Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > fnpm | GIF version |
Description: Partial function exponentiation has a universal domain. (Contributed by Mario Carneiro, 14-Nov-2013.) |
Ref | Expression |
---|---|
fnpm | ⊢ ↑pm Fn (V × V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-pm 6629 | . 2 ⊢ ↑pm = (𝑥 ∈ V, 𝑦 ∈ V ↦ {𝑓 ∈ 𝒫 (𝑦 × 𝑥) ∣ Fun 𝑓}) | |
2 | vex 2733 | . . . . 5 ⊢ 𝑦 ∈ V | |
3 | vex 2733 | . . . . 5 ⊢ 𝑥 ∈ V | |
4 | 2, 3 | xpex 4726 | . . . 4 ⊢ (𝑦 × 𝑥) ∈ V |
5 | 4 | pwex 4169 | . . 3 ⊢ 𝒫 (𝑦 × 𝑥) ∈ V |
6 | 5 | rabex 4133 | . 2 ⊢ {𝑓 ∈ 𝒫 (𝑦 × 𝑥) ∣ Fun 𝑓} ∈ V |
7 | 1, 6 | fnmpoi 6183 | 1 ⊢ ↑pm Fn (V × V) |
Colors of variables: wff set class |
Syntax hints: {crab 2452 Vcvv 2730 𝒫 cpw 3566 × cxp 4609 Fun wfun 5192 Fn wfn 5193 ↑pm cpm 6627 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-un 4418 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-iun 3875 df-br 3990 df-opab 4051 df-mpt 4052 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-fv 5206 df-oprab 5857 df-mpo 5858 df-1st 6119 df-2nd 6120 df-pm 6629 |
This theorem is referenced by: lmfval 12986 |
Copyright terms: Public domain | W3C validator |