| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mapprc | GIF version | ||
| Description: When 𝐴 is a proper class, the class of all functions mapping 𝐴 to 𝐵 is empty. Exercise 4.41 of [Mendelson] p. 255. (Contributed by NM, 8-Dec-2003.) |
| Ref | Expression |
|---|---|
| mapprc | ⊢ (¬ 𝐴 ∈ V → {𝑓 ∣ 𝑓:𝐴⟶𝐵} = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | abn0m 3494 | . . . 4 ⊢ (∃𝑔 𝑔 ∈ {𝑓 ∣ 𝑓:𝐴⟶𝐵} ↔ ∃𝑓 𝑓:𝐴⟶𝐵) | |
| 2 | fdm 5451 | . . . . . 6 ⊢ (𝑓:𝐴⟶𝐵 → dom 𝑓 = 𝐴) | |
| 3 | vex 2779 | . . . . . . 7 ⊢ 𝑓 ∈ V | |
| 4 | 3 | dmex 4964 | . . . . . 6 ⊢ dom 𝑓 ∈ V |
| 5 | 2, 4 | eqeltrrdi 2299 | . . . . 5 ⊢ (𝑓:𝐴⟶𝐵 → 𝐴 ∈ V) |
| 6 | 5 | exlimiv 1622 | . . . 4 ⊢ (∃𝑓 𝑓:𝐴⟶𝐵 → 𝐴 ∈ V) |
| 7 | 1, 6 | sylbi 121 | . . 3 ⊢ (∃𝑔 𝑔 ∈ {𝑓 ∣ 𝑓:𝐴⟶𝐵} → 𝐴 ∈ V) |
| 8 | 7 | con3i 633 | . 2 ⊢ (¬ 𝐴 ∈ V → ¬ ∃𝑔 𝑔 ∈ {𝑓 ∣ 𝑓:𝐴⟶𝐵}) |
| 9 | notm0 3489 | . 2 ⊢ (¬ ∃𝑔 𝑔 ∈ {𝑓 ∣ 𝑓:𝐴⟶𝐵} ↔ {𝑓 ∣ 𝑓:𝐴⟶𝐵} = ∅) | |
| 10 | 8, 9 | sylib 122 | 1 ⊢ (¬ 𝐴 ∈ V → {𝑓 ∣ 𝑓:𝐴⟶𝐵} = ∅) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1373 ∃wex 1516 ∈ wcel 2178 {cab 2193 Vcvv 2776 ∅c0 3468 dom cdm 4693 ⟶wf 5286 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 ax-un 4498 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-rex 2492 df-v 2778 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-nul 3469 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-br 4060 df-opab 4122 df-cnv 4701 df-dm 4703 df-rn 4704 df-fn 5293 df-f 5294 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |