HomeHome Intuitionistic Logic Explorer
Theorem List (p. 67 of 114)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 6601-6700   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremfunrnfi 6601 The range of a finite relation is finite if its converse is a function. (Contributed by Jim Kingdon, 5-Feb-2022.)
((Rel 𝐴 ∧ Fun 𝐴𝐴 ∈ Fin) → ran 𝐴 ∈ Fin)
 
Theoremf1ofi 6602 If a 1-1 and onto function has a finite domain, its range is finite. (Contributed by Jim Kingdon, 21-Feb-2022.)
((𝐴 ∈ Fin ∧ 𝐹:𝐴1-1-onto𝐵) → 𝐵 ∈ Fin)
 
Theoremf1dmvrnfibi 6603 A one-to-one function whose domain is a set is finite if and only if its range is finite. See also f1vrnfibi 6604. (Contributed by AV, 10-Jan-2020.)
((𝐴𝑉𝐹:𝐴1-1𝐵) → (𝐹 ∈ Fin ↔ ran 𝐹 ∈ Fin))
 
Theoremf1vrnfibi 6604 A one-to-one function which is a set is finite if and only if its range is finite. See also f1dmvrnfibi 6603. (Contributed by AV, 10-Jan-2020.)
((𝐹𝑉𝐹:𝐴1-1𝐵) → (𝐹 ∈ Fin ↔ ran 𝐹 ∈ Fin))
 
Theoremf1finf1o 6605 Any injection from one finite set to another of equal size must be a bijection. (Contributed by Jeff Madsen, 5-Jun-2010.)
((𝐴𝐵𝐵 ∈ Fin) → (𝐹:𝐴1-1𝐵𝐹:𝐴1-1-onto𝐵))
 
Theoremen1eqsn 6606 A set with one element is a singleton. (Contributed by FL, 18-Aug-2008.)
((𝐴𝐵𝐵 ≈ 1𝑜) → 𝐵 = {𝐴})
 
Theoremen1eqsnbi 6607 A set containing an element has exactly one element iff it is a singleton. (Contributed by FL, 13-Feb-2010.) (Revised by AV, 25-Jan-2020.)
(𝐴𝐵 → (𝐵 ≈ 1𝑜𝐵 = {𝐴}))
 
Theoremsnexxph 6608* A case where the antecedent of snexg 3993 is not needed. The class {𝑥𝜑} is from dcextest 4369. (Contributed by Mario Carneiro and Jim Kingdon, 4-Jul-2022.)
{{𝑥𝜑}} ∈ V
 
Theorempreimaf1ofi 6609 The preimage of a finite set under a one-to-one, onto function is finite. (Contributed by Jim Kingdon, 24-Sep-2022.)
(𝜑𝐶𝐵)    &   (𝜑𝐹:𝐴1-1-onto𝐵)    &   (𝜑𝐶 ∈ Fin)       (𝜑 → (𝐹𝐶) ∈ Fin)
 
2.6.30  Schroeder-Bernstein Theorem
 
Theoremsbthlem1 6610* Lemma for isbth 6620. (Contributed by NM, 22-Mar-1998.)
𝐴 ∈ V    &   𝐷 = {𝑥 ∣ (𝑥𝐴 ∧ (𝑔 “ (𝐵 ∖ (𝑓𝑥))) ⊆ (𝐴𝑥))}        𝐷 ⊆ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷))))
 
Theoremsbthlem2 6611* Lemma for isbth 6620. (Contributed by NM, 22-Mar-1998.)
𝐴 ∈ V    &   𝐷 = {𝑥 ∣ (𝑥𝐴 ∧ (𝑔 “ (𝐵 ∖ (𝑓𝑥))) ⊆ (𝐴𝑥))}       (ran 𝑔𝐴 → (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷)))) ⊆ 𝐷)
 
Theoremsbthlemi3 6612* Lemma for isbth 6620. (Contributed by NM, 22-Mar-1998.)
𝐴 ∈ V    &   𝐷 = {𝑥 ∣ (𝑥𝐴 ∧ (𝑔 “ (𝐵 ∖ (𝑓𝑥))) ⊆ (𝐴𝑥))}       ((EXMID ∧ ran 𝑔𝐴) → (𝑔 “ (𝐵 ∖ (𝑓 𝐷))) = (𝐴 𝐷))
 
Theoremsbthlemi4 6613* Lemma for isbth 6620. (Contributed by NM, 27-Mar-1998.)
𝐴 ∈ V    &   𝐷 = {𝑥 ∣ (𝑥𝐴 ∧ (𝑔 “ (𝐵 ∖ (𝑓𝑥))) ⊆ (𝐴𝑥))}       ((EXMID ∧ (dom 𝑔 = 𝐵 ∧ ran 𝑔𝐴) ∧ Fun 𝑔) → (𝑔 “ (𝐴 𝐷)) = (𝐵 ∖ (𝑓 𝐷)))
 
Theoremsbthlemi5 6614* Lemma for isbth 6620. (Contributed by NM, 22-Mar-1998.)
𝐴 ∈ V    &   𝐷 = {𝑥 ∣ (𝑥𝐴 ∧ (𝑔 “ (𝐵 ∖ (𝑓𝑥))) ⊆ (𝐴𝑥))}    &   𝐻 = ((𝑓 𝐷) ∪ (𝑔 ↾ (𝐴 𝐷)))       ((EXMID ∧ (dom 𝑓 = 𝐴 ∧ ran 𝑔𝐴)) → dom 𝐻 = 𝐴)
 
Theoremsbthlemi6 6615* Lemma for isbth 6620. (Contributed by NM, 27-Mar-1998.)
𝐴 ∈ V    &   𝐷 = {𝑥 ∣ (𝑥𝐴 ∧ (𝑔 “ (𝐵 ∖ (𝑓𝑥))) ⊆ (𝐴𝑥))}    &   𝐻 = ((𝑓 𝐷) ∪ (𝑔 ↾ (𝐴 𝐷)))       (((EXMID ∧ ran 𝑓𝐵) ∧ ((dom 𝑔 = 𝐵 ∧ ran 𝑔𝐴) ∧ Fun 𝑔)) → ran 𝐻 = 𝐵)
 
Theoremsbthlem7 6616* Lemma for isbth 6620. (Contributed by NM, 27-Mar-1998.)
𝐴 ∈ V    &   𝐷 = {𝑥 ∣ (𝑥𝐴 ∧ (𝑔 “ (𝐵 ∖ (𝑓𝑥))) ⊆ (𝐴𝑥))}    &   𝐻 = ((𝑓 𝐷) ∪ (𝑔 ↾ (𝐴 𝐷)))       ((Fun 𝑓 ∧ Fun 𝑔) → Fun 𝐻)
 
Theoremsbthlemi8 6617* Lemma for isbth 6620. (Contributed by NM, 27-Mar-1998.)
𝐴 ∈ V    &   𝐷 = {𝑥 ∣ (𝑥𝐴 ∧ (𝑔 “ (𝐵 ∖ (𝑓𝑥))) ⊆ (𝐴𝑥))}    &   𝐻 = ((𝑓 𝐷) ∪ (𝑔 ↾ (𝐴 𝐷)))       (((EXMID ∧ Fun 𝑓) ∧ (((Fun 𝑔 ∧ dom 𝑔 = 𝐵) ∧ ran 𝑔𝐴) ∧ Fun 𝑔)) → Fun 𝐻)
 
Theoremsbthlemi9 6618* Lemma for isbth 6620. (Contributed by NM, 28-Mar-1998.)
𝐴 ∈ V    &   𝐷 = {𝑥 ∣ (𝑥𝐴 ∧ (𝑔 “ (𝐵 ∖ (𝑓𝑥))) ⊆ (𝐴𝑥))}    &   𝐻 = ((𝑓 𝐷) ∪ (𝑔 ↾ (𝐴 𝐷)))       ((EXMID𝑓:𝐴1-1𝐵𝑔:𝐵1-1𝐴) → 𝐻:𝐴1-1-onto𝐵)
 
Theoremsbthlemi10 6619* Lemma for isbth 6620. (Contributed by NM, 28-Mar-1998.)
𝐴 ∈ V    &   𝐷 = {𝑥 ∣ (𝑥𝐴 ∧ (𝑔 “ (𝐵 ∖ (𝑓𝑥))) ⊆ (𝐴𝑥))}    &   𝐻 = ((𝑓 𝐷) ∪ (𝑔 ↾ (𝐴 𝐷)))    &   𝐵 ∈ V       ((EXMID ∧ (𝐴𝐵𝐵𝐴)) → 𝐴𝐵)
 
Theoremisbth 6620 Schroeder-Bernstein Theorem. Theorem 18 of [Suppes] p. 95. This theorem states that if set 𝐴 is smaller (has lower cardinality) than 𝐵 and vice-versa, then 𝐴 and 𝐵 are equinumerous (have the same cardinality). The interesting thing is that this can be proved without invoking the Axiom of Choice, as we do here, but the proof as you can see is quite difficult. (The theorem can be proved more easily if we allow AC.) The main proof consists of lemmas sbthlem1 6610 through sbthlemi10 6619; this final piece mainly changes bound variables to eliminate the hypotheses of sbthlemi10 6619. We follow closely the proof in Suppes, which you should consult to understand our proof at a higher level. Note that Suppes' proof, which is credited to J. M. Whitaker, does not require the Axiom of Infinity. The proof does require the law of the excluded middle which cannot be avoided as shown at exmidsbthr 11351. (Contributed by NM, 8-Jun-1998.)
((EXMID ∧ (𝐴𝐵𝐵𝐴)) → 𝐴𝐵)
 
2.6.31  Supremum and infimum
 
Syntaxcsup 6621 Extend class notation to include supremum of class 𝐴. Here 𝑅 is ordinarily a relation that strictly orders class 𝐵. For example, 𝑅 could be 'less than' and 𝐵 could be the set of real numbers.
class sup(𝐴, 𝐵, 𝑅)
 
Syntaxcinf 6622 Extend class notation to include infimum of class 𝐴. Here 𝑅 is ordinarily a relation that strictly orders class 𝐵. For example, 𝑅 could be 'less than' and 𝐵 could be the set of real numbers.
class inf(𝐴, 𝐵, 𝑅)
 
Definitiondf-sup 6623* Define the supremum of class 𝐴. It is meaningful when 𝑅 is a relation that strictly orders 𝐵 and when the supremum exists. (Contributed by NM, 22-May-1999.)
sup(𝐴, 𝐵, 𝑅) = {𝑥𝐵 ∣ (∀𝑦𝐴 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐵 (𝑦𝑅𝑥 → ∃𝑧𝐴 𝑦𝑅𝑧))}
 
Definitiondf-inf 6624 Define the infimum of class 𝐴. It is meaningful when 𝑅 is a relation that strictly orders 𝐵 and when the infimum exists. For example, 𝑅 could be 'less than', 𝐵 could be the set of real numbers, and 𝐴 could be the set of all positive reals; in this case the infimum is 0. The infimum is defined as the supremum using the converse ordering relation. In the given example, 0 is the supremum of all reals (greatest real number) for which all positive reals are greater. (Contributed by AV, 2-Sep-2020.)
inf(𝐴, 𝐵, 𝑅) = sup(𝐴, 𝐵, 𝑅)
 
Theoremsupeq1 6625 Equality theorem for supremum. (Contributed by NM, 22-May-1999.)
(𝐵 = 𝐶 → sup(𝐵, 𝐴, 𝑅) = sup(𝐶, 𝐴, 𝑅))
 
Theoremsupeq1d 6626 Equality deduction for supremum. (Contributed by Paul Chapman, 22-Jun-2011.)
(𝜑𝐵 = 𝐶)       (𝜑 → sup(𝐵, 𝐴, 𝑅) = sup(𝐶, 𝐴, 𝑅))
 
Theoremsupeq1i 6627 Equality inference for supremum. (Contributed by Paul Chapman, 22-Jun-2011.)
𝐵 = 𝐶       sup(𝐵, 𝐴, 𝑅) = sup(𝐶, 𝐴, 𝑅)
 
Theoremsupeq2 6628 Equality theorem for supremum. (Contributed by Jeff Madsen, 2-Sep-2009.)
(𝐵 = 𝐶 → sup(𝐴, 𝐵, 𝑅) = sup(𝐴, 𝐶, 𝑅))
 
Theoremsupeq3 6629 Equality theorem for supremum. (Contributed by Scott Fenton, 13-Jun-2018.)
(𝑅 = 𝑆 → sup(𝐴, 𝐵, 𝑅) = sup(𝐴, 𝐵, 𝑆))
 
Theoremsupeq123d 6630 Equality deduction for supremum. (Contributed by Stefan O'Rear, 20-Jan-2015.)
(𝜑𝐴 = 𝐷)    &   (𝜑𝐵 = 𝐸)    &   (𝜑𝐶 = 𝐹)       (𝜑 → sup(𝐴, 𝐵, 𝐶) = sup(𝐷, 𝐸, 𝐹))
 
Theoremnfsup 6631 Hypothesis builder for supremum. (Contributed by Mario Carneiro, 20-Mar-2014.)
𝑥𝐴    &   𝑥𝐵    &   𝑥𝑅       𝑥sup(𝐴, 𝐵, 𝑅)
 
Theoremsupmoti 6632* Any class 𝐵 has at most one supremum in 𝐴 (where 𝑅 is interpreted as 'less than'). The hypothesis is satisfied by real numbers (see lttri3 7509) or other orders which correspond to tight apartnesses. (Contributed by Jim Kingdon, 23-Nov-2021.)
((𝜑 ∧ (𝑢𝐴𝑣𝐴)) → (𝑢 = 𝑣 ↔ (¬ 𝑢𝑅𝑣 ∧ ¬ 𝑣𝑅𝑢)))       (𝜑 → ∃*𝑥𝐴 (∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧)))
 
Theoremsupeuti 6633* A supremum is unique. Similar to Theorem I.26 of [Apostol] p. 24 (but for suprema in general). (Contributed by Jim Kingdon, 23-Nov-2021.)
((𝜑 ∧ (𝑢𝐴𝑣𝐴)) → (𝑢 = 𝑣 ↔ (¬ 𝑢𝑅𝑣 ∧ ¬ 𝑣𝑅𝑢)))    &   (𝜑 → ∃𝑥𝐴 (∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧)))       (𝜑 → ∃!𝑥𝐴 (∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧)))
 
Theoremsupval2ti 6634* Alternate expression for the supremum. (Contributed by Jim Kingdon, 23-Nov-2021.)
((𝜑 ∧ (𝑢𝐴𝑣𝐴)) → (𝑢 = 𝑣 ↔ (¬ 𝑢𝑅𝑣 ∧ ¬ 𝑣𝑅𝑢)))    &   (𝜑 → ∃𝑥𝐴 (∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧)))       (𝜑 → sup(𝐵, 𝐴, 𝑅) = (𝑥𝐴 (∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧))))
 
Theoremeqsupti 6635* Sufficient condition for an element to be equal to the supremum. (Contributed by Jim Kingdon, 23-Nov-2021.)
((𝜑 ∧ (𝑢𝐴𝑣𝐴)) → (𝑢 = 𝑣 ↔ (¬ 𝑢𝑅𝑣 ∧ ¬ 𝑣𝑅𝑢)))       (𝜑 → ((𝐶𝐴 ∧ ∀𝑦𝐵 ¬ 𝐶𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝐶 → ∃𝑧𝐵 𝑦𝑅𝑧)) → sup(𝐵, 𝐴, 𝑅) = 𝐶))
 
Theoremeqsuptid 6636* Sufficient condition for an element to be equal to the supremum. (Contributed by Jim Kingdon, 24-Nov-2021.)
((𝜑 ∧ (𝑢𝐴𝑣𝐴)) → (𝑢 = 𝑣 ↔ (¬ 𝑢𝑅𝑣 ∧ ¬ 𝑣𝑅𝑢)))    &   (𝜑𝐶𝐴)    &   ((𝜑𝑦𝐵) → ¬ 𝐶𝑅𝑦)    &   ((𝜑 ∧ (𝑦𝐴𝑦𝑅𝐶)) → ∃𝑧𝐵 𝑦𝑅𝑧)       (𝜑 → sup(𝐵, 𝐴, 𝑅) = 𝐶)
 
Theoremsupclti 6637* A supremum belongs to its base class (closure law). See also supubti 6638 and suplubti 6639. (Contributed by Jim Kingdon, 24-Nov-2021.)
((𝜑 ∧ (𝑢𝐴𝑣𝐴)) → (𝑢 = 𝑣 ↔ (¬ 𝑢𝑅𝑣 ∧ ¬ 𝑣𝑅𝑢)))    &   (𝜑 → ∃𝑥𝐴 (∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧)))       (𝜑 → sup(𝐵, 𝐴, 𝑅) ∈ 𝐴)
 
Theoremsupubti 6638* A supremum is an upper bound. See also supclti 6637 and suplubti 6639.

This proof demonstrates how to expand an iota-based definition (df-iota 4946) using riotacl2 5582.

(Contributed by Jim Kingdon, 24-Nov-2021.)

((𝜑 ∧ (𝑢𝐴𝑣𝐴)) → (𝑢 = 𝑣 ↔ (¬ 𝑢𝑅𝑣 ∧ ¬ 𝑣𝑅𝑢)))    &   (𝜑 → ∃𝑥𝐴 (∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧)))       (𝜑 → (𝐶𝐵 → ¬ sup(𝐵, 𝐴, 𝑅)𝑅𝐶))
 
Theoremsuplubti 6639* A supremum is the least upper bound. See also supclti 6637 and supubti 6638. (Contributed by Jim Kingdon, 24-Nov-2021.)
((𝜑 ∧ (𝑢𝐴𝑣𝐴)) → (𝑢 = 𝑣 ↔ (¬ 𝑢𝑅𝑣 ∧ ¬ 𝑣𝑅𝑢)))    &   (𝜑 → ∃𝑥𝐴 (∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧)))       (𝜑 → ((𝐶𝐴𝐶𝑅sup(𝐵, 𝐴, 𝑅)) → ∃𝑧𝐵 𝐶𝑅𝑧))
 
Theoremsuplub2ti 6640* Bidirectional form of suplubti 6639. (Contributed by Jim Kingdon, 17-Jan-2022.)
((𝜑 ∧ (𝑢𝐴𝑣𝐴)) → (𝑢 = 𝑣 ↔ (¬ 𝑢𝑅𝑣 ∧ ¬ 𝑣𝑅𝑢)))    &   (𝜑 → ∃𝑥𝐴 (∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧)))    &   (𝜑𝑅 Or 𝐴)    &   (𝜑𝐵𝐴)       ((𝜑𝐶𝐴) → (𝐶𝑅sup(𝐵, 𝐴, 𝑅) ↔ ∃𝑧𝐵 𝐶𝑅𝑧))
 
Theoremsupelti 6641* Supremum membership in a set. (Contributed by Jim Kingdon, 16-Jan-2022.)
((𝜑 ∧ (𝑢𝐴𝑣𝐴)) → (𝑢 = 𝑣 ↔ (¬ 𝑢𝑅𝑣 ∧ ¬ 𝑣𝑅𝑢)))    &   (𝜑 → ∃𝑥𝐶 (∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧)))    &   (𝜑𝐶𝐴)       (𝜑 → sup(𝐵, 𝐴, 𝑅) ∈ 𝐶)
 
Theoremsup00 6642 The supremum under an empty base set is always the empty set. (Contributed by AV, 4-Sep-2020.)
sup(𝐵, ∅, 𝑅) = ∅
 
Theoremsupmaxti 6643* The greatest element of a set is its supremum. Note that the converse is not true; the supremum might not be an element of the set considered. (Contributed by Jim Kingdon, 24-Nov-2021.)
((𝜑 ∧ (𝑢𝐴𝑣𝐴)) → (𝑢 = 𝑣 ↔ (¬ 𝑢𝑅𝑣 ∧ ¬ 𝑣𝑅𝑢)))    &   (𝜑𝐶𝐴)    &   (𝜑𝐶𝐵)    &   ((𝜑𝑦𝐵) → ¬ 𝐶𝑅𝑦)       (𝜑 → sup(𝐵, 𝐴, 𝑅) = 𝐶)
 
Theoremsupsnti 6644* The supremum of a singleton. (Contributed by Jim Kingdon, 26-Nov-2021.)
((𝜑 ∧ (𝑢𝐴𝑣𝐴)) → (𝑢 = 𝑣 ↔ (¬ 𝑢𝑅𝑣 ∧ ¬ 𝑣𝑅𝑢)))    &   (𝜑𝐵𝐴)       (𝜑 → sup({𝐵}, 𝐴, 𝑅) = 𝐵)
 
Theoremisotilem 6645* Lemma for isoti 6646. (Contributed by Jim Kingdon, 26-Nov-2021.)
(𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) → (∀𝑥𝐵𝑦𝐵 (𝑥 = 𝑦 ↔ (¬ 𝑥𝑆𝑦 ∧ ¬ 𝑦𝑆𝑥)) → ∀𝑢𝐴𝑣𝐴 (𝑢 = 𝑣 ↔ (¬ 𝑢𝑅𝑣 ∧ ¬ 𝑣𝑅𝑢))))
 
Theoremisoti 6646* An isomorphism preserves tightness. (Contributed by Jim Kingdon, 26-Nov-2021.)
(𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) → (∀𝑢𝐴𝑣𝐴 (𝑢 = 𝑣 ↔ (¬ 𝑢𝑅𝑣 ∧ ¬ 𝑣𝑅𝑢)) ↔ ∀𝑢𝐵𝑣𝐵 (𝑢 = 𝑣 ↔ (¬ 𝑢𝑆𝑣 ∧ ¬ 𝑣𝑆𝑢))))
 
Theoremsupisolem 6647* Lemma for supisoti 6649. (Contributed by Mario Carneiro, 24-Dec-2016.)
(𝜑𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵))    &   (𝜑𝐶𝐴)       ((𝜑𝐷𝐴) → ((∀𝑦𝐶 ¬ 𝐷𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝐷 → ∃𝑧𝐶 𝑦𝑅𝑧)) ↔ (∀𝑤 ∈ (𝐹𝐶) ¬ (𝐹𝐷)𝑆𝑤 ∧ ∀𝑤𝐵 (𝑤𝑆(𝐹𝐷) → ∃𝑣 ∈ (𝐹𝐶)𝑤𝑆𝑣))))
 
Theoremsupisoex 6648* Lemma for supisoti 6649. (Contributed by Mario Carneiro, 24-Dec-2016.)
(𝜑𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵))    &   (𝜑𝐶𝐴)    &   (𝜑 → ∃𝑥𝐴 (∀𝑦𝐶 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐶 𝑦𝑅𝑧)))       (𝜑 → ∃𝑢𝐵 (∀𝑤 ∈ (𝐹𝐶) ¬ 𝑢𝑆𝑤 ∧ ∀𝑤𝐵 (𝑤𝑆𝑢 → ∃𝑣 ∈ (𝐹𝐶)𝑤𝑆𝑣)))
 
Theoremsupisoti 6649* Image of a supremum under an isomorphism. (Contributed by Jim Kingdon, 26-Nov-2021.)
(𝜑𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵))    &   (𝜑𝐶𝐴)    &   (𝜑 → ∃𝑥𝐴 (∀𝑦𝐶 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐶 𝑦𝑅𝑧)))    &   ((𝜑 ∧ (𝑢𝐴𝑣𝐴)) → (𝑢 = 𝑣 ↔ (¬ 𝑢𝑅𝑣 ∧ ¬ 𝑣𝑅𝑢)))       (𝜑 → sup((𝐹𝐶), 𝐵, 𝑆) = (𝐹‘sup(𝐶, 𝐴, 𝑅)))
 
Theoreminfeq1 6650 Equality theorem for infimum. (Contributed by AV, 2-Sep-2020.)
(𝐵 = 𝐶 → inf(𝐵, 𝐴, 𝑅) = inf(𝐶, 𝐴, 𝑅))
 
Theoreminfeq1d 6651 Equality deduction for infimum. (Contributed by AV, 2-Sep-2020.)
(𝜑𝐵 = 𝐶)       (𝜑 → inf(𝐵, 𝐴, 𝑅) = inf(𝐶, 𝐴, 𝑅))
 
Theoreminfeq1i 6652 Equality inference for infimum. (Contributed by AV, 2-Sep-2020.)
𝐵 = 𝐶       inf(𝐵, 𝐴, 𝑅) = inf(𝐶, 𝐴, 𝑅)
 
Theoreminfeq2 6653 Equality theorem for infimum. (Contributed by AV, 2-Sep-2020.)
(𝐵 = 𝐶 → inf(𝐴, 𝐵, 𝑅) = inf(𝐴, 𝐶, 𝑅))
 
Theoreminfeq3 6654 Equality theorem for infimum. (Contributed by AV, 2-Sep-2020.)
(𝑅 = 𝑆 → inf(𝐴, 𝐵, 𝑅) = inf(𝐴, 𝐵, 𝑆))
 
Theoreminfeq123d 6655 Equality deduction for infimum. (Contributed by AV, 2-Sep-2020.)
(𝜑𝐴 = 𝐷)    &   (𝜑𝐵 = 𝐸)    &   (𝜑𝐶 = 𝐹)       (𝜑 → inf(𝐴, 𝐵, 𝐶) = inf(𝐷, 𝐸, 𝐹))
 
Theoremnfinf 6656 Hypothesis builder for infimum. (Contributed by AV, 2-Sep-2020.)
𝑥𝐴    &   𝑥𝐵    &   𝑥𝑅       𝑥inf(𝐴, 𝐵, 𝑅)
 
Theoremcnvinfex 6657* Two ways of expressing existence of an infimum (one in terms of converse). (Contributed by Jim Kingdon, 17-Dec-2021.)
(𝜑 → ∃𝑥𝐴 (∀𝑦𝐵 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦𝐴 (𝑥𝑅𝑦 → ∃𝑧𝐵 𝑧𝑅𝑦)))       (𝜑 → ∃𝑥𝐴 (∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧)))
 
Theoremcnvti 6658* If a relation satisfies a condition corresponding to tightness of an apartness generated by an order, so does its converse. (Contributed by Jim Kingdon, 17-Dec-2021.)
((𝜑 ∧ (𝑢𝐴𝑣𝐴)) → (𝑢 = 𝑣 ↔ (¬ 𝑢𝑅𝑣 ∧ ¬ 𝑣𝑅𝑢)))       ((𝜑 ∧ (𝑢𝐴𝑣𝐴)) → (𝑢 = 𝑣 ↔ (¬ 𝑢𝑅𝑣 ∧ ¬ 𝑣𝑅𝑢)))
 
Theoremeqinfti 6659* Sufficient condition for an element to be equal to the infimum. (Contributed by Jim Kingdon, 16-Dec-2021.)
((𝜑 ∧ (𝑢𝐴𝑣𝐴)) → (𝑢 = 𝑣 ↔ (¬ 𝑢𝑅𝑣 ∧ ¬ 𝑣𝑅𝑢)))       (𝜑 → ((𝐶𝐴 ∧ ∀𝑦𝐵 ¬ 𝑦𝑅𝐶 ∧ ∀𝑦𝐴 (𝐶𝑅𝑦 → ∃𝑧𝐵 𝑧𝑅𝑦)) → inf(𝐵, 𝐴, 𝑅) = 𝐶))
 
Theoremeqinftid 6660* Sufficient condition for an element to be equal to the infimum. (Contributed by Jim Kingdon, 16-Dec-2021.)
((𝜑 ∧ (𝑢𝐴𝑣𝐴)) → (𝑢 = 𝑣 ↔ (¬ 𝑢𝑅𝑣 ∧ ¬ 𝑣𝑅𝑢)))    &   (𝜑𝐶𝐴)    &   ((𝜑𝑦𝐵) → ¬ 𝑦𝑅𝐶)    &   ((𝜑 ∧ (𝑦𝐴𝐶𝑅𝑦)) → ∃𝑧𝐵 𝑧𝑅𝑦)       (𝜑 → inf(𝐵, 𝐴, 𝑅) = 𝐶)
 
Theoreminfvalti 6661* Alternate expression for the infimum. (Contributed by Jim Kingdon, 17-Dec-2021.)
((𝜑 ∧ (𝑢𝐴𝑣𝐴)) → (𝑢 = 𝑣 ↔ (¬ 𝑢𝑅𝑣 ∧ ¬ 𝑣𝑅𝑢)))    &   (𝜑 → ∃𝑥𝐴 (∀𝑦𝐵 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦𝐴 (𝑥𝑅𝑦 → ∃𝑧𝐵 𝑧𝑅𝑦)))       (𝜑 → inf(𝐵, 𝐴, 𝑅) = (𝑥𝐴 (∀𝑦𝐵 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦𝐴 (𝑥𝑅𝑦 → ∃𝑧𝐵 𝑧𝑅𝑦))))
 
Theoreminfclti 6662* An infimum belongs to its base class (closure law). See also inflbti 6663 and infglbti 6664. (Contributed by Jim Kingdon, 17-Dec-2021.)
((𝜑 ∧ (𝑢𝐴𝑣𝐴)) → (𝑢 = 𝑣 ↔ (¬ 𝑢𝑅𝑣 ∧ ¬ 𝑣𝑅𝑢)))    &   (𝜑 → ∃𝑥𝐴 (∀𝑦𝐵 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦𝐴 (𝑥𝑅𝑦 → ∃𝑧𝐵 𝑧𝑅𝑦)))       (𝜑 → inf(𝐵, 𝐴, 𝑅) ∈ 𝐴)
 
Theoreminflbti 6663* An infimum is a lower bound. See also infclti 6662 and infglbti 6664. (Contributed by Jim Kingdon, 18-Dec-2021.)
((𝜑 ∧ (𝑢𝐴𝑣𝐴)) → (𝑢 = 𝑣 ↔ (¬ 𝑢𝑅𝑣 ∧ ¬ 𝑣𝑅𝑢)))    &   (𝜑 → ∃𝑥𝐴 (∀𝑦𝐵 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦𝐴 (𝑥𝑅𝑦 → ∃𝑧𝐵 𝑧𝑅𝑦)))       (𝜑 → (𝐶𝐵 → ¬ 𝐶𝑅inf(𝐵, 𝐴, 𝑅)))
 
Theoreminfglbti 6664* An infimum is the greatest lower bound. See also infclti 6662 and inflbti 6663. (Contributed by Jim Kingdon, 18-Dec-2021.)
((𝜑 ∧ (𝑢𝐴𝑣𝐴)) → (𝑢 = 𝑣 ↔ (¬ 𝑢𝑅𝑣 ∧ ¬ 𝑣𝑅𝑢)))    &   (𝜑 → ∃𝑥𝐴 (∀𝑦𝐵 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦𝐴 (𝑥𝑅𝑦 → ∃𝑧𝐵 𝑧𝑅𝑦)))       (𝜑 → ((𝐶𝐴 ∧ inf(𝐵, 𝐴, 𝑅)𝑅𝐶) → ∃𝑧𝐵 𝑧𝑅𝐶))
 
Theoreminfnlbti 6665* A lower bound is not greater than the infimum. (Contributed by Jim Kingdon, 18-Dec-2021.)
((𝜑 ∧ (𝑢𝐴𝑣𝐴)) → (𝑢 = 𝑣 ↔ (¬ 𝑢𝑅𝑣 ∧ ¬ 𝑣𝑅𝑢)))    &   (𝜑 → ∃𝑥𝐴 (∀𝑦𝐵 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦𝐴 (𝑥𝑅𝑦 → ∃𝑧𝐵 𝑧𝑅𝑦)))       (𝜑 → ((𝐶𝐴 ∧ ∀𝑧𝐵 ¬ 𝑧𝑅𝐶) → ¬ inf(𝐵, 𝐴, 𝑅)𝑅𝐶))
 
Theoreminfminti 6666* The smallest element of a set is its infimum. Note that the converse is not true; the infimum might not be an element of the set considered. (Contributed by Jim Kingdon, 18-Dec-2021.)
((𝜑 ∧ (𝑢𝐴𝑣𝐴)) → (𝑢 = 𝑣 ↔ (¬ 𝑢𝑅𝑣 ∧ ¬ 𝑣𝑅𝑢)))    &   (𝜑𝐶𝐴)    &   (𝜑𝐶𝐵)    &   ((𝜑𝑦𝐵) → ¬ 𝑦𝑅𝐶)       (𝜑 → inf(𝐵, 𝐴, 𝑅) = 𝐶)
 
Theoreminfmoti 6667* Any class 𝐵 has at most one infimum in 𝐴 (where 𝑅 is interpreted as 'less than'). (Contributed by Jim Kingdon, 18-Dec-2021.)
((𝜑 ∧ (𝑢𝐴𝑣𝐴)) → (𝑢 = 𝑣 ↔ (¬ 𝑢𝑅𝑣 ∧ ¬ 𝑣𝑅𝑢)))       (𝜑 → ∃*𝑥𝐴 (∀𝑦𝐵 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦𝐴 (𝑥𝑅𝑦 → ∃𝑧𝐵 𝑧𝑅𝑦)))
 
Theoreminfeuti 6668* An infimum is unique. (Contributed by Jim Kingdon, 19-Dec-2021.)
((𝜑 ∧ (𝑢𝐴𝑣𝐴)) → (𝑢 = 𝑣 ↔ (¬ 𝑢𝑅𝑣 ∧ ¬ 𝑣𝑅𝑢)))    &   (𝜑 → ∃𝑥𝐴 (∀𝑦𝐵 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦𝐴 (𝑥𝑅𝑦 → ∃𝑧𝐵 𝑧𝑅𝑦)))       (𝜑 → ∃!𝑥𝐴 (∀𝑦𝐵 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦𝐴 (𝑥𝑅𝑦 → ∃𝑧𝐵 𝑧𝑅𝑦)))
 
Theoreminfsnti 6669* The infimum of a singleton. (Contributed by Jim Kingdon, 19-Dec-2021.)
((𝜑 ∧ (𝑢𝐴𝑣𝐴)) → (𝑢 = 𝑣 ↔ (¬ 𝑢𝑅𝑣 ∧ ¬ 𝑣𝑅𝑢)))    &   (𝜑𝐵𝐴)       (𝜑 → inf({𝐵}, 𝐴, 𝑅) = 𝐵)
 
Theoreminf00 6670 The infimum regarding an empty base set is always the empty set. (Contributed by AV, 4-Sep-2020.)
inf(𝐵, ∅, 𝑅) = ∅
 
Theoreminfisoti 6671* Image of an infimum under an isomorphism. (Contributed by Jim Kingdon, 19-Dec-2021.)
(𝜑𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵))    &   (𝜑𝐶𝐴)    &   (𝜑 → ∃𝑥𝐴 (∀𝑦𝐶 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦𝐴 (𝑥𝑅𝑦 → ∃𝑧𝐶 𝑧𝑅𝑦)))    &   ((𝜑 ∧ (𝑢𝐴𝑣𝐴)) → (𝑢 = 𝑣 ↔ (¬ 𝑢𝑅𝑣 ∧ ¬ 𝑣𝑅𝑢)))       (𝜑 → inf((𝐹𝐶), 𝐵, 𝑆) = (𝐹‘inf(𝐶, 𝐴, 𝑅)))
 
2.6.32  Ordinal isomorphism
 
Theoremordiso2 6672 Generalize ordiso 6673 to proper classes. (Contributed by Mario Carneiro, 24-Jun-2015.)
((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) → 𝐴 = 𝐵)
 
Theoremordiso 6673* Order-isomorphic ordinal numbers are equal. (Contributed by Jeff Hankins, 16-Oct-2009.) (Proof shortened by Mario Carneiro, 24-Jun-2015.)
((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 = 𝐵 ↔ ∃𝑓 𝑓 Isom E , E (𝐴, 𝐵)))
 
2.6.33  Disjoint union
 
2.6.33.1  Disjoint union
 
Syntaxcdju 6674 Extend class notation to include disjoint union of two classes.
class (𝐴𝐵)
 
Definitiondf-dju 6675 Disjoint union of two classes. This is a way of creating a class which contains elements corresponding to each element of 𝐴 or 𝐵, tagging each one with whether it came from 𝐴 or 𝐵. (Contributed by Jim Kingdon, 20-Jun-2022.)
(𝐴𝐵) = (({∅} × 𝐴) ∪ ({1𝑜} × 𝐵))
 
Theoremdjueq12 6676 Equality theorem for disjoint union. (Contributed by Jim Kingdon, 23-Jun-2022.)
((𝐴 = 𝐵𝐶 = 𝐷) → (𝐴𝐶) = (𝐵𝐷))
 
Theoremdjueq1 6677 Equality theorem for disjoint union. (Contributed by Jim Kingdon, 23-Jun-2022.)
(𝐴 = 𝐵 → (𝐴𝐶) = (𝐵𝐶))
 
Theoremdjueq2 6678 Equality theorem for disjoint union. (Contributed by Jim Kingdon, 23-Jun-2022.)
(𝐴 = 𝐵 → (𝐶𝐴) = (𝐶𝐵))
 
Theoremnfdju 6679 Bound-variable hypothesis builder for disjoint union. (Contributed by Jim Kingdon, 23-Jun-2022.)
𝑥𝐴    &   𝑥𝐵       𝑥(𝐴𝐵)
 
Theoremdjuex 6680 The disjoint union of sets is a set. (Contributed by AV, 28-Jun-2022.)
((𝐴𝑉𝐵𝑊) → (𝐴𝐵) ∈ V)
 
2.6.33.2  Left and right injections of a disjoint union

In this section, we define the left and right injections of a disjoint union and prove their main properties. These injections are restrictions of the "template" functions inl and inr, which appear in most applications in the form (inl ↾ 𝐴) and (inr ↾ 𝐵).

 
Syntaxcinl 6681 Extend class notation to include left injection of a disjoint union.
class inl
 
Syntaxcinr 6682 Extend class notation to include right injection of a disjoint union.
class inr
 
Definitiondf-inl 6683 Left injection of a disjoint union. (Contributed by Mario Carneiro, 21-Jun-2022.)
inl = (𝑥 ∈ V ↦ ⟨∅, 𝑥⟩)
 
Definitiondf-inr 6684 Right injection of a disjoint union. (Contributed by Mario Carneiro, 21-Jun-2022.)
inr = (𝑥 ∈ V ↦ ⟨1𝑜, 𝑥⟩)
 
Theoremdjulclr 6685 Left closure of disjoint union. (Contributed by Jim Kingdon, 21-Jun-2022.) (Revised by BJ, 6-Jul-2022.)
(𝐶𝐴 → ((inl ↾ 𝐴)‘𝐶) ∈ (𝐴𝐵))
 
Theoremdjurclr 6686 Right closure of disjoint union. (Contributed by Jim Kingdon, 21-Jun-2022.) (Revised by BJ, 6-Jul-2022.)
(𝐶𝐵 → ((inr ↾ 𝐵)‘𝐶) ∈ (𝐴𝐵))
 
Theoremdjulcl 6687 Left closure of disjoint union. (Contributed by Jim Kingdon, 21-Jun-2022.)
(𝐶𝐴 → (inl‘𝐶) ∈ (𝐴𝐵))
 
Theoremdjurcl 6688 Right closure of disjoint union. (Contributed by Jim Kingdon, 21-Jun-2022.)
(𝐶𝐵 → (inr‘𝐶) ∈ (𝐴𝐵))
 
Theoremdjuf1olem 6689* Lemma for djulf1o 6694 and djurf1o 6695. (Contributed by BJ and Jim Kingdon, 4-Jul-2022.)
𝑋 ∈ V    &   𝐹 = (𝑥𝐴 ↦ ⟨𝑋, 𝑥⟩)       𝐹:𝐴1-1-onto→({𝑋} × 𝐴)
 
Theoremdjuf1olemr 6690* Lemma for djulf1or 6692 and djurf1or 6693. Remark: maybe a version of this lemma with 𝐹 defined on 𝐴 and no restriction in the conclusion would be more usable. (Contributed by BJ and Jim Kingdon, 4-Jul-2022.)
𝑋 ∈ V    &   𝐹 = (𝑥 ∈ V ↦ ⟨𝑋, 𝑥⟩)       (𝐹𝐴):𝐴1-1-onto→({𝑋} × 𝐴)
 
Theoremdjulclb 6691 Left biconditional closure of disjoint union. (Contributed by Jim Kingdon, 2-Jul-2022.)
(𝐶𝑉 → (𝐶𝐴 ↔ (inl‘𝐶) ∈ (𝐴𝐵)))
 
Theoremdjulf1or 6692 The left injection function on all sets is one to one and onto. (Contributed by BJ and Jim Kingdon, 22-Jun-2022.)
(inl ↾ 𝐴):𝐴1-1-onto→({∅} × 𝐴)
 
Theoremdjurf1or 6693 The right injection function on all sets is one to one and onto. (Contributed by BJ and Jim Kingdon, 22-Jun-2022.)
(inr ↾ 𝐴):𝐴1-1-onto→({1𝑜} × 𝐴)
 
Theoremdjulf1o 6694 The left injection function on all sets is one to one and onto. (Contributed by Jim Kingdon, 22-Jun-2022.)
inl:V–1-1-onto→({∅} × V)
 
Theoremdjurf1o 6695 The right injection function on all sets is one to one and onto. (Contributed by Jim Kingdon, 22-Jun-2022.)
inr:V–1-1-onto→({1𝑜} × V)
 
Theoreminresflem 6696* Lemma for inlresf1 6697 and inrresf1 6698. (Contributed by BJ, 4-Jul-2022.)
𝐹:𝐴1-1-onto→({𝑋} × 𝐴)    &   (𝑥𝐴 → (𝐹𝑥) ∈ 𝐵)       𝐹:𝐴1-1𝐵
 
Theoreminlresf1 6697 The left injection restricted to the left class of a disjoint union is an injective function from the left class into the disjoint union. (Contributed by AV, 28-Jun-2022.)
(inl ↾ 𝐴):𝐴1-1→(𝐴𝐵)
 
Theoreminrresf1 6698 The right injection restricted to the right class of a disjoint union is an injective function from the right class into the disjoint union. (Contributed by AV, 28-Jun-2022.)
(inr ↾ 𝐵):𝐵1-1→(𝐴𝐵)
 
Theoremdjuinr 6699 The ranges of any left and right injections are disjoint. Remark: the restrictions seem not necessary, but the proof is not much longer than the proof of (ran inl ∩ ran inr) = ∅ (which is easily recovered from it, as in the proof of casefun 6720). (Contributed by BJ and Jim Kingdon, 21-Jun-2022.)
(ran (inl ↾ 𝐴) ∩ ran (inr ↾ 𝐵)) = ∅
 
Theoremdjuin 6700 The images of any classes under right and left injection produce disjoint sets. (Contributed by Jim Kingdon, 21-Jun-2022.)
((inl “ 𝐴) ∩ (inr “ 𝐵)) = ∅
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11363
  Copyright terms: Public domain < Previous  Next >