![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > mapprc | GIF version |
Description: When 𝐴 is a proper class, the class of all functions mapping 𝐴 to 𝐵 is empty. Exercise 4.41 of [Mendelson] p. 255. (Contributed by NM, 8-Dec-2003.) |
Ref | Expression |
---|---|
mapprc | ⊢ (¬ 𝐴 ∈ V → {𝑓 ∣ 𝑓:𝐴⟶𝐵} = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | abn0m 3472 | . . . 4 ⊢ (∃𝑔 𝑔 ∈ {𝑓 ∣ 𝑓:𝐴⟶𝐵} ↔ ∃𝑓 𝑓:𝐴⟶𝐵) | |
2 | fdm 5409 | . . . . . 6 ⊢ (𝑓:𝐴⟶𝐵 → dom 𝑓 = 𝐴) | |
3 | vex 2763 | . . . . . . 7 ⊢ 𝑓 ∈ V | |
4 | 3 | dmex 4928 | . . . . . 6 ⊢ dom 𝑓 ∈ V |
5 | 2, 4 | eqeltrrdi 2285 | . . . . 5 ⊢ (𝑓:𝐴⟶𝐵 → 𝐴 ∈ V) |
6 | 5 | exlimiv 1609 | . . . 4 ⊢ (∃𝑓 𝑓:𝐴⟶𝐵 → 𝐴 ∈ V) |
7 | 1, 6 | sylbi 121 | . . 3 ⊢ (∃𝑔 𝑔 ∈ {𝑓 ∣ 𝑓:𝐴⟶𝐵} → 𝐴 ∈ V) |
8 | 7 | con3i 633 | . 2 ⊢ (¬ 𝐴 ∈ V → ¬ ∃𝑔 𝑔 ∈ {𝑓 ∣ 𝑓:𝐴⟶𝐵}) |
9 | notm0 3467 | . 2 ⊢ (¬ ∃𝑔 𝑔 ∈ {𝑓 ∣ 𝑓:𝐴⟶𝐵} ↔ {𝑓 ∣ 𝑓:𝐴⟶𝐵} = ∅) | |
10 | 8, 9 | sylib 122 | 1 ⊢ (¬ 𝐴 ∈ V → {𝑓 ∣ 𝑓:𝐴⟶𝐵} = ∅) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1364 ∃wex 1503 ∈ wcel 2164 {cab 2179 Vcvv 2760 ∅c0 3446 dom cdm 4659 ⟶wf 5250 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-pow 4203 ax-pr 4238 ax-un 4464 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-rex 2478 df-v 2762 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-nul 3447 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-br 4030 df-opab 4091 df-cnv 4667 df-dm 4669 df-rn 4670 df-fn 5257 df-f 5258 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |