| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mapprc | GIF version | ||
| Description: When 𝐴 is a proper class, the class of all functions mapping 𝐴 to 𝐵 is empty. Exercise 4.41 of [Mendelson] p. 255. (Contributed by NM, 8-Dec-2003.) |
| Ref | Expression |
|---|---|
| mapprc | ⊢ (¬ 𝐴 ∈ V → {𝑓 ∣ 𝑓:𝐴⟶𝐵} = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | abn0m 3476 | . . . 4 ⊢ (∃𝑔 𝑔 ∈ {𝑓 ∣ 𝑓:𝐴⟶𝐵} ↔ ∃𝑓 𝑓:𝐴⟶𝐵) | |
| 2 | fdm 5413 | . . . . . 6 ⊢ (𝑓:𝐴⟶𝐵 → dom 𝑓 = 𝐴) | |
| 3 | vex 2766 | . . . . . . 7 ⊢ 𝑓 ∈ V | |
| 4 | 3 | dmex 4932 | . . . . . 6 ⊢ dom 𝑓 ∈ V |
| 5 | 2, 4 | eqeltrrdi 2288 | . . . . 5 ⊢ (𝑓:𝐴⟶𝐵 → 𝐴 ∈ V) |
| 6 | 5 | exlimiv 1612 | . . . 4 ⊢ (∃𝑓 𝑓:𝐴⟶𝐵 → 𝐴 ∈ V) |
| 7 | 1, 6 | sylbi 121 | . . 3 ⊢ (∃𝑔 𝑔 ∈ {𝑓 ∣ 𝑓:𝐴⟶𝐵} → 𝐴 ∈ V) |
| 8 | 7 | con3i 633 | . 2 ⊢ (¬ 𝐴 ∈ V → ¬ ∃𝑔 𝑔 ∈ {𝑓 ∣ 𝑓:𝐴⟶𝐵}) |
| 9 | notm0 3471 | . 2 ⊢ (¬ ∃𝑔 𝑔 ∈ {𝑓 ∣ 𝑓:𝐴⟶𝐵} ↔ {𝑓 ∣ 𝑓:𝐴⟶𝐵} = ∅) | |
| 10 | 8, 9 | sylib 122 | 1 ⊢ (¬ 𝐴 ∈ V → {𝑓 ∣ 𝑓:𝐴⟶𝐵} = ∅) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1364 ∃wex 1506 ∈ wcel 2167 {cab 2182 Vcvv 2763 ∅c0 3450 dom cdm 4663 ⟶wf 5254 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-rex 2481 df-v 2765 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-opab 4095 df-cnv 4671 df-dm 4673 df-rn 4674 df-fn 5261 df-f 5262 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |