ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mapprc GIF version

Theorem mapprc 6799
Description: When 𝐴 is a proper class, the class of all functions mapping 𝐴 to 𝐵 is empty. Exercise 4.41 of [Mendelson] p. 255. (Contributed by NM, 8-Dec-2003.)
Assertion
Ref Expression
mapprc 𝐴 ∈ V → {𝑓𝑓:𝐴𝐵} = ∅)
Distinct variable groups:   𝐴,𝑓   𝐵,𝑓

Proof of Theorem mapprc
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 abn0m 3517 . . . 4 (∃𝑔 𝑔 ∈ {𝑓𝑓:𝐴𝐵} ↔ ∃𝑓 𝑓:𝐴𝐵)
2 fdm 5479 . . . . . 6 (𝑓:𝐴𝐵 → dom 𝑓 = 𝐴)
3 vex 2802 . . . . . . 7 𝑓 ∈ V
43dmex 4991 . . . . . 6 dom 𝑓 ∈ V
52, 4eqeltrrdi 2321 . . . . 5 (𝑓:𝐴𝐵𝐴 ∈ V)
65exlimiv 1644 . . . 4 (∃𝑓 𝑓:𝐴𝐵𝐴 ∈ V)
71, 6sylbi 121 . . 3 (∃𝑔 𝑔 ∈ {𝑓𝑓:𝐴𝐵} → 𝐴 ∈ V)
87con3i 635 . 2 𝐴 ∈ V → ¬ ∃𝑔 𝑔 ∈ {𝑓𝑓:𝐴𝐵})
9 notm0 3512 . 2 (¬ ∃𝑔 𝑔 ∈ {𝑓𝑓:𝐴𝐵} ↔ {𝑓𝑓:𝐴𝐵} = ∅)
108, 9sylib 122 1 𝐴 ∈ V → {𝑓𝑓:𝐴𝐵} = ∅)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1395  wex 1538  wcel 2200  {cab 2215  Vcvv 2799  c0 3491  dom cdm 4719  wf 5314
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-rex 2514  df-v 2801  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-br 4084  df-opab 4146  df-cnv 4727  df-dm 4729  df-rn 4730  df-fn 5321  df-f 5322
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator