Carneiro, 19-Dec-2013.)
∞ ∈ V    &    ∞ Er (𝑆 × 𝑆)    &   ((((ð‘Ī ∈ 𝑆 ∧ ð‘Ģ ∈ 𝑆) ∧ (ð‘Ē ∈ 𝑆 ∧ ð‘Ą ∈ 𝑆)) ∧ ((𝑠 ∈ 𝑆 ∧ 𝑓 ∈ 𝑆) ∧ (𝑔 ∈ 𝑆 ∧ ℎ ∈ 𝑆))) → ((âŸĻð‘Ī, ð‘ĢâŸĐ ∞ âŸĻð‘Ē, ð‘ĄâŸĐ ∧ âŸĻ𝑠, 𝑓âŸĐ ∞ âŸĻ𝑔, ℎâŸĐ) → (âŸĻð‘Ī, ð‘ĢâŸĐ + âŸĻ𝑠, 𝑓âŸĐ) ∞ (âŸĻð‘Ē, ð‘ĄâŸĐ + âŸĻ𝑔, ℎâŸĐ)))    &   ðš = {âŸĻâŸĻð‘Ĩ, ð‘ĶâŸĐ, 𝑧âŸĐ âˆĢ ((ð‘Ĩ ∈ ((𝑆 × 𝑆) / ∞ ) ∧ ð‘Ķ ∈ ((𝑆 × 𝑆) / ∞ )) ∧ ∃ð‘Ī∃ð‘Ģ∃ð‘Ēâˆƒð‘Ą((ð‘Ĩ = [âŸĻð‘Ī, ð‘ĢâŸĐ] ∞ ∧ ð‘Ķ = [âŸĻð‘Ē, ð‘ĄâŸĐ] ∞ ) ∧ 𝑧 = [(âŸĻð‘Ī, ð‘ĢâŸĐ + âŸĻð‘Ē, ð‘ĄâŸĐ)] ∞ ))}    ⇒   (((ðī ∈ 𝑆 ∧ ðĩ ∈ 𝑆) ∧ (ðķ ∈ 𝑆 ∧ 𝐷 ∈ 𝑆)) → ([âŸĻðī, ðĩâŸĐ] ∞ 𝐚[âŸĻðķ, 𝐷âŸĐ] ∞ ) = [(âŸĻðī, ðĩâŸĐ + âŸĻðķ, 𝐷âŸĐ)] ∞ )
 
Theoremoviec 6640* Express an operation on equivalence classes of ordered pairs in terms of equivalence class of operations on ordered pairs. See iset.mm for additional comments describing the hypotheses. (Unnecessary distinct variable restrictions were removed by David Abernethy, 4-Jun-2013.) (Contributed by NM, 6-Aug-1995.) (Revised by Mario Carneiro, 4-Jun-2013.)
(((ðī ∈ 𝑆 ∧ ðĩ ∈ 𝑆) ∧ (ðķ ∈ 𝑆 ∧ 𝐷 ∈ 𝑆)) → ðŧ ∈ (𝑆 × 𝑆))    &   (((𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝑆) ∧ (𝑔 ∈ 𝑆 ∧ ℎ ∈ 𝑆)) → ðū ∈ (𝑆 × 𝑆))    &   (((𝑐 ∈ 𝑆 ∧ 𝑑 ∈ 𝑆) ∧ (ð‘Ą ∈ 𝑆 ∧ 𝑠 ∈ 𝑆)) → ðŋ ∈ (𝑆 × 𝑆))    &    ∞ ∈ V    &    ∞ Er (𝑆 × 𝑆)    &    ∞ = {âŸĻð‘Ĩ, ð‘ĶâŸĐ âˆĢ ((ð‘Ĩ ∈ (𝑆 × 𝑆) ∧ ð‘Ķ ∈ (𝑆 × 𝑆)) ∧ ∃𝑧∃ð‘Ī∃ð‘Ģ∃ð‘Ē((ð‘Ĩ = âŸĻ𝑧, ð‘ĪâŸĐ ∧ ð‘Ķ = âŸĻð‘Ģ, ð‘ĒâŸĐ) ∧ 𝜑))}    &   (((𝑧 = 𝑎 ∧ ð‘Ī = 𝑏) ∧ (ð‘Ģ = 𝑐 ∧ ð‘Ē = 𝑑)) → (𝜑 ↔ 𝜓))    &   (((𝑧 = 𝑔 ∧ ð‘Ī = ℎ) ∧ (ð‘Ģ = ð‘Ą ∧ ð‘Ē = 𝑠)) → (𝜑 ↔ 𝜒))    &    + = {âŸĻâŸĻð‘Ĩ, ð‘ĶâŸĐ, 𝑧âŸĐ âˆĢ ((ð‘Ĩ ∈ (𝑆 × 𝑆) ∧ ð‘Ķ ∈ (𝑆 × 𝑆)) ∧ ∃ð‘Ī∃ð‘Ģ∃ð‘Ē∃𝑓((ð‘Ĩ = âŸĻð‘Ī, ð‘ĢâŸĐ ∧ ð‘Ķ = âŸĻð‘Ē, 𝑓âŸĐ) ∧ 𝑧 = ð―))}    &   (((ð‘Ī = 𝑎 ∧ ð‘Ģ = 𝑏) ∧ (ð‘Ē = 𝑔 ∧ 𝑓 = ℎ)) → ð― = ðū)    &   (((ð‘Ī = 𝑐 ∧ ð‘Ģ = 𝑑) ∧ (ð‘Ē = ð‘Ą ∧ 𝑓 = 𝑠)) → ð― = ðŋ)    &   (((ð‘Ī = ðī ∧ ð‘Ģ = ðĩ) ∧ (ð‘Ē = ðķ ∧ 𝑓 = 𝐷)) → ð― = ðŧ)    &    âĻĢ = {âŸĻâŸĻð‘Ĩ, ð‘ĶâŸĐ, 𝑧âŸĐ âˆĢ ((ð‘Ĩ ∈ 𝑄 ∧ ð‘Ķ ∈ 𝑄) ∧ ∃𝑎∃𝑏∃𝑐∃𝑑((ð‘Ĩ = [âŸĻ𝑎, 𝑏âŸĐ] ∞ ∧ ð‘Ķ = [âŸĻ𝑐, 𝑑âŸĐ] ∞ ) ∧ 𝑧 = [(âŸĻ𝑎, 𝑏âŸĐ + âŸĻ𝑐, 𝑑âŸĐ)] ∞ ))}    &   ð‘„ = ((𝑆 × 𝑆) / ∞ )    &   ((((𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝑆) ∧ (𝑐 ∈ 𝑆 ∧ 𝑑 ∈ 𝑆)) ∧ ((𝑔 ∈ 𝑆 ∧ ℎ ∈ 𝑆) ∧ (ð‘Ą ∈ 𝑆 ∧ 𝑠 ∈ 𝑆))) → ((𝜓 ∧ 𝜒) → ðū ∞ ðŋ))    ⇒   (((ðī ∈ 𝑆 ∧ ðĩ ∈ 𝑆) ∧ (ðķ ∈ 𝑆 ∧ 𝐷 ∈ 𝑆)) → ([âŸĻðī, ðĩâŸĐ] ∞ âĻĢ [âŸĻðķ, 𝐷âŸĐ] ∞ ) = [ðŧ] ∞ )
 
Theoremecovcom 6641* Lemma used to transfer a commutative law via an equivalence relation. Most uses will want ecovicom 6642 instead. (Contributed by NM, 29-Aug-1995.) (Revised by David Abernethy, 4-Jun-2013.)
ðķ = ((𝑆 × 𝑆) / ∞ )    &   (((ð‘Ĩ ∈ 𝑆 ∧ ð‘Ķ ∈ 𝑆) ∧ (𝑧 ∈ 𝑆 ∧ ð‘Ī ∈ 𝑆)) → ([âŸĻð‘Ĩ, ð‘ĶâŸĐ] ∞ + [âŸĻ𝑧, ð‘ĪâŸĐ] ∞ ) = [âŸĻ𝐷, 𝐚âŸĐ] ∞ )    &   (((𝑧 ∈ 𝑆 ∧ ð‘Ī ∈ 𝑆) ∧ (ð‘Ĩ ∈ 𝑆 ∧ ð‘Ķ ∈ 𝑆)) → ([âŸĻ𝑧, ð‘ĪâŸĐ] ∞ + [âŸĻð‘Ĩ, ð‘ĶâŸĐ] ∞ ) = [âŸĻðŧ, ð―âŸĐ] ∞ )    &   ð· = ðŧ    &   ðš = ð―    ⇒   ((ðī ∈ ðķ ∧ ðĩ ∈ ðķ) → (ðī + ðĩ) = (ðĩ + ðī))
 
Theoremecovicom 6642* Lemma used to transfer a commutative law via an equivalence relation. (Contributed by Jim Kingdon, 15-Sep-2019.)
ðķ = ((𝑆 × 𝑆) / ∞ )    &   (((ð‘Ĩ ∈ 𝑆 ∧ ð‘Ķ ∈ 𝑆) ∧ (𝑧 ∈ 𝑆 ∧ ð‘Ī ∈ 𝑆)) → ([âŸĻð‘Ĩ, ð‘ĶâŸĐ] ∞ + [âŸĻ𝑧, ð‘ĪâŸĐ] ∞ ) = [âŸĻ𝐷, 𝐚âŸĐ] ∞ )    &   (((𝑧 ∈ 𝑆 ∧ ð‘Ī ∈ 𝑆) ∧ (ð‘Ĩ ∈ 𝑆 ∧ ð‘Ķ ∈ 𝑆)) → ([âŸĻ𝑧, ð‘ĪâŸĐ] ∞ + [âŸĻð‘Ĩ, ð‘ĶâŸĐ] ∞ ) = [âŸĻðŧ, ð―âŸĐ] ∞ )    &   (((ð‘Ĩ ∈ 𝑆 ∧ ð‘Ķ ∈ 𝑆) ∧ (𝑧 ∈ 𝑆 ∧ ð‘Ī ∈ 𝑆)) → 𝐷 = ðŧ)    &   (((ð‘Ĩ ∈ 𝑆 ∧ ð‘Ķ ∈ 𝑆) ∧ (𝑧 ∈ 𝑆 ∧ ð‘Ī ∈ 𝑆)) → 𝐚 = ð―)    ⇒   ((ðī ∈ ðķ ∧ ðĩ ∈ ðķ) → (ðī + ðĩ) = (ðĩ + ðī))
 
Theoremecovass 6643* Lemma used to transfer an associative law via an equivalence relation. In most cases ecoviass 6644 will be more useful. (Contributed by NM, 31-Aug-1995.) (Revised by David Abernethy, 4-Jun-2013.)
𝐷 = ((𝑆 × 𝑆) / ∞ )    &   (((ð‘Ĩ ∈ 𝑆 ∧ ð‘Ķ ∈ 𝑆) ∧ (𝑧 ∈ 𝑆 ∧ ð‘Ī ∈ 𝑆)) → ([âŸĻð‘Ĩ, ð‘ĶâŸĐ] ∞ + [âŸĻ𝑧, ð‘ĪâŸĐ] ∞ ) = [âŸĻ𝐚, ðŧâŸĐ] ∞ )    &   (((𝑧 ∈ 𝑆 ∧ ð‘Ī ∈ 𝑆) ∧ (ð‘Ģ ∈ 𝑆 ∧ ð‘Ē ∈ 𝑆)) → ([âŸĻ𝑧, ð‘ĪâŸĐ] ∞ + [âŸĻð‘Ģ, ð‘ĒâŸĐ] ∞ ) = [âŸĻ𝑁, 𝑄âŸĐ] ∞ )    &   (((𝐚 ∈ 𝑆 ∧ ðŧ ∈ 𝑆) ∧ (ð‘Ģ ∈ 𝑆 ∧ ð‘Ē ∈ 𝑆)) → ([âŸĻ𝐚, ðŧâŸĐ] ∞ + [âŸĻð‘Ģ, ð‘ĒâŸĐ] ∞ ) = [âŸĻð―, ðūâŸĐ] ∞ )    &   (((ð‘Ĩ ∈ 𝑆 ∧ ð‘Ķ ∈ 𝑆) ∧ (𝑁 ∈ 𝑆 ∧ 𝑄 ∈ 𝑆)) → ([âŸĻð‘Ĩ, ð‘ĶâŸĐ] ∞ + [âŸĻ𝑁, 𝑄âŸĐ] ∞ ) = [âŸĻðŋ, 𝑀âŸĐ] ∞ )    &   (((ð‘Ĩ ∈ 𝑆 ∧ ð‘Ķ ∈ 𝑆) ∧ (𝑧 ∈ 𝑆 ∧ ð‘Ī ∈ 𝑆)) → (𝐚 ∈ 𝑆 ∧ ðŧ ∈ 𝑆))    &   (((𝑧 ∈ 𝑆 ∧ ð‘Ī ∈ 𝑆) ∧ (ð‘Ģ ∈ 𝑆 ∧ ð‘Ē ∈ 𝑆)) → (𝑁 ∈ 𝑆 ∧ 𝑄 ∈ 𝑆))    &   ð― = ðŋ    &   ðū = 𝑀    ⇒   ((ðī ∈ 𝐷 ∧ ðĩ ∈ 𝐷 ∧ ðķ ∈ 𝐷) → ((ðī + ðĩ) + ðķ) = (ðī + (ðĩ + ðķ)))
 
Theoremecoviass 6644* Lemma used to transfer an associative law via an equivalence relation. (Contributed by Jim Kingdon, 16-Sep-2019.)
𝐷 = ((𝑆 × 𝑆) / ∞ )    &   (((ð‘Ĩ ∈ 𝑆 ∧ ð‘Ķ ∈ 𝑆) ∧ (𝑧 ∈ 𝑆 ∧ ð‘Ī ∈ 𝑆)) → ([âŸĻð‘Ĩ, ð‘ĶâŸĐ] ∞ + [âŸĻ𝑧, ð‘ĪâŸĐ] ∞ ) = [âŸĻ𝐚, ðŧâŸĐ] ∞ )    &   (((𝑧 ∈ 𝑆 ∧ ð‘Ī ∈ 𝑆) ∧ (ð‘Ģ ∈ 𝑆 ∧ ð‘Ē ∈ 𝑆)) → ([âŸĻ𝑧, ð‘ĪâŸĐ] ∞ + [âŸĻð‘Ģ, ð‘ĒâŸĐ] ∞ ) = [âŸĻ𝑁, 𝑄âŸĐ] ∞ )    &   (((𝐚 ∈ 𝑆 ∧ ðŧ ∈ 𝑆) ∧ (ð‘Ģ ∈ 𝑆 ∧ ð‘Ē ∈ 𝑆)) → ([âŸĻ𝐚, ðŧâŸĐ] ∞ + [âŸĻð‘Ģ, ð‘ĒâŸĐ] ∞ ) = [âŸĻð―, ðūâŸĐ] ∞ )    &   (((ð‘Ĩ ∈ 𝑆 ∧ ð‘Ķ ∈ 𝑆) ∧ (𝑁 ∈ 𝑆 ∧ 𝑄 ∈ 𝑆)) → ([âŸĻð‘Ĩ, ð‘ĶâŸĐ] ∞ + [âŸĻ𝑁, 𝑄âŸĐ] ∞ ) = [âŸĻðŋ, 𝑀âŸĐ] ∞ )    &   (((ð‘Ĩ ∈ 𝑆 ∧ ð‘Ķ ∈ 𝑆) ∧ (𝑧 ∈ 𝑆 ∧ ð‘Ī ∈ 𝑆)) → (𝐚 ∈ 𝑆 ∧ ðŧ ∈ 𝑆))    &   (((𝑧 ∈ 𝑆 ∧ ð‘Ī ∈ 𝑆) ∧ (ð‘Ģ ∈ 𝑆 ∧ ð‘Ē ∈ 𝑆)) → (𝑁 ∈ 𝑆 ∧ 𝑄 ∈ 𝑆))    &   (((ð‘Ĩ ∈ 𝑆 ∧ ð‘Ķ ∈ 𝑆) ∧ (𝑧 ∈ 𝑆 ∧ ð‘Ī ∈ 𝑆) ∧ (ð‘Ģ ∈ 𝑆 ∧ ð‘Ē ∈ 𝑆)) → ð― = ðŋ)    &   (((ð‘Ĩ ∈ 𝑆 ∧ ð‘Ķ ∈ 𝑆) ∧ (𝑧 ∈ 𝑆 ∧ ð‘Ī ∈ 𝑆) ∧ (ð‘Ģ ∈ 𝑆 ∧ ð‘Ē ∈ 𝑆)) → ðū = 𝑀)    ⇒   ((ðī ∈ 𝐷 ∧ ðĩ ∈ 𝐷 ∧ ðķ ∈ 𝐷) → ((ðī + ðĩ) + ðķ) = (ðī + (ðĩ + ðķ)))
 
Theoremecovdi 6645* Lemma used to transfer a distributive law via an equivalence relation. Most likely ecovidi 6646 will be more helpful. (Contributed by NM, 2-Sep-1995.) (Revised by David Abernethy, 4-Jun-2013.)
𝐷 = ((𝑆 × 𝑆) / ∞ )    &   (((𝑧 ∈ 𝑆 ∧ ð‘Ī ∈ 𝑆) ∧ (ð‘Ģ ∈ 𝑆 ∧ ð‘Ē ∈ 𝑆)) → ([âŸĻ𝑧, ð‘ĪâŸĐ] ∞ + [âŸĻð‘Ģ, ð‘ĒâŸĐ] ∞ ) = [âŸĻ𝑀, 𝑁âŸĐ] ∞ )    &   (((ð‘Ĩ ∈ 𝑆 ∧ ð‘Ķ ∈ 𝑆) ∧ (𝑀 ∈ 𝑆 ∧ 𝑁 ∈ 𝑆)) → ([âŸĻð‘Ĩ, ð‘ĶâŸĐ] ∞ · [âŸĻ𝑀, 𝑁âŸĐ] ∞ ) = [âŸĻðŧ, ð―âŸĐ] ∞ )    &   (((ð‘Ĩ ∈ 𝑆 ∧ ð‘Ķ ∈ 𝑆) ∧ (𝑧 ∈ 𝑆 ∧ ð‘Ī ∈ 𝑆)) → ([âŸĻð‘Ĩ, ð‘ĶâŸĐ] ∞ · [âŸĻ𝑧, ð‘ĪâŸĐ] ∞ ) = [âŸĻ𝑊, 𝑋âŸĐ] ∞ )    &   (((ð‘Ĩ ∈ 𝑆 ∧ ð‘Ķ ∈ 𝑆) ∧ (ð‘Ģ ∈ 𝑆 ∧ ð‘Ē ∈ 𝑆)) → ([âŸĻð‘Ĩ, ð‘ĶâŸĐ] ∞ · [âŸĻð‘Ģ, ð‘ĒâŸĐ] ∞ ) = [âŸĻ𝑌, 𝑍âŸĐ] ∞ )    &   (((𝑊 ∈ 𝑆 ∧ 𝑋 ∈ 𝑆) ∧ (𝑌 ∈ 𝑆 ∧ 𝑍 ∈ 𝑆)) → ([âŸĻ𝑊, 𝑋âŸĐ] ∞ + [âŸĻ𝑌, 𝑍âŸĐ] ∞ ) = [âŸĻðū, ðŋâŸĐ] ∞ )    &   (((𝑧 ∈ 𝑆 ∧ ð‘Ī ∈ 𝑆) ∧ (ð‘Ģ ∈ 𝑆 ∧ ð‘Ē ∈ 𝑆)) → (𝑀 ∈ 𝑆 ∧ 𝑁 ∈ 𝑆))    &   (((ð‘Ĩ ∈ 𝑆 ∧ ð‘Ķ ∈ 𝑆) ∧ (𝑧 ∈ 𝑆 ∧ ð‘Ī ∈ 𝑆)) → (𝑊 ∈ 𝑆 ∧ 𝑋 ∈ 𝑆))    &   (((ð‘Ĩ ∈ 𝑆 ∧ ð‘Ķ ∈ 𝑆) ∧ (ð‘Ģ ∈ 𝑆 ∧ ð‘Ē ∈ 𝑆)) → (𝑌 ∈ 𝑆 ∧ 𝑍 ∈ 𝑆))    &   ðŧ = ðū    &   ð― = ðŋ    ⇒   ((ðī ∈ 𝐷 ∧ ðĩ ∈ 𝐷 ∧ ðķ ∈ 𝐷) → (ðī · (ðĩ + ðķ)) = ((ðī · ðĩ) + (ðī · ðķ)))
 
Theoremecovidi 6646* Lemma used to transfer a distributive law via an equivalence relation. (Contributed by Jim Kingdon, 17-Sep-2019.)
𝐷 = ((𝑆 × 𝑆) / ∞ )    &   (((𝑧 ∈ 𝑆 ∧ ð‘Ī ∈ 𝑆) ∧ (ð‘Ģ ∈ 𝑆 ∧ ð‘Ē ∈ 𝑆)) → ([âŸĻ𝑧, ð‘ĪâŸĐ] ∞ + [âŸĻð‘Ģ, ð‘ĒâŸĐ] ∞ ) = [âŸĻ𝑀, 𝑁âŸĐ] ∞ )    &   (((ð‘Ĩ ∈ 𝑆 ∧ ð‘Ķ ∈ 𝑆) ∧ (𝑀 ∈ 𝑆 ∧ 𝑁 ∈ 𝑆)) → ([âŸĻð‘Ĩ, ð‘ĶâŸĐ] ∞ · [âŸĻ𝑀, 𝑁âŸĐ] ∞ ) = [âŸĻðŧ, ð―âŸĐ] ∞ )    &   (((ð‘Ĩ ∈ 𝑆 ∧ ð‘Ķ ∈ 𝑆) ∧ (𝑧 ∈ 𝑆 ∧ ð‘Ī ∈ 𝑆)) → ([âŸĻð‘Ĩ, ð‘ĶâŸĐ] ∞ · [âŸĻ𝑧, ð‘ĪâŸĐ] ∞ ) = [âŸĻ𝑊, 𝑋âŸĐ] ∞ )    &   (((ð‘Ĩ ∈ 𝑆 ∧ ð‘Ķ ∈ 𝑆) ∧ (ð‘Ģ ∈ 𝑆 ∧ ð‘Ē ∈ 𝑆)) → ([âŸĻð‘Ĩ, ð‘ĶâŸĐ] ∞ · [âŸĻð‘Ģ, ð‘ĒâŸĐ] ∞ ) = [âŸĻ𝑌, 𝑍âŸĐ] ∞ )    &   (((𝑊 ∈ 𝑆 ∧ 𝑋 ∈ 𝑆) ∧ (𝑌 ∈ 𝑆 ∧ 𝑍 ∈ 𝑆)) → ([âŸĻ𝑊, 𝑋âŸĐ] ∞ + [âŸĻ𝑌, 𝑍âŸĐ] ∞ ) = [âŸĻðū, ðŋâŸĐ] ∞ )    &   (((𝑧 ∈ 𝑆 ∧ ð‘Ī ∈ 𝑆) ∧ (ð‘Ģ ∈ 𝑆 ∧ ð‘Ē ∈ 𝑆)) → (𝑀 ∈ 𝑆 ∧ 𝑁 ∈ 𝑆))    &   (((ð‘Ĩ ∈ 𝑆 ∧ ð‘Ķ ∈ 𝑆) ∧ (𝑧 ∈ 𝑆 ∧ ð‘Ī ∈ 𝑆)) → (𝑊 ∈ 𝑆 ∧ 𝑋 ∈ 𝑆))    &   (((ð‘Ĩ ∈ 𝑆 ∧ ð‘Ķ ∈ 𝑆) ∧ (ð‘Ģ ∈ 𝑆 ∧ ð‘Ē ∈ 𝑆)) → (𝑌 ∈ 𝑆 ∧ 𝑍 ∈ 𝑆))    &   (((ð‘Ĩ ∈ 𝑆 ∧ ð‘Ķ ∈ 𝑆) ∧ (𝑧 ∈ 𝑆 ∧ ð‘Ī ∈ 𝑆) ∧ (ð‘Ģ ∈ 𝑆 ∧ ð‘Ē ∈ 𝑆)) → ðŧ = ðū)    &   (((ð‘Ĩ ∈ 𝑆 ∧ ð‘Ķ ∈ 𝑆) ∧ (𝑧 ∈ 𝑆 ∧ ð‘Ī ∈ 𝑆) ∧ (ð‘Ģ ∈ 𝑆 ∧ ð‘Ē ∈ 𝑆)) → ð― = ðŋ)    ⇒   ((ðī ∈ 𝐷 ∧ ðĩ ∈ 𝐷 ∧ ðķ ∈ 𝐷) → (ðī · (ðĩ + ðķ)) = ((ðī · ðĩ) + (ðī · ðķ)))
 
2.6.26  The mapping operation
 
Syntaxcmap 6647 Extend the definition of a class to include the mapping operation. (Read for ðī ↑𝑚 ðĩ, "the set of all functions that map from ðĩ to ðī.)
class ↑𝑚
 
Syntaxcpm 6648 Extend the definition of a class to include the partial mapping operation. (Read for ðī ↑pm ðĩ, "the set of all partial functions that map from ðĩ to ðī.)
class ↑pm
 
Definitiondf-map 6649* Define the mapping operation or set exponentiation. The set of all functions that map from ðĩ to ðī is written (ðī ↑𝑚 ðĩ) (see mapval 6659). Many authors write ðī followed by ðĩ as a superscript for this operation and rely on context to avoid confusion other exponentiation operations (e.g., Definition 10.42 of [TakeutiZaring] p. 95). Other authors show ðĩ as a prefixed superscript, which is read "ðī pre ðĩ " (e.g., definition of [Enderton] p. 52). Definition 8.21 of [Eisenberg] p. 125 uses the notation Map(ðĩ, ðī) for our (ðī ↑𝑚 ðĩ). The up-arrow is used by Donald Knuth for iterated exponentiation (Science 194, 1235-1242, 1976). We adopt the first case of his notation (simple exponentiation) and subscript it with m to distinguish it from other kinds of exponentiation. (Contributed by NM, 8-Dec-2003.)
↑𝑚 = (ð‘Ĩ ∈ V, ð‘Ķ ∈ V â†Ķ {𝑓 âˆĢ 𝑓:ð‘ĶâŸķð‘Ĩ})
 
Definitiondf-pm 6650* Define the partial mapping operation. A partial function from ðĩ to ðī is a function from a subset of ðĩ to ðī. The set of all partial functions from ðĩ to ðī is written (ðī ↑pm ðĩ) (see pmvalg 6658). A notation for this operation apparently does not appear in the literature. We use ↑pm to distinguish it from the less general set exponentiation operation ↑𝑚 (df-map 6649) . See mapsspm 6681 for its relationship to set exponentiation. (Contributed by NM, 15-Nov-2007.)
↑pm = (ð‘Ĩ ∈ V, ð‘Ķ ∈ V â†Ķ {𝑓 ∈ ð’Ŧ (ð‘Ķ × ð‘Ĩ) âˆĢ Fun 𝑓})
 
Theoremmapprc 6651* When ðī is a proper class, the class of all functions mapping ðī to ðĩ is empty. Exercise 4.41 of [Mendelson] p. 255. (Contributed by NM, 8-Dec-2003.)
(ÂŽ ðī ∈ V → {𝑓 âˆĢ 𝑓:ðīâŸķðĩ} = ∅)
 
Theorempmex 6652* The class of all partial functions from one set to another is a set. (Contributed by NM, 15-Nov-2007.)
((ðī ∈ ðķ ∧ ðĩ ∈ 𝐷) → {𝑓 âˆĢ (Fun 𝑓 ∧ 𝑓 ⊆ (ðī × ðĩ))} ∈ V)
 
Theoremmapex 6653* The class of all functions mapping one set to another is a set. Remark after Definition 10.24 of [Kunen] p. 31. (Contributed by Raph Levien, 4-Dec-2003.)
((ðī ∈ ðķ ∧ ðĩ ∈ 𝐷) → {𝑓 âˆĢ 𝑓:ðīâŸķðĩ} ∈ V)
 
Theoremfnmap 6654 Set exponentiation has a universal domain. (Contributed by NM, 8-Dec-2003.) (Revised by Mario Carneiro, 8-Sep-2013.)
↑𝑚 Fn (V × V)
 
Theoremfnpm 6655 Partial function exponentiation has a universal domain. (Contributed by Mario Carneiro, 14-Nov-2013.)
↑pm Fn (V × V)
 
Theoremreldmmap 6656 Set exponentiation is a well-behaved binary operator. (Contributed by Stefan O'Rear, 27-Feb-2015.)
Rel dom ↑𝑚
 
Theoremmapvalg 6657* The value of set exponentiation. (ðī ↑𝑚 ðĩ) is the set of all functions that map from ðĩ to ðī. Definition 10.24 of [Kunen] p. 24. (Contributed by NM, 8-Dec-2003.) (Revised by Mario Carneiro, 8-Sep-2013.)
((ðī ∈ ðķ ∧ ðĩ ∈ 𝐷) → (ðī ↑𝑚 ðĩ) = {𝑓 âˆĢ 𝑓:ðĩâŸķðī})
 
Theorempmvalg 6658* The value of the partial mapping operation. (ðī ↑pm ðĩ) is the set of all partial functions that map from ðĩ to ðī. (Contributed by NM, 15-Nov-2007.) (Revised by Mario Carneiro, 8-Sep-2013.)
((ðī ∈ ðķ ∧ ðĩ ∈ 𝐷) → (ðī ↑pm ðĩ) = {𝑓 ∈ ð’Ŧ (ðĩ × ðī) âˆĢ Fun 𝑓})
 
Theoremmapval 6659* The value of set exponentiation (inference version). (ðī ↑𝑚 ðĩ) is the set of all functions that map from ðĩ to ðī. Definition 10.24 of [Kunen] p. 24. (Contributed by NM, 8-Dec-2003.)
ðī ∈ V    &   ðĩ ∈ V    ⇒   (ðī ↑𝑚 ðĩ) = {𝑓 âˆĢ 𝑓:ðĩâŸķðī}
 
Theoremelmapg 6660 Membership relation for set exponentiation. (Contributed by NM, 17-Oct-2006.) (Revised by Mario Carneiro, 15-Nov-2014.)
((ðī ∈ 𝑉 ∧ ðĩ ∈ 𝑊) → (ðķ ∈ (ðī ↑𝑚 ðĩ) ↔ ðķ:ðĩâŸķðī))
 
Theoremelmapd 6661 Deduction form of elmapg 6660. (Contributed by BJ, 11-Apr-2020.)
(𝜑 → ðī ∈ 𝑉)    &   (𝜑 → ðĩ ∈ 𝑊)    ⇒   (𝜑 → (ðķ ∈ (ðī ↑𝑚 ðĩ) ↔ ðķ:ðĩâŸķðī))
 
Theoremmapdm0 6662 The empty set is the only map with empty domain. (Contributed by Glauco Siliprandi, 11-Oct-2020.) (Proof shortened by Thierry Arnoux, 3-Dec-2021.)
(ðĩ ∈ 𝑉 → (ðĩ ↑𝑚 ∅) = {∅})
 
Theoremelpmg 6663 The predicate "is a partial function". (Contributed by Mario Carneiro, 14-Nov-2013.)
((ðī ∈ 𝑉 ∧ ðĩ ∈ 𝑊) → (ðķ ∈ (ðī ↑pm ðĩ) ↔ (Fun ðķ ∧ ðķ ⊆ (ðĩ × ðī))))
 
Theoremelpm2g 6664 The predicate "is a partial function". (Contributed by NM, 31-Dec-2013.)
((ðī ∈ 𝑉 ∧ ðĩ ∈ 𝑊) → (ðđ ∈ (ðī ↑pm ðĩ) ↔ (ðđ:dom ðđâŸķðī ∧ dom ðđ ⊆ ðĩ)))
 
Theoremelpm2r 6665 Sufficient condition for being a partial function. (Contributed by NM, 31-Dec-2013.)
(((ðī ∈ 𝑉 ∧ ðĩ ∈ 𝑊) ∧ (ðđ:ðķâŸķðī ∧ ðķ ⊆ ðĩ)) → ðđ ∈ (ðī ↑pm ðĩ))
 
Theoremelpmi 6666 A partial function is a function. (Contributed by Mario Carneiro, 15-Sep-2015.)
(ðđ ∈ (ðī ↑pm ðĩ) → (ðđ:dom ðđâŸķðī ∧ dom ðđ ⊆ ðĩ))
 
Theorempmfun 6667 A partial function is a function. (Contributed by Mario Carneiro, 30-Jan-2014.) (Revised by Mario Carneiro, 26-Apr-2015.)
(ðđ ∈ (ðī ↑pm ðĩ) → Fun ðđ)
 
Theoremelmapex 6668 Eliminate antecedent for mapping theorems: domain can be taken to be a set. (Contributed by Stefan O'Rear, 8-Oct-2014.)
(ðī ∈ (ðĩ ↑𝑚 ðķ) → (ðĩ ∈ V ∧ ðķ ∈ V))
 
Theoremelmapi 6669 A mapping is a function, forward direction only with superfluous antecedent removed. (Contributed by Stefan O'Rear, 10-Oct-2014.)
(ðī ∈ (ðĩ ↑𝑚 ðķ) → ðī:ðķâŸķðĩ)
 
Theoremelmapfn 6670 A mapping is a function with the appropriate domain. (Contributed by AV, 6-Apr-2019.)
(ðī ∈ (ðĩ ↑𝑚 ðķ) → ðī Fn ðķ)
 
Theoremelmapfun 6671 A mapping is always a function. (Contributed by Stefan O'Rear, 9-Oct-2014.) (Revised by Stefan O'Rear, 5-May-2015.)
(ðī ∈ (ðĩ ↑𝑚 ðķ) → Fun ðī)
 
Theoremelmapssres 6672 A restricted mapping is a mapping. (Contributed by Stefan O'Rear, 9-Oct-2014.) (Revised by Mario Carneiro, 5-May-2015.)
((ðī ∈ (ðĩ ↑𝑚 ðķ) ∧ 𝐷 ⊆ ðķ) → (ðī â†ū 𝐷) ∈ (ðĩ ↑𝑚 𝐷))
 
Theoremfpmg 6673 A total function is a partial function. (Contributed by Mario Carneiro, 31-Dec-2013.)
((ðī ∈ 𝑉 ∧ ðĩ ∈ 𝑊 ∧ ðđ:ðīâŸķðĩ) → ðđ ∈ (ðĩ ↑pm ðī))
 
Theorempmss12g 6674 Subset relation for the set of partial functions. (Contributed by Mario Carneiro, 31-Dec-2013.)
(((ðī ⊆ ðķ ∧ ðĩ ⊆ 𝐷) ∧ (ðķ ∈ 𝑉 ∧ 𝐷 ∈ 𝑊)) → (ðī ↑pm ðĩ) ⊆ (ðķ ↑pm 𝐷))
 
Theorempmresg 6675 Elementhood of a restricted function in the set of partial functions. (Contributed by Mario Carneiro, 31-Dec-2013.)
((ðĩ ∈ 𝑉 ∧ ðđ ∈ (ðī ↑pm ðķ)) → (ðđ â†ū ðĩ) ∈ (ðī ↑pm ðĩ))
 
Theoremelmap 6676 Membership relation for set exponentiation. (Contributed by NM, 8-Dec-2003.)
ðī ∈ V    &   ðĩ ∈ V    ⇒   (ðđ ∈ (ðī ↑𝑚 ðĩ) ↔ ðđ:ðĩâŸķðī)
 
Theoremmapval2 6677* Alternate expression for the value of set exponentiation. (Contributed by NM, 3-Nov-2007.)
ðī ∈ V    &   ðĩ ∈ V    ⇒   (ðī ↑𝑚 ðĩ) = (ð’Ŧ (ðĩ × ðī) âˆĐ {𝑓 âˆĢ 𝑓 Fn ðĩ})
 
Theoremelpm 6678 The predicate "is a partial function". (Contributed by NM, 15-Nov-2007.) (Revised by Mario Carneiro, 14-Nov-2013.)
ðī ∈ V    &   ðĩ ∈ V    ⇒   (ðđ ∈ (ðī ↑pm ðĩ) ↔ (Fun ðđ ∧ ðđ ⊆ (ðĩ × ðī)))
 
Theoremelpm2 6679 The predicate "is a partial function". (Contributed by NM, 15-Nov-2007.) (Revised by Mario Carneiro, 31-Dec-2013.)
ðī ∈ V    &   ðĩ ∈ V    ⇒   (ðđ ∈ (ðī ↑pm ðĩ) ↔ (ðđ:dom ðđâŸķðī ∧ dom ðđ ⊆ ðĩ))
 
Theoremfpm 6680 A total function is a partial function. (Contributed by NM, 15-Nov-2007.) (Revised by Mario Carneiro, 31-Dec-2013.)
ðī ∈ V    &   ðĩ ∈ V    ⇒   (ðđ:ðīâŸķðĩ → ðđ ∈ (ðĩ ↑pm ðī))
 
Theoremmapsspm 6681 Set exponentiation is a subset of partial maps. (Contributed by NM, 15-Nov-2007.) (Revised by Mario Carneiro, 27-Feb-2016.)
(ðī ↑𝑚 ðĩ) ⊆ (ðī ↑pm ðĩ)
 
Theorempmsspw 6682 Partial maps are a subset of the power set of the Cartesian product of its arguments. (Contributed by Mario Carneiro, 2-Jan-2017.)
(ðī ↑pm ðĩ) ⊆ ð’Ŧ (ðĩ × ðī)
 
Theoremmapsspw 6683 Set exponentiation is a subset of the power set of the Cartesian product of its arguments. (Contributed by NM, 8-Dec-2006.) (Revised by Mario Carneiro, 26-Apr-2015.)
(ðī ↑𝑚 ðĩ) ⊆ ð’Ŧ (ðĩ × ðī)
 
Theoremfvmptmap 6684* Special case of fvmpt 5593 for operator theorems. (Contributed by NM, 27-Nov-2007.)
ðķ ∈ V    &   ð· ∈ V    &   ð‘… ∈ V    &   (ð‘Ĩ = ðī → ðĩ = ðķ)    &   ðđ = (ð‘Ĩ ∈ (𝑅 ↑𝑚 𝐷) â†Ķ ðĩ)    ⇒   (ðī:𝐷âŸķ𝑅 → (ðđ‘ðī) = ðķ)
 
Theoremmap0e 6685 Set exponentiation with an empty exponent (ordinal number 0) is ordinal number 1. Exercise 4.42(a) of [Mendelson] p. 255. (Contributed by NM, 10-Dec-2003.) (Revised by Mario Carneiro, 30-Apr-2015.)
(ðī ∈ 𝑉 → (ðī ↑𝑚 ∅) = 1o)
 
Theoremmap0b 6686 Set exponentiation with an empty base is the empty set, provided the exponent is nonempty. Theorem 96 of [Suppes] p. 89. (Contributed by NM, 10-Dec-2003.) (Revised by Mario Carneiro, 26-Apr-2015.)
(ðī ≠ ∅ → (∅ ↑𝑚 ðī) = ∅)
 
Theoremmap0g 6687 Set exponentiation is empty iff the base is empty and the exponent is not empty. Theorem 97 of [Suppes] p. 89. (Contributed by Mario Carneiro, 30-Apr-2015.)
((ðī ∈ 𝑉 ∧ ðĩ ∈ 𝑊) → ((ðī ↑𝑚 ðĩ) = ∅ ↔ (ðī = ∅ ∧ ðĩ ≠ ∅)))
 
Theoremmap0 6688 Set exponentiation is empty iff the base is empty and the exponent is not empty. Theorem 97 of [Suppes] p. 89. (Contributed by NM, 10-Dec-2003.)
ðī ∈ V    &   ðĩ ∈ V    ⇒   ((ðī ↑𝑚 ðĩ) = ∅ ↔ (ðī = ∅ ∧ ðĩ ≠ ∅))
 
Theoremmapsn 6689* The value of set exponentiation with a singleton exponent. Theorem 98 of [Suppes] p. 89. (Contributed by NM, 10-Dec-2003.)
ðī ∈ V    &   ðĩ ∈ V    ⇒   (ðī ↑𝑚 {ðĩ}) = {𝑓 âˆĢ ∃ð‘Ķ ∈ ðī 𝑓 = {âŸĻðĩ, ð‘ĶâŸĐ}}
 
Theoremmapss 6690 Subset inheritance for set exponentiation. Theorem 99 of [Suppes] p. 89. (Contributed by NM, 10-Dec-2003.) (Revised by Mario Carneiro, 26-Apr-2015.)
((ðĩ ∈ 𝑉 ∧ ðī ⊆ ðĩ) → (ðī ↑𝑚 ðķ) ⊆ (ðĩ ↑𝑚 ðķ))
 
Theoremfdiagfn 6691* Functionality of the diagonal map. (Contributed by Stefan O'Rear, 24-Jan-2015.)
ðđ = (ð‘Ĩ ∈ ðĩ â†Ķ (𝐞 × {ð‘Ĩ}))    ⇒   ((ðĩ ∈ 𝑉 ∧ 𝐞 ∈ 𝑊) → ðđ:ðĩâŸķ(ðĩ ↑𝑚 𝐞))
 
Theoremfvdiagfn 6692* Functionality of the diagonal map. (Contributed by Stefan O'Rear, 24-Jan-2015.)
ðđ = (ð‘Ĩ ∈ ðĩ â†Ķ (𝐞 × {ð‘Ĩ}))    ⇒   ((𝐞 ∈ 𝑊 ∧ 𝑋 ∈ ðĩ) → (ðđ‘𝑋) = (𝐞 × {𝑋}))
 
Theoremmapsnconst 6693 Every singleton map is a constant function. (Contributed by Stefan O'Rear, 25-Mar-2015.)
𝑆 = {𝑋}    &   ðĩ ∈ V    &   ð‘‹ ∈ V    ⇒   (ðđ ∈ (ðĩ ↑𝑚 𝑆) → ðđ = (𝑆 × {(ðđ‘𝑋)}))
 
Theoremmapsncnv 6694* Expression for the inverse of the canonical map between a set and its set of singleton functions. (Contributed by Stefan O'Rear, 21-Mar-2015.)
𝑆 = {𝑋}    &   ðĩ ∈ V    &   ð‘‹ ∈ V    &   ðđ = (ð‘Ĩ ∈ (ðĩ ↑𝑚 𝑆) â†Ķ (ð‘Ĩ‘𝑋))    ⇒   â—Ąðđ = (ð‘Ķ ∈ ðĩ â†Ķ (𝑆 × {ð‘Ķ}))
 
Theoremmapsnf1o2 6695* Explicit bijection between a set and its singleton functions. (Contributed by Stefan O'Rear, 21-Mar-2015.)
𝑆 = {𝑋}    &   ðĩ ∈ V    &   ð‘‹ ∈ V    &   ðđ = (ð‘Ĩ ∈ (ðĩ ↑𝑚 𝑆) â†Ķ (ð‘Ĩ‘𝑋))    ⇒   ðđ:(ðĩ ↑𝑚 𝑆)–1-1-onto→ðĩ
 
Theoremmapsnf1o3 6696* Explicit bijection in the reverse of mapsnf1o2 6695. (Contributed by Stefan O'Rear, 24-Mar-2015.)
𝑆 = {𝑋}    &   ðĩ ∈ V    &   ð‘‹ ∈ V    &   ðđ = (ð‘Ķ ∈ ðĩ â†Ķ (𝑆 × {ð‘Ķ}))    ⇒   ðđ:ðĩ–1-1-onto→(ðĩ ↑𝑚 𝑆)
 
2.6.27  Infinite Cartesian products
 
Syntaxcixp 6697 Extend class notation to include infinite Cartesian products.
class Xð‘Ĩ ∈ ðī ðĩ
 
Definitiondf-ixp 6698* Definition of infinite Cartesian product of [Enderton] p. 54. Enderton uses a bold "X" with ð‘Ĩ ∈ ðī written underneath or as a subscript, as does Stoll p. 47. Some books use a capital pi, but we will reserve that notation for products of numbers. Usually ðĩ represents a class expression containing ð‘Ĩ free and thus can be thought of as ðĩ(ð‘Ĩ). Normally, ð‘Ĩ is not free in ðī, although this is not a requirement of the definition. (Contributed by NM, 28-Sep-2006.)
Xð‘Ĩ ∈ ðī ðĩ = {𝑓 âˆĢ (𝑓 Fn {ð‘Ĩ âˆĢ ð‘Ĩ ∈ ðī} ∧ ∀ð‘Ĩ ∈ ðī (𝑓‘ð‘Ĩ) ∈ ðĩ)}
 
Theoremdfixp 6699* Eliminate the expression {ð‘Ĩ âˆĢ ð‘Ĩ ∈ ðī} in df-ixp 6698, under the assumption that ðī and ð‘Ĩ are disjoint. This way, we can say that ð‘Ĩ is bound in Xð‘Ĩ ∈ ðīðĩ even if it appears free in ðī. (Contributed by Mario Carneiro, 12-Aug-2016.)
Xð‘Ĩ ∈ ðī ðĩ = {𝑓 âˆĢ (𝑓 Fn ðī ∧ ∀ð‘Ĩ ∈ ðī (𝑓‘ð‘Ĩ) ∈ ðĩ)}
 
Theoremixpsnval 6700* The value of an infinite Cartesian product with a singleton. (Contributed by AV, 3-Dec-2018.)
(𝑋 ∈ 𝑉 → Xð‘Ĩ ∈ {𝑋}ðĩ = {𝑓 âˆĢ (𝑓 Fn {𝑋} ∧ (𝑓‘𝑋) ∈ âĶ‹ð‘‹ / ð‘ĨâĶŒðĩ)})
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14801
  Copyright terms: Public domain < Previous  Next >