Theorem List for Intuitionistic Logic Explorer - 6601-6700 *Has distinct variable
group(s)
| Type | Label | Description |
| Statement |
| |
| Theorem | fnoa 6601 |
Functionality and domain of ordinal addition. (Contributed by NM,
26-Aug-1995.) (Proof shortened by Mario Carneiro, 3-Jul-2019.)
|
| ⊢ +o Fn (On ×
On) |
| |
| Theorem | oaexg 6602 |
Ordinal addition is a set. (Contributed by Mario Carneiro,
3-Jul-2019.)
|
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 +o 𝐵) ∈ V) |
| |
| Theorem | omfnex 6603* |
The characteristic function for ordinal multiplication is defined
everywhere. (Contributed by Jim Kingdon, 23-Aug-2019.)
|
| ⊢ (𝐴 ∈ 𝑉 → (𝑥 ∈ V ↦ (𝑥 +o 𝐴)) Fn V) |
| |
| Theorem | fnom 6604 |
Functionality and domain of ordinal multiplication. (Contributed by NM,
26-Aug-1995.) (Revised by Mario Carneiro, 3-Jul-2019.)
|
| ⊢ ·o Fn (On ×
On) |
| |
| Theorem | omexg 6605 |
Ordinal multiplication is a set. (Contributed by Mario Carneiro,
3-Jul-2019.)
|
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ·o 𝐵) ∈ V) |
| |
| Theorem | fnoei 6606 |
Functionality and domain of ordinal exponentiation. (Contributed by
Mario Carneiro, 29-May-2015.) (Revised by Mario Carneiro,
3-Jul-2019.)
|
| ⊢ ↑o Fn (On ×
On) |
| |
| Theorem | oeiexg 6607 |
Ordinal exponentiation is a set. (Contributed by Mario Carneiro,
3-Jul-2019.)
|
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ↑o 𝐵) ∈ V) |
| |
| Theorem | oav 6608* |
Value of ordinal addition. (Contributed by NM, 3-May-1995.) (Revised
by Mario Carneiro, 8-Sep-2013.)
|
| ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 +o 𝐵) = (rec((𝑥 ∈ V ↦ suc 𝑥), 𝐴)‘𝐵)) |
| |
| Theorem | omv 6609* |
Value of ordinal multiplication. (Contributed by NM, 17-Sep-1995.)
(Revised by Mario Carneiro, 23-Aug-2014.)
|
| ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ·o 𝐵) = (rec((𝑥 ∈ V ↦ (𝑥 +o 𝐴)), ∅)‘𝐵)) |
| |
| Theorem | oeiv 6610* |
Value of ordinal exponentiation. (Contributed by Jim Kingdon,
9-Jul-2019.)
|
| ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ↑o 𝐵) = (rec((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)), 1o)‘𝐵)) |
| |
| Theorem | oa0 6611 |
Addition with zero. Proposition 8.3 of [TakeutiZaring] p. 57.
(Contributed by NM, 3-May-1995.) (Revised by Mario Carneiro,
8-Sep-2013.)
|
| ⊢ (𝐴 ∈ On → (𝐴 +o ∅) = 𝐴) |
| |
| Theorem | om0 6612 |
Ordinal multiplication with zero. Definition 8.15 of [TakeutiZaring]
p. 62. (Contributed by NM, 17-Sep-1995.) (Revised by Mario Carneiro,
8-Sep-2013.)
|
| ⊢ (𝐴 ∈ On → (𝐴 ·o ∅) =
∅) |
| |
| Theorem | oei0 6613 |
Ordinal exponentiation with zero exponent. Definition 8.30 of
[TakeutiZaring] p. 67.
(Contributed by NM, 31-Dec-2004.) (Revised by
Mario Carneiro, 8-Sep-2013.)
|
| ⊢ (𝐴 ∈ On → (𝐴 ↑o ∅) =
1o) |
| |
| Theorem | oacl 6614 |
Closure law for ordinal addition. Proposition 8.2 of [TakeutiZaring]
p. 57. (Contributed by NM, 5-May-1995.) (Constructive proof by Jim
Kingdon, 26-Jul-2019.)
|
| ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 +o 𝐵) ∈ On) |
| |
| Theorem | omcl 6615 |
Closure law for ordinal multiplication. Proposition 8.16 of
[TakeutiZaring] p. 57.
(Contributed by NM, 3-Aug-2004.) (Constructive
proof by Jim Kingdon, 26-Jul-2019.)
|
| ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ·o 𝐵) ∈ On) |
| |
| Theorem | oeicl 6616 |
Closure law for ordinal exponentiation. (Contributed by Jim Kingdon,
26-Jul-2019.)
|
| ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ↑o 𝐵) ∈ On) |
| |
| Theorem | oav2 6617* |
Value of ordinal addition. (Contributed by Mario Carneiro and Jim
Kingdon, 12-Aug-2019.)
|
| ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 +o 𝐵) = (𝐴 ∪ ∪
𝑥 ∈ 𝐵 suc (𝐴 +o 𝑥))) |
| |
| Theorem | oasuc 6618 |
Addition with successor. Definition 8.1 of [TakeutiZaring] p. 56.
(Contributed by NM, 3-May-1995.) (Revised by Mario Carneiro,
8-Sep-2013.)
|
| ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 +o suc 𝐵) = suc (𝐴 +o 𝐵)) |
| |
| Theorem | omv2 6619* |
Value of ordinal multiplication. (Contributed by Jim Kingdon,
23-Aug-2019.)
|
| ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ·o 𝐵) = ∪
𝑥 ∈ 𝐵 ((𝐴 ·o 𝑥) +o 𝐴)) |
| |
| Theorem | onasuc 6620 |
Addition with successor. Theorem 4I(A2) of [Enderton] p. 79.
(Contributed by Mario Carneiro, 16-Nov-2014.)
|
| ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ ω) → (𝐴 +o suc 𝐵) = suc (𝐴 +o 𝐵)) |
| |
| Theorem | oa1suc 6621 |
Addition with 1 is same as successor. Proposition 4.34(a) of [Mendelson]
p. 266. (Contributed by NM, 29-Oct-1995.) (Revised by Mario Carneiro,
16-Nov-2014.)
|
| ⊢ (𝐴 ∈ On → (𝐴 +o 1o) = suc 𝐴) |
| |
| Theorem | o1p1e2 6622 |
1 + 1 = 2 for ordinal numbers. (Contributed by NM, 18-Feb-2004.)
|
| ⊢ (1o +o 1o)
= 2o |
| |
| Theorem | oawordi 6623 |
Weak ordering property of ordinal addition. (Contributed by Jim
Kingdon, 27-Jul-2019.)
|
| ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐴 ⊆ 𝐵 → (𝐶 +o 𝐴) ⊆ (𝐶 +o 𝐵))) |
| |
| Theorem | oawordriexmid 6624* |
A weak ordering property of ordinal addition which implies excluded
middle. The property is proposition 8.7 of [TakeutiZaring] p. 59.
Compare with oawordi 6623. (Contributed by Jim Kingdon, 15-May-2022.)
|
| ⊢ ((𝑎 ∈ On ∧ 𝑏 ∈ On ∧ 𝑐 ∈ On) → (𝑎 ⊆ 𝑏 → (𝑎 +o 𝑐) ⊆ (𝑏 +o 𝑐))) ⇒ ⊢ (𝜑 ∨ ¬ 𝜑) |
| |
| Theorem | oaword1 6625 |
An ordinal is less than or equal to its sum with another. Part of
Exercise 5 of [TakeutiZaring] p. 62.
(Contributed by NM, 6-Dec-2004.)
|
| ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → 𝐴 ⊆ (𝐴 +o 𝐵)) |
| |
| Theorem | omsuc 6626 |
Multiplication with successor. Definition 8.15 of [TakeutiZaring]
p. 62. (Contributed by NM, 17-Sep-1995.) (Revised by Mario Carneiro,
8-Sep-2013.)
|
| ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ·o suc 𝐵) = ((𝐴 ·o 𝐵) +o 𝐴)) |
| |
| Theorem | onmsuc 6627 |
Multiplication with successor. Theorem 4J(A2) of [Enderton] p. 80.
(Contributed by NM, 20-Sep-1995.) (Revised by Mario Carneiro,
14-Nov-2014.)
|
| ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ ω) → (𝐴 ·o suc 𝐵) = ((𝐴 ·o 𝐵) +o 𝐴)) |
| |
| 2.6.24 Natural number arithmetic
|
| |
| Theorem | nna0 6628 |
Addition with zero. Theorem 4I(A1) of [Enderton] p. 79. (Contributed by
NM, 20-Sep-1995.)
|
| ⊢ (𝐴 ∈ ω → (𝐴 +o ∅) = 𝐴) |
| |
| Theorem | nnm0 6629 |
Multiplication with zero. Theorem 4J(A1) of [Enderton] p. 80.
(Contributed by NM, 20-Sep-1995.)
|
| ⊢ (𝐴 ∈ ω → (𝐴 ·o ∅) =
∅) |
| |
| Theorem | nnasuc 6630 |
Addition with successor. Theorem 4I(A2) of [Enderton] p. 79.
(Contributed by NM, 20-Sep-1995.) (Revised by Mario Carneiro,
14-Nov-2014.)
|
| ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 +o suc 𝐵) = suc (𝐴 +o 𝐵)) |
| |
| Theorem | nnmsuc 6631 |
Multiplication with successor. Theorem 4J(A2) of [Enderton] p. 80.
(Contributed by NM, 20-Sep-1995.) (Revised by Mario Carneiro,
14-Nov-2014.)
|
| ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ·o suc 𝐵) = ((𝐴 ·o 𝐵) +o 𝐴)) |
| |
| Theorem | nna0r 6632 |
Addition to zero. Remark in proof of Theorem 4K(2) of [Enderton] p. 81.
(Contributed by NM, 20-Sep-1995.) (Revised by Mario Carneiro,
14-Nov-2014.)
|
| ⊢ (𝐴 ∈ ω → (∅
+o 𝐴) = 𝐴) |
| |
| Theorem | nnm0r 6633 |
Multiplication with zero. Exercise 16 of [Enderton] p. 82.
(Contributed by NM, 20-Sep-1995.) (Revised by Mario Carneiro,
15-Nov-2014.)
|
| ⊢ (𝐴 ∈ ω → (∅
·o 𝐴) =
∅) |
| |
| Theorem | nnacl 6634 |
Closure of addition of natural numbers. Proposition 8.9 of
[TakeutiZaring] p. 59.
(Contributed by NM, 20-Sep-1995.) (Proof
shortened by Andrew Salmon, 22-Oct-2011.)
|
| ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 +o 𝐵) ∈ ω) |
| |
| Theorem | nnmcl 6635 |
Closure of multiplication of natural numbers. Proposition 8.17 of
[TakeutiZaring] p. 63.
(Contributed by NM, 20-Sep-1995.) (Proof
shortened by Andrew Salmon, 22-Oct-2011.)
|
| ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ·o 𝐵) ∈ ω) |
| |
| Theorem | nnacli 6636 |
ω is closed under addition. Inference form of nnacl 6634.
(Contributed by Scott Fenton, 20-Apr-2012.)
|
| ⊢ 𝐴 ∈ ω & ⊢ 𝐵 ∈
ω ⇒ ⊢ (𝐴 +o 𝐵) ∈ ω |
| |
| Theorem | nnmcli 6637 |
ω is closed under multiplication. Inference form
of nnmcl 6635.
(Contributed by Scott Fenton, 20-Apr-2012.)
|
| ⊢ 𝐴 ∈ ω & ⊢ 𝐵 ∈
ω ⇒ ⊢ (𝐴 ·o 𝐵) ∈ ω |
| |
| Theorem | nnacom 6638 |
Addition of natural numbers is commutative. Theorem 4K(2) of [Enderton]
p. 81. (Contributed by NM, 6-May-1995.) (Revised by Mario Carneiro,
15-Nov-2014.)
|
| ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 +o 𝐵) = (𝐵 +o 𝐴)) |
| |
| Theorem | nnaass 6639 |
Addition of natural numbers is associative. Theorem 4K(1) of [Enderton]
p. 81. (Contributed by NM, 20-Sep-1995.) (Revised by Mario Carneiro,
15-Nov-2014.)
|
| ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → ((𝐴 +o 𝐵) +o 𝐶) = (𝐴 +o (𝐵 +o 𝐶))) |
| |
| Theorem | nndi 6640 |
Distributive law for natural numbers (left-distributivity). Theorem
4K(3) of [Enderton] p. 81.
(Contributed by NM, 20-Sep-1995.) (Revised
by Mario Carneiro, 15-Nov-2014.)
|
| ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → (𝐴 ·o (𝐵 +o 𝐶)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝐶))) |
| |
| Theorem | nnmass 6641 |
Multiplication of natural numbers is associative. Theorem 4K(4) of
[Enderton] p. 81. (Contributed by NM,
20-Sep-1995.) (Revised by Mario
Carneiro, 15-Nov-2014.)
|
| ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → ((𝐴 ·o 𝐵) ·o 𝐶) = (𝐴 ·o (𝐵 ·o 𝐶))) |
| |
| Theorem | nnmsucr 6642 |
Multiplication with successor. Exercise 16 of [Enderton] p. 82.
(Contributed by NM, 21-Sep-1995.) (Proof shortened by Andrew Salmon,
22-Oct-2011.)
|
| ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (suc 𝐴 ·o 𝐵) = ((𝐴 ·o 𝐵) +o 𝐵)) |
| |
| Theorem | nnmcom 6643 |
Multiplication of natural numbers is commutative. Theorem 4K(5) of
[Enderton] p. 81. (Contributed by NM,
21-Sep-1995.) (Proof shortened
by Andrew Salmon, 22-Oct-2011.)
|
| ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ·o 𝐵) = (𝐵 ·o 𝐴)) |
| |
| Theorem | nndir 6644 |
Distributive law for natural numbers (right-distributivity). (Contributed
by Jim Kingdon, 3-Dec-2019.)
|
| ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → ((𝐴 +o 𝐵) ·o 𝐶) = ((𝐴 ·o 𝐶) +o (𝐵 ·o 𝐶))) |
| |
| Theorem | nnsucelsuc 6645 |
Membership is inherited by successors. The reverse direction holds for
all ordinals, as seen at onsucelsucr 4600, but the forward direction, for
all ordinals, implies excluded middle as seen as onsucelsucexmid 4622.
(Contributed by Jim Kingdon, 25-Aug-2019.)
|
| ⊢ (𝐵 ∈ ω → (𝐴 ∈ 𝐵 ↔ suc 𝐴 ∈ suc 𝐵)) |
| |
| Theorem | nnsucsssuc 6646 |
Membership is inherited by successors. The reverse direction holds for
all ordinals, as seen at onsucsssucr 4601, but the forward direction, for
all ordinals, implies excluded middle as seen as onsucsssucexmid 4619.
(Contributed by Jim Kingdon, 25-Aug-2019.)
|
| ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ⊆ 𝐵 ↔ suc 𝐴 ⊆ suc 𝐵)) |
| |
| Theorem | nntri3or 6647 |
Trichotomy for natural numbers. (Contributed by Jim Kingdon,
25-Aug-2019.)
|
| ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵 ∨ 𝐵 ∈ 𝐴)) |
| |
| Theorem | nntri2 6648 |
A trichotomy law for natural numbers. (Contributed by Jim Kingdon,
28-Aug-2019.)
|
| ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ∈ 𝐵 ↔ ¬ (𝐴 = 𝐵 ∨ 𝐵 ∈ 𝐴))) |
| |
| Theorem | nnsucuniel 6649 |
Given an element 𝐴 of the union of a natural number
𝐵,
suc 𝐴 is an element of 𝐵 itself.
The reverse direction holds
for all ordinals (sucunielr 4602). The forward direction for all
ordinals implies excluded middle (ordsucunielexmid 4623). (Contributed
by Jim Kingdon, 13-Mar-2022.)
|
| ⊢ (𝐵 ∈ ω → (𝐴 ∈ ∪ 𝐵 ↔ suc 𝐴 ∈ 𝐵)) |
| |
| Theorem | nntri1 6650 |
A trichotomy law for natural numbers. (Contributed by Jim Kingdon,
28-Aug-2019.)
|
| ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ⊆ 𝐵 ↔ ¬ 𝐵 ∈ 𝐴)) |
| |
| Theorem | nntri3 6651 |
A trichotomy law for natural numbers. (Contributed by Jim Kingdon,
15-May-2020.)
|
| ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 = 𝐵 ↔ (¬ 𝐴 ∈ 𝐵 ∧ ¬ 𝐵 ∈ 𝐴))) |
| |
| Theorem | nntri2or2 6652 |
A trichotomy law for natural numbers. (Contributed by Jim Kingdon,
15-Sep-2021.)
|
| ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ⊆ 𝐵 ∨ 𝐵 ⊆ 𝐴)) |
| |
| Theorem | nndceq 6653 |
Equality of natural numbers is decidable. Theorem 7.2.6 of [HoTT], p.
(varies). For the specific case where 𝐵 is zero, see nndceq0 4710.
(Contributed by Jim Kingdon, 31-Aug-2019.)
|
| ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) →
DECID 𝐴 =
𝐵) |
| |
| Theorem | nndcel 6654 |
Set membership between two natural numbers is decidable. (Contributed by
Jim Kingdon, 6-Sep-2019.)
|
| ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) →
DECID 𝐴
∈ 𝐵) |
| |
| Theorem | nnsseleq 6655 |
For natural numbers, inclusion is equivalent to membership or equality.
(Contributed by Jim Kingdon, 16-Sep-2021.)
|
| ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ⊆ 𝐵 ↔ (𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵))) |
| |
| Theorem | nnsssuc 6656 |
A natural number is a subset of another natural number if and only if it
belongs to its successor. (Contributed by Jim Kingdon, 22-Jul-2023.)
|
| ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ⊆ 𝐵 ↔ 𝐴 ∈ suc 𝐵)) |
| |
| Theorem | nntr2 6657 |
Transitive law for natural numbers. (Contributed by Jim Kingdon,
22-Jul-2023.)
|
| ⊢ ((𝐴 ∈ ω ∧ 𝐶 ∈ ω) → ((𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝐶) → 𝐴 ∈ 𝐶)) |
| |
| Theorem | dcdifsnid 6658* |
If we remove a single element from a set with decidable equality then
put it back in, we end up with the original set. This strengthens
difsnss 3814 from subset to equality but the proof relies
on equality being
decidable. (Contributed by Jim Kingdon, 17-Jun-2022.)
|
| ⊢ ((∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦 ∧ 𝐵 ∈ 𝐴) → ((𝐴 ∖ {𝐵}) ∪ {𝐵}) = 𝐴) |
| |
| Theorem | fnsnsplitdc 6659* |
Split a function into a single point and all the rest. (Contributed by
Stefan O'Rear, 27-Feb-2015.) (Revised by Jim Kingdon, 29-Jan-2023.)
|
| ⊢ ((∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦 ∧ 𝐹 Fn 𝐴 ∧ 𝑋 ∈ 𝐴) → 𝐹 = ((𝐹 ↾ (𝐴 ∖ {𝑋})) ∪ {〈𝑋, (𝐹‘𝑋)〉})) |
| |
| Theorem | funresdfunsndc 6660* |
Restricting a function to a domain without one element of the domain of
the function, and adding a pair of this element and the function value
of the element results in the function itself, where equality is
decidable. (Contributed by AV, 2-Dec-2018.) (Revised by Jim Kingdon,
30-Jan-2023.)
|
| ⊢ ((∀𝑥 ∈ dom 𝐹∀𝑦 ∈ dom 𝐹DECID 𝑥 = 𝑦 ∧ Fun 𝐹 ∧ 𝑋 ∈ dom 𝐹) → ((𝐹 ↾ (V ∖ {𝑋})) ∪ {〈𝑋, (𝐹‘𝑋)〉}) = 𝐹) |
| |
| Theorem | nndifsnid 6661 |
If we remove a single element from a natural number then put it back in,
we end up with the original natural number. This strengthens difsnss 3814
from subset to equality but the proof relies on equality being
decidable. (Contributed by Jim Kingdon, 31-Aug-2021.)
|
| ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ 𝐴) → ((𝐴 ∖ {𝐵}) ∪ {𝐵}) = 𝐴) |
| |
| Theorem | nnaordi 6662 |
Ordering property of addition. Proposition 8.4 of [TakeutiZaring]
p. 58, limited to natural numbers. (Contributed by NM, 3-Feb-1996.)
(Revised by Mario Carneiro, 15-Nov-2014.)
|
| ⊢ ((𝐵 ∈ ω ∧ 𝐶 ∈ ω) → (𝐴 ∈ 𝐵 → (𝐶 +o 𝐴) ∈ (𝐶 +o 𝐵))) |
| |
| Theorem | nnaord 6663 |
Ordering property of addition. Proposition 8.4 of [TakeutiZaring] p. 58,
limited to natural numbers, and its converse. (Contributed by NM,
7-Mar-1996.) (Revised by Mario Carneiro, 15-Nov-2014.)
|
| ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → (𝐴 ∈ 𝐵 ↔ (𝐶 +o 𝐴) ∈ (𝐶 +o 𝐵))) |
| |
| Theorem | nnaordr 6664 |
Ordering property of addition of natural numbers. (Contributed by NM,
9-Nov-2002.)
|
| ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → (𝐴 ∈ 𝐵 ↔ (𝐴 +o 𝐶) ∈ (𝐵 +o 𝐶))) |
| |
| Theorem | nnaword 6665 |
Weak ordering property of addition. (Contributed by NM, 17-Sep-1995.)
(Revised by Mario Carneiro, 15-Nov-2014.)
|
| ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → (𝐴 ⊆ 𝐵 ↔ (𝐶 +o 𝐴) ⊆ (𝐶 +o 𝐵))) |
| |
| Theorem | nnacan 6666 |
Cancellation law for addition of natural numbers. (Contributed by NM,
27-Oct-1995.) (Revised by Mario Carneiro, 15-Nov-2014.)
|
| ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → ((𝐴 +o 𝐵) = (𝐴 +o 𝐶) ↔ 𝐵 = 𝐶)) |
| |
| Theorem | nnaword1 6667 |
Weak ordering property of addition. (Contributed by NM, 9-Nov-2002.)
(Revised by Mario Carneiro, 15-Nov-2014.)
|
| ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → 𝐴 ⊆ (𝐴 +o 𝐵)) |
| |
| Theorem | nnaword2 6668 |
Weak ordering property of addition. (Contributed by NM, 9-Nov-2002.)
|
| ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → 𝐴 ⊆ (𝐵 +o 𝐴)) |
| |
| Theorem | nnawordi 6669 |
Adding to both sides of an inequality in ω.
(Contributed by Scott
Fenton, 16-Apr-2012.) (Revised by Mario Carneiro, 12-May-2012.)
|
| ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → (𝐴 ⊆ 𝐵 → (𝐴 +o 𝐶) ⊆ (𝐵 +o 𝐶))) |
| |
| Theorem | nnmordi 6670 |
Ordering property of multiplication. Half of Proposition 8.19 of
[TakeutiZaring] p. 63, limited to
natural numbers. (Contributed by NM,
18-Sep-1995.) (Revised by Mario Carneiro, 15-Nov-2014.)
|
| ⊢ (((𝐵 ∈ ω ∧ 𝐶 ∈ ω) ∧ ∅ ∈ 𝐶) → (𝐴 ∈ 𝐵 → (𝐶 ·o 𝐴) ∈ (𝐶 ·o 𝐵))) |
| |
| Theorem | nnmord 6671 |
Ordering property of multiplication. Proposition 8.19 of [TakeutiZaring]
p. 63, limited to natural numbers. (Contributed by NM, 22-Jan-1996.)
(Revised by Mario Carneiro, 15-Nov-2014.)
|
| ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → ((𝐴 ∈ 𝐵 ∧ ∅ ∈ 𝐶) ↔ (𝐶 ·o 𝐴) ∈ (𝐶 ·o 𝐵))) |
| |
| Theorem | nnmword 6672 |
Weak ordering property of ordinal multiplication. (Contributed by Mario
Carneiro, 17-Nov-2014.)
|
| ⊢ (((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) ∧ ∅ ∈ 𝐶) → (𝐴 ⊆ 𝐵 ↔ (𝐶 ·o 𝐴) ⊆ (𝐶 ·o 𝐵))) |
| |
| Theorem | nnmcan 6673 |
Cancellation law for multiplication of natural numbers. (Contributed by
NM, 26-Oct-1995.) (Revised by Mario Carneiro, 15-Nov-2014.)
|
| ⊢ (((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) ∧ ∅ ∈ 𝐴) → ((𝐴 ·o 𝐵) = (𝐴 ·o 𝐶) ↔ 𝐵 = 𝐶)) |
| |
| Theorem | 1onn 6674 |
One is a natural number. (Contributed by NM, 29-Oct-1995.)
|
| ⊢ 1o ∈
ω |
| |
| Theorem | 2onn 6675 |
The ordinal 2 is a natural number. (Contributed by NM, 28-Sep-2004.)
|
| ⊢ 2o ∈
ω |
| |
| Theorem | 3onn 6676 |
The ordinal 3 is a natural number. (Contributed by Mario Carneiro,
5-Jan-2016.)
|
| ⊢ 3o ∈
ω |
| |
| Theorem | 4onn 6677 |
The ordinal 4 is a natural number. (Contributed by Mario Carneiro,
5-Jan-2016.)
|
| ⊢ 4o ∈
ω |
| |
| Theorem | 2ssom 6678 |
The ordinal 2 is included in the set of natural number ordinals.
(Contributed by BJ, 5-Aug-2024.)
|
| ⊢ 2o ⊆
ω |
| |
| Theorem | nnm1 6679 |
Multiply an element of ω by 1o. (Contributed by Mario
Carneiro, 17-Nov-2014.)
|
| ⊢ (𝐴 ∈ ω → (𝐴 ·o 1o) =
𝐴) |
| |
| Theorem | nnm2 6680 |
Multiply an element of ω by 2o. (Contributed by Scott Fenton,
18-Apr-2012.) (Revised by Mario Carneiro, 17-Nov-2014.)
|
| ⊢ (𝐴 ∈ ω → (𝐴 ·o 2o) =
(𝐴 +o 𝐴)) |
| |
| Theorem | nn2m 6681 |
Multiply an element of ω by 2o. (Contributed by Scott Fenton,
16-Apr-2012.) (Revised by Mario Carneiro, 17-Nov-2014.)
|
| ⊢ (𝐴 ∈ ω → (2o
·o 𝐴) =
(𝐴 +o 𝐴)) |
| |
| Theorem | nnaordex 6682* |
Equivalence for ordering. Compare Exercise 23 of [Enderton] p. 88.
(Contributed by NM, 5-Dec-1995.) (Revised by Mario Carneiro,
15-Nov-2014.)
|
| ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ∈ 𝐵 ↔ ∃𝑥 ∈ ω (∅ ∈ 𝑥 ∧ (𝐴 +o 𝑥) = 𝐵))) |
| |
| Theorem | nnawordex 6683* |
Equivalence for weak ordering of natural numbers. (Contributed by NM,
8-Nov-2002.) (Revised by Mario Carneiro, 15-Nov-2014.)
|
| ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ⊆ 𝐵 ↔ ∃𝑥 ∈ ω (𝐴 +o 𝑥) = 𝐵)) |
| |
| Theorem | nnm00 6684 |
The product of two natural numbers is zero iff at least one of them is
zero. (Contributed by Jim Kingdon, 11-Nov-2004.)
|
| ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → ((𝐴 ·o 𝐵) = ∅ ↔ (𝐴 = ∅ ∨ 𝐵 = ∅))) |
| |
| 2.6.25 Equivalence relations and
classes
|
| |
| Syntax | wer 6685 |
Extend the definition of a wff to include the equivalence predicate.
|
| wff 𝑅 Er 𝐴 |
| |
| Syntax | cec 6686 |
Extend the definition of a class to include equivalence class.
|
| class [𝐴]𝑅 |
| |
| Syntax | cqs 6687 |
Extend the definition of a class to include quotient set.
|
| class (𝐴 / 𝑅) |
| |
| Definition | df-er 6688 |
Define the equivalence relation predicate. Our notation is not standard.
A formal notation doesn't seem to exist in the literature; instead only
informal English tends to be used. The present definition, although
somewhat cryptic, nicely avoids dummy variables. In dfer2 6689 we derive a
more typical definition. We show that an equivalence relation is
reflexive, symmetric, and transitive in erref 6708, ersymb 6702, and ertr 6703.
(Contributed by NM, 4-Jun-1995.) (Revised by Mario Carneiro,
2-Nov-2015.)
|
| ⊢ (𝑅 Er 𝐴 ↔ (Rel 𝑅 ∧ dom 𝑅 = 𝐴 ∧ (◡𝑅 ∪ (𝑅 ∘ 𝑅)) ⊆ 𝑅)) |
| |
| Theorem | dfer2 6689* |
Alternate definition of equivalence predicate. (Contributed by NM,
3-Jan-1997.) (Revised by Mario Carneiro, 12-Aug-2015.)
|
| ⊢ (𝑅 Er 𝐴 ↔ (Rel 𝑅 ∧ dom 𝑅 = 𝐴 ∧ ∀𝑥∀𝑦∀𝑧((𝑥𝑅𝑦 → 𝑦𝑅𝑥) ∧ ((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧)))) |
| |
| Definition | df-ec 6690 |
Define the 𝑅-coset of 𝐴. Exercise 35 of [Enderton] p. 61. This
is called the equivalence class of 𝐴 modulo 𝑅 when 𝑅 is an
equivalence relation (i.e. when Er 𝑅; see dfer2 6689). In this case,
𝐴 is a representative (member) of the
equivalence class [𝐴]𝑅,
which contains all sets that are equivalent to 𝐴. Definition of
[Enderton] p. 57 uses the notation [𝐴]
(subscript) 𝑅, although
we simply follow the brackets by 𝑅 since we don't have subscripted
expressions. For an alternate definition, see dfec2 6691. (Contributed by
NM, 23-Jul-1995.)
|
| ⊢ [𝐴]𝑅 = (𝑅 “ {𝐴}) |
| |
| Theorem | dfec2 6691* |
Alternate definition of 𝑅-coset of 𝐴. Definition 34 of
[Suppes] p. 81. (Contributed by NM,
3-Jan-1997.) (Proof shortened by
Mario Carneiro, 9-Jul-2014.)
|
| ⊢ (𝐴 ∈ 𝑉 → [𝐴]𝑅 = {𝑦 ∣ 𝐴𝑅𝑦}) |
| |
| Theorem | ecexg 6692 |
An equivalence class modulo a set is a set. (Contributed by NM,
24-Jul-1995.)
|
| ⊢ (𝑅 ∈ 𝐵 → [𝐴]𝑅 ∈ V) |
| |
| Theorem | ecexr 6693 |
An inhabited equivalence class implies the representative is a set.
(Contributed by Mario Carneiro, 9-Jul-2014.)
|
| ⊢ (𝐴 ∈ [𝐵]𝑅 → 𝐵 ∈ V) |
| |
| Definition | df-qs 6694* |
Define quotient set. 𝑅 is usually an equivalence relation.
Definition of [Enderton] p. 58.
(Contributed by NM, 23-Jul-1995.)
|
| ⊢ (𝐴 / 𝑅) = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = [𝑥]𝑅} |
| |
| Theorem | ereq1 6695 |
Equality theorem for equivalence predicate. (Contributed by NM,
4-Jun-1995.) (Revised by Mario Carneiro, 12-Aug-2015.)
|
| ⊢ (𝑅 = 𝑆 → (𝑅 Er 𝐴 ↔ 𝑆 Er 𝐴)) |
| |
| Theorem | ereq2 6696 |
Equality theorem for equivalence predicate. (Contributed by Mario
Carneiro, 12-Aug-2015.)
|
| ⊢ (𝐴 = 𝐵 → (𝑅 Er 𝐴 ↔ 𝑅 Er 𝐵)) |
| |
| Theorem | errel 6697 |
An equivalence relation is a relation. (Contributed by Mario Carneiro,
12-Aug-2015.)
|
| ⊢ (𝑅 Er 𝐴 → Rel 𝑅) |
| |
| Theorem | erdm 6698 |
The domain of an equivalence relation. (Contributed by Mario Carneiro,
12-Aug-2015.)
|
| ⊢ (𝑅 Er 𝐴 → dom 𝑅 = 𝐴) |
| |
| Theorem | ercl 6699 |
Elementhood in the field of an equivalence relation. (Contributed by
Mario Carneiro, 12-Aug-2015.)
|
| ⊢ (𝜑 → 𝑅 Er 𝑋)
& ⊢ (𝜑 → 𝐴𝑅𝐵) ⇒ ⊢ (𝜑 → 𝐴 ∈ 𝑋) |
| |
| Theorem | ersym 6700 |
An equivalence relation is symmetric. (Contributed by NM, 4-Jun-1995.)
(Revised by Mario Carneiro, 12-Aug-2015.)
|
| ⊢ (𝜑 → 𝑅 Er 𝑋)
& ⊢ (𝜑 → 𝐴𝑅𝐵) ⇒ ⊢ (𝜑 → 𝐵𝑅𝐴) |