| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mapprc | GIF version | ||
| Description: When 𝐴 is a proper class, the class of all functions mapping 𝐴 to 𝐵 is empty. Exercise 4.41 of [Mendelson] p. 255. (Contributed by NM, 8-Dec-2003.) |
| Ref | Expression |
|---|---|
| mapprc | ⊢ (¬ 𝐴 ∈ V → {𝑓 ∣ 𝑓:𝐴⟶𝐵} = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | abn0m 3486 | . . . 4 ⊢ (∃𝑔 𝑔 ∈ {𝑓 ∣ 𝑓:𝐴⟶𝐵} ↔ ∃𝑓 𝑓:𝐴⟶𝐵) | |
| 2 | fdm 5431 | . . . . . 6 ⊢ (𝑓:𝐴⟶𝐵 → dom 𝑓 = 𝐴) | |
| 3 | vex 2775 | . . . . . . 7 ⊢ 𝑓 ∈ V | |
| 4 | 3 | dmex 4945 | . . . . . 6 ⊢ dom 𝑓 ∈ V |
| 5 | 2, 4 | eqeltrrdi 2297 | . . . . 5 ⊢ (𝑓:𝐴⟶𝐵 → 𝐴 ∈ V) |
| 6 | 5 | exlimiv 1621 | . . . 4 ⊢ (∃𝑓 𝑓:𝐴⟶𝐵 → 𝐴 ∈ V) |
| 7 | 1, 6 | sylbi 121 | . . 3 ⊢ (∃𝑔 𝑔 ∈ {𝑓 ∣ 𝑓:𝐴⟶𝐵} → 𝐴 ∈ V) |
| 8 | 7 | con3i 633 | . 2 ⊢ (¬ 𝐴 ∈ V → ¬ ∃𝑔 𝑔 ∈ {𝑓 ∣ 𝑓:𝐴⟶𝐵}) |
| 9 | notm0 3481 | . 2 ⊢ (¬ ∃𝑔 𝑔 ∈ {𝑓 ∣ 𝑓:𝐴⟶𝐵} ↔ {𝑓 ∣ 𝑓:𝐴⟶𝐵} = ∅) | |
| 10 | 8, 9 | sylib 122 | 1 ⊢ (¬ 𝐴 ∈ V → {𝑓 ∣ 𝑓:𝐴⟶𝐵} = ∅) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1373 ∃wex 1515 ∈ wcel 2176 {cab 2191 Vcvv 2772 ∅c0 3460 dom cdm 4675 ⟶wf 5267 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-pow 4218 ax-pr 4253 ax-un 4480 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-rex 2490 df-v 2774 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-nul 3461 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-br 4045 df-opab 4106 df-cnv 4683 df-dm 4685 df-rn 4686 df-fn 5274 df-f 5275 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |