![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > mapprc | GIF version |
Description: When 𝐴 is a proper class, the class of all functions mapping 𝐴 to 𝐵 is empty. Exercise 4.41 of [Mendelson] p. 255. (Contributed by NM, 8-Dec-2003.) |
Ref | Expression |
---|---|
mapprc | ⊢ (¬ 𝐴 ∈ V → {𝑓 ∣ 𝑓:𝐴⟶𝐵} = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | abn0m 3450 | . . . 4 ⊢ (∃𝑔 𝑔 ∈ {𝑓 ∣ 𝑓:𝐴⟶𝐵} ↔ ∃𝑓 𝑓:𝐴⟶𝐵) | |
2 | fdm 5373 | . . . . . 6 ⊢ (𝑓:𝐴⟶𝐵 → dom 𝑓 = 𝐴) | |
3 | vex 2742 | . . . . . . 7 ⊢ 𝑓 ∈ V | |
4 | 3 | dmex 4895 | . . . . . 6 ⊢ dom 𝑓 ∈ V |
5 | 2, 4 | eqeltrrdi 2269 | . . . . 5 ⊢ (𝑓:𝐴⟶𝐵 → 𝐴 ∈ V) |
6 | 5 | exlimiv 1598 | . . . 4 ⊢ (∃𝑓 𝑓:𝐴⟶𝐵 → 𝐴 ∈ V) |
7 | 1, 6 | sylbi 121 | . . 3 ⊢ (∃𝑔 𝑔 ∈ {𝑓 ∣ 𝑓:𝐴⟶𝐵} → 𝐴 ∈ V) |
8 | 7 | con3i 632 | . 2 ⊢ (¬ 𝐴 ∈ V → ¬ ∃𝑔 𝑔 ∈ {𝑓 ∣ 𝑓:𝐴⟶𝐵}) |
9 | notm0 3445 | . 2 ⊢ (¬ ∃𝑔 𝑔 ∈ {𝑓 ∣ 𝑓:𝐴⟶𝐵} ↔ {𝑓 ∣ 𝑓:𝐴⟶𝐵} = ∅) | |
10 | 8, 9 | sylib 122 | 1 ⊢ (¬ 𝐴 ∈ V → {𝑓 ∣ 𝑓:𝐴⟶𝐵} = ∅) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1353 ∃wex 1492 ∈ wcel 2148 {cab 2163 Vcvv 2739 ∅c0 3424 dom cdm 4628 ⟶wf 5214 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-sep 4123 ax-pow 4176 ax-pr 4211 ax-un 4435 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-rex 2461 df-v 2741 df-dif 3133 df-un 3135 df-in 3137 df-ss 3144 df-nul 3425 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-br 4006 df-opab 4067 df-cnv 4636 df-dm 4638 df-rn 4639 df-fn 5221 df-f 5222 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |