ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mapprc GIF version

Theorem mapprc 6762
Description: When 𝐴 is a proper class, the class of all functions mapping 𝐴 to 𝐵 is empty. Exercise 4.41 of [Mendelson] p. 255. (Contributed by NM, 8-Dec-2003.)
Assertion
Ref Expression
mapprc 𝐴 ∈ V → {𝑓𝑓:𝐴𝐵} = ∅)
Distinct variable groups:   𝐴,𝑓   𝐵,𝑓

Proof of Theorem mapprc
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 abn0m 3494 . . . 4 (∃𝑔 𝑔 ∈ {𝑓𝑓:𝐴𝐵} ↔ ∃𝑓 𝑓:𝐴𝐵)
2 fdm 5451 . . . . . 6 (𝑓:𝐴𝐵 → dom 𝑓 = 𝐴)
3 vex 2779 . . . . . . 7 𝑓 ∈ V
43dmex 4964 . . . . . 6 dom 𝑓 ∈ V
52, 4eqeltrrdi 2299 . . . . 5 (𝑓:𝐴𝐵𝐴 ∈ V)
65exlimiv 1622 . . . 4 (∃𝑓 𝑓:𝐴𝐵𝐴 ∈ V)
71, 6sylbi 121 . . 3 (∃𝑔 𝑔 ∈ {𝑓𝑓:𝐴𝐵} → 𝐴 ∈ V)
87con3i 633 . 2 𝐴 ∈ V → ¬ ∃𝑔 𝑔 ∈ {𝑓𝑓:𝐴𝐵})
9 notm0 3489 . 2 (¬ ∃𝑔 𝑔 ∈ {𝑓𝑓:𝐴𝐵} ↔ {𝑓𝑓:𝐴𝐵} = ∅)
108, 9sylib 122 1 𝐴 ∈ V → {𝑓𝑓:𝐴𝐵} = ∅)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1373  wex 1516  wcel 2178  {cab 2193  Vcvv 2776  c0 3468  dom cdm 4693  wf 5286
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-un 4498
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-rex 2492  df-v 2778  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-br 4060  df-opab 4122  df-cnv 4701  df-dm 4703  df-rn 4704  df-fn 5293  df-f 5294
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator