ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pmvalg GIF version

Theorem pmvalg 6561
Description: The value of the partial mapping operation. (𝐴pm 𝐵) is the set of all partial functions that map from 𝐵 to 𝐴. (Contributed by NM, 15-Nov-2007.) (Revised by Mario Carneiro, 8-Sep-2013.)
Assertion
Ref Expression
pmvalg ((𝐴𝐶𝐵𝐷) → (𝐴pm 𝐵) = {𝑓 ∈ 𝒫 (𝐵 × 𝐴) ∣ Fun 𝑓})
Distinct variable groups:   𝐴,𝑓   𝐵,𝑓
Allowed substitution hints:   𝐶(𝑓)   𝐷(𝑓)

Proof of Theorem pmvalg
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssrab2 3187 . . 3 {𝑓 ∈ 𝒫 (𝐵 × 𝐴) ∣ Fun 𝑓} ⊆ 𝒫 (𝐵 × 𝐴)
2 xpexg 4661 . . . . 5 ((𝐵𝐷𝐴𝐶) → (𝐵 × 𝐴) ∈ V)
32ancoms 266 . . . 4 ((𝐴𝐶𝐵𝐷) → (𝐵 × 𝐴) ∈ V)
4 pwexg 4112 . . . 4 ((𝐵 × 𝐴) ∈ V → 𝒫 (𝐵 × 𝐴) ∈ V)
53, 4syl 14 . . 3 ((𝐴𝐶𝐵𝐷) → 𝒫 (𝐵 × 𝐴) ∈ V)
6 ssexg 4075 . . 3 (({𝑓 ∈ 𝒫 (𝐵 × 𝐴) ∣ Fun 𝑓} ⊆ 𝒫 (𝐵 × 𝐴) ∧ 𝒫 (𝐵 × 𝐴) ∈ V) → {𝑓 ∈ 𝒫 (𝐵 × 𝐴) ∣ Fun 𝑓} ∈ V)
71, 5, 6sylancr 411 . 2 ((𝐴𝐶𝐵𝐷) → {𝑓 ∈ 𝒫 (𝐵 × 𝐴) ∣ Fun 𝑓} ∈ V)
8 elex 2700 . . 3 (𝐴𝐶𝐴 ∈ V)
9 elex 2700 . . 3 (𝐵𝐷𝐵 ∈ V)
10 xpeq2 4562 . . . . . . 7 (𝑥 = 𝐴 → (𝑦 × 𝑥) = (𝑦 × 𝐴))
1110pweqd 3520 . . . . . 6 (𝑥 = 𝐴 → 𝒫 (𝑦 × 𝑥) = 𝒫 (𝑦 × 𝐴))
12 rabeq 2681 . . . . . 6 (𝒫 (𝑦 × 𝑥) = 𝒫 (𝑦 × 𝐴) → {𝑓 ∈ 𝒫 (𝑦 × 𝑥) ∣ Fun 𝑓} = {𝑓 ∈ 𝒫 (𝑦 × 𝐴) ∣ Fun 𝑓})
1311, 12syl 14 . . . . 5 (𝑥 = 𝐴 → {𝑓 ∈ 𝒫 (𝑦 × 𝑥) ∣ Fun 𝑓} = {𝑓 ∈ 𝒫 (𝑦 × 𝐴) ∣ Fun 𝑓})
14 xpeq1 4561 . . . . . . 7 (𝑦 = 𝐵 → (𝑦 × 𝐴) = (𝐵 × 𝐴))
1514pweqd 3520 . . . . . 6 (𝑦 = 𝐵 → 𝒫 (𝑦 × 𝐴) = 𝒫 (𝐵 × 𝐴))
16 rabeq 2681 . . . . . 6 (𝒫 (𝑦 × 𝐴) = 𝒫 (𝐵 × 𝐴) → {𝑓 ∈ 𝒫 (𝑦 × 𝐴) ∣ Fun 𝑓} = {𝑓 ∈ 𝒫 (𝐵 × 𝐴) ∣ Fun 𝑓})
1715, 16syl 14 . . . . 5 (𝑦 = 𝐵 → {𝑓 ∈ 𝒫 (𝑦 × 𝐴) ∣ Fun 𝑓} = {𝑓 ∈ 𝒫 (𝐵 × 𝐴) ∣ Fun 𝑓})
18 df-pm 6553 . . . . 5 pm = (𝑥 ∈ V, 𝑦 ∈ V ↦ {𝑓 ∈ 𝒫 (𝑦 × 𝑥) ∣ Fun 𝑓})
1913, 17, 18ovmpog 5913 . . . 4 ((𝐴 ∈ V ∧ 𝐵 ∈ V ∧ {𝑓 ∈ 𝒫 (𝐵 × 𝐴) ∣ Fun 𝑓} ∈ V) → (𝐴pm 𝐵) = {𝑓 ∈ 𝒫 (𝐵 × 𝐴) ∣ Fun 𝑓})
20193expia 1184 . . 3 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → ({𝑓 ∈ 𝒫 (𝐵 × 𝐴) ∣ Fun 𝑓} ∈ V → (𝐴pm 𝐵) = {𝑓 ∈ 𝒫 (𝐵 × 𝐴) ∣ Fun 𝑓}))
218, 9, 20syl2an 287 . 2 ((𝐴𝐶𝐵𝐷) → ({𝑓 ∈ 𝒫 (𝐵 × 𝐴) ∣ Fun 𝑓} ∈ V → (𝐴pm 𝐵) = {𝑓 ∈ 𝒫 (𝐵 × 𝐴) ∣ Fun 𝑓}))
227, 21mpd 13 1 ((𝐴𝐶𝐵𝐷) → (𝐴pm 𝐵) = {𝑓 ∈ 𝒫 (𝐵 × 𝐴) ∣ Fun 𝑓})
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1332  wcel 1481  {crab 2421  Vcvv 2689  wss 3076  𝒫 cpw 3515   × cxp 4545  Fun wfun 5125  (class class class)co 5782  pm cpm 6551
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4054  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-ral 2422  df-rex 2423  df-rab 2426  df-v 2691  df-sbc 2914  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-br 3938  df-opab 3998  df-id 4223  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-iota 5096  df-fun 5133  df-fv 5139  df-ov 5785  df-oprab 5786  df-mpo 5787  df-pm 6553
This theorem is referenced by:  elpmg  6566
  Copyright terms: Public domain W3C validator