| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > pmvalg | GIF version | ||
| Description: The value of the partial mapping operation. (𝐴 ↑pm 𝐵) is the set of all partial functions that map from 𝐵 to 𝐴. (Contributed by NM, 15-Nov-2007.) (Revised by Mario Carneiro, 8-Sep-2013.) |
| Ref | Expression |
|---|---|
| pmvalg | ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (𝐴 ↑pm 𝐵) = {𝑓 ∈ 𝒫 (𝐵 × 𝐴) ∣ Fun 𝑓}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssrab2 3280 | . . 3 ⊢ {𝑓 ∈ 𝒫 (𝐵 × 𝐴) ∣ Fun 𝑓} ⊆ 𝒫 (𝐵 × 𝐴) | |
| 2 | xpexg 4794 | . . . . 5 ⊢ ((𝐵 ∈ 𝐷 ∧ 𝐴 ∈ 𝐶) → (𝐵 × 𝐴) ∈ V) | |
| 3 | 2 | ancoms 268 | . . . 4 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (𝐵 × 𝐴) ∈ V) |
| 4 | pwexg 4229 | . . . 4 ⊢ ((𝐵 × 𝐴) ∈ V → 𝒫 (𝐵 × 𝐴) ∈ V) | |
| 5 | 3, 4 | syl 14 | . . 3 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → 𝒫 (𝐵 × 𝐴) ∈ V) |
| 6 | ssexg 4188 | . . 3 ⊢ (({𝑓 ∈ 𝒫 (𝐵 × 𝐴) ∣ Fun 𝑓} ⊆ 𝒫 (𝐵 × 𝐴) ∧ 𝒫 (𝐵 × 𝐴) ∈ V) → {𝑓 ∈ 𝒫 (𝐵 × 𝐴) ∣ Fun 𝑓} ∈ V) | |
| 7 | 1, 5, 6 | sylancr 414 | . 2 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → {𝑓 ∈ 𝒫 (𝐵 × 𝐴) ∣ Fun 𝑓} ∈ V) |
| 8 | elex 2785 | . . 3 ⊢ (𝐴 ∈ 𝐶 → 𝐴 ∈ V) | |
| 9 | elex 2785 | . . 3 ⊢ (𝐵 ∈ 𝐷 → 𝐵 ∈ V) | |
| 10 | xpeq2 4695 | . . . . . . 7 ⊢ (𝑥 = 𝐴 → (𝑦 × 𝑥) = (𝑦 × 𝐴)) | |
| 11 | 10 | pweqd 3623 | . . . . . 6 ⊢ (𝑥 = 𝐴 → 𝒫 (𝑦 × 𝑥) = 𝒫 (𝑦 × 𝐴)) |
| 12 | rabeq 2765 | . . . . . 6 ⊢ (𝒫 (𝑦 × 𝑥) = 𝒫 (𝑦 × 𝐴) → {𝑓 ∈ 𝒫 (𝑦 × 𝑥) ∣ Fun 𝑓} = {𝑓 ∈ 𝒫 (𝑦 × 𝐴) ∣ Fun 𝑓}) | |
| 13 | 11, 12 | syl 14 | . . . . 5 ⊢ (𝑥 = 𝐴 → {𝑓 ∈ 𝒫 (𝑦 × 𝑥) ∣ Fun 𝑓} = {𝑓 ∈ 𝒫 (𝑦 × 𝐴) ∣ Fun 𝑓}) |
| 14 | xpeq1 4694 | . . . . . . 7 ⊢ (𝑦 = 𝐵 → (𝑦 × 𝐴) = (𝐵 × 𝐴)) | |
| 15 | 14 | pweqd 3623 | . . . . . 6 ⊢ (𝑦 = 𝐵 → 𝒫 (𝑦 × 𝐴) = 𝒫 (𝐵 × 𝐴)) |
| 16 | rabeq 2765 | . . . . . 6 ⊢ (𝒫 (𝑦 × 𝐴) = 𝒫 (𝐵 × 𝐴) → {𝑓 ∈ 𝒫 (𝑦 × 𝐴) ∣ Fun 𝑓} = {𝑓 ∈ 𝒫 (𝐵 × 𝐴) ∣ Fun 𝑓}) | |
| 17 | 15, 16 | syl 14 | . . . . 5 ⊢ (𝑦 = 𝐵 → {𝑓 ∈ 𝒫 (𝑦 × 𝐴) ∣ Fun 𝑓} = {𝑓 ∈ 𝒫 (𝐵 × 𝐴) ∣ Fun 𝑓}) |
| 18 | df-pm 6748 | . . . . 5 ⊢ ↑pm = (𝑥 ∈ V, 𝑦 ∈ V ↦ {𝑓 ∈ 𝒫 (𝑦 × 𝑥) ∣ Fun 𝑓}) | |
| 19 | 13, 17, 18 | ovmpog 6090 | . . . 4 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V ∧ {𝑓 ∈ 𝒫 (𝐵 × 𝐴) ∣ Fun 𝑓} ∈ V) → (𝐴 ↑pm 𝐵) = {𝑓 ∈ 𝒫 (𝐵 × 𝐴) ∣ Fun 𝑓}) |
| 20 | 19 | 3expia 1208 | . . 3 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → ({𝑓 ∈ 𝒫 (𝐵 × 𝐴) ∣ Fun 𝑓} ∈ V → (𝐴 ↑pm 𝐵) = {𝑓 ∈ 𝒫 (𝐵 × 𝐴) ∣ Fun 𝑓})) |
| 21 | 8, 9, 20 | syl2an 289 | . 2 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → ({𝑓 ∈ 𝒫 (𝐵 × 𝐴) ∣ Fun 𝑓} ∈ V → (𝐴 ↑pm 𝐵) = {𝑓 ∈ 𝒫 (𝐵 × 𝐴) ∣ Fun 𝑓})) |
| 22 | 7, 21 | mpd 13 | 1 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (𝐴 ↑pm 𝐵) = {𝑓 ∈ 𝒫 (𝐵 × 𝐴) ∣ Fun 𝑓}) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1373 ∈ wcel 2177 {crab 2489 Vcvv 2773 ⊆ wss 3168 𝒫 cpw 3618 × cxp 4678 Fun wfun 5271 (class class class)co 5954 ↑pm cpm 6746 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4167 ax-pow 4223 ax-pr 4258 ax-un 4485 ax-setind 4590 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-ral 2490 df-rex 2491 df-rab 2494 df-v 2775 df-sbc 3001 df-dif 3170 df-un 3172 df-in 3174 df-ss 3181 df-pw 3620 df-sn 3641 df-pr 3642 df-op 3644 df-uni 3854 df-br 4049 df-opab 4111 df-id 4345 df-xp 4686 df-rel 4687 df-cnv 4688 df-co 4689 df-dm 4690 df-iota 5238 df-fun 5279 df-fv 5285 df-ov 5957 df-oprab 5958 df-mpo 5959 df-pm 6748 |
| This theorem is referenced by: elpmg 6761 |
| Copyright terms: Public domain | W3C validator |