ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pmvalg GIF version

Theorem pmvalg 6546
Description: The value of the partial mapping operation. (𝐴pm 𝐵) is the set of all partial functions that map from 𝐵 to 𝐴. (Contributed by NM, 15-Nov-2007.) (Revised by Mario Carneiro, 8-Sep-2013.)
Assertion
Ref Expression
pmvalg ((𝐴𝐶𝐵𝐷) → (𝐴pm 𝐵) = {𝑓 ∈ 𝒫 (𝐵 × 𝐴) ∣ Fun 𝑓})
Distinct variable groups:   𝐴,𝑓   𝐵,𝑓
Allowed substitution hints:   𝐶(𝑓)   𝐷(𝑓)

Proof of Theorem pmvalg
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssrab2 3177 . . 3 {𝑓 ∈ 𝒫 (𝐵 × 𝐴) ∣ Fun 𝑓} ⊆ 𝒫 (𝐵 × 𝐴)
2 xpexg 4648 . . . . 5 ((𝐵𝐷𝐴𝐶) → (𝐵 × 𝐴) ∈ V)
32ancoms 266 . . . 4 ((𝐴𝐶𝐵𝐷) → (𝐵 × 𝐴) ∈ V)
4 pwexg 4099 . . . 4 ((𝐵 × 𝐴) ∈ V → 𝒫 (𝐵 × 𝐴) ∈ V)
53, 4syl 14 . . 3 ((𝐴𝐶𝐵𝐷) → 𝒫 (𝐵 × 𝐴) ∈ V)
6 ssexg 4062 . . 3 (({𝑓 ∈ 𝒫 (𝐵 × 𝐴) ∣ Fun 𝑓} ⊆ 𝒫 (𝐵 × 𝐴) ∧ 𝒫 (𝐵 × 𝐴) ∈ V) → {𝑓 ∈ 𝒫 (𝐵 × 𝐴) ∣ Fun 𝑓} ∈ V)
71, 5, 6sylancr 410 . 2 ((𝐴𝐶𝐵𝐷) → {𝑓 ∈ 𝒫 (𝐵 × 𝐴) ∣ Fun 𝑓} ∈ V)
8 elex 2692 . . 3 (𝐴𝐶𝐴 ∈ V)
9 elex 2692 . . 3 (𝐵𝐷𝐵 ∈ V)
10 xpeq2 4549 . . . . . . 7 (𝑥 = 𝐴 → (𝑦 × 𝑥) = (𝑦 × 𝐴))
1110pweqd 3510 . . . . . 6 (𝑥 = 𝐴 → 𝒫 (𝑦 × 𝑥) = 𝒫 (𝑦 × 𝐴))
12 rabeq 2673 . . . . . 6 (𝒫 (𝑦 × 𝑥) = 𝒫 (𝑦 × 𝐴) → {𝑓 ∈ 𝒫 (𝑦 × 𝑥) ∣ Fun 𝑓} = {𝑓 ∈ 𝒫 (𝑦 × 𝐴) ∣ Fun 𝑓})
1311, 12syl 14 . . . . 5 (𝑥 = 𝐴 → {𝑓 ∈ 𝒫 (𝑦 × 𝑥) ∣ Fun 𝑓} = {𝑓 ∈ 𝒫 (𝑦 × 𝐴) ∣ Fun 𝑓})
14 xpeq1 4548 . . . . . . 7 (𝑦 = 𝐵 → (𝑦 × 𝐴) = (𝐵 × 𝐴))
1514pweqd 3510 . . . . . 6 (𝑦 = 𝐵 → 𝒫 (𝑦 × 𝐴) = 𝒫 (𝐵 × 𝐴))
16 rabeq 2673 . . . . . 6 (𝒫 (𝑦 × 𝐴) = 𝒫 (𝐵 × 𝐴) → {𝑓 ∈ 𝒫 (𝑦 × 𝐴) ∣ Fun 𝑓} = {𝑓 ∈ 𝒫 (𝐵 × 𝐴) ∣ Fun 𝑓})
1715, 16syl 14 . . . . 5 (𝑦 = 𝐵 → {𝑓 ∈ 𝒫 (𝑦 × 𝐴) ∣ Fun 𝑓} = {𝑓 ∈ 𝒫 (𝐵 × 𝐴) ∣ Fun 𝑓})
18 df-pm 6538 . . . . 5 pm = (𝑥 ∈ V, 𝑦 ∈ V ↦ {𝑓 ∈ 𝒫 (𝑦 × 𝑥) ∣ Fun 𝑓})
1913, 17, 18ovmpog 5898 . . . 4 ((𝐴 ∈ V ∧ 𝐵 ∈ V ∧ {𝑓 ∈ 𝒫 (𝐵 × 𝐴) ∣ Fun 𝑓} ∈ V) → (𝐴pm 𝐵) = {𝑓 ∈ 𝒫 (𝐵 × 𝐴) ∣ Fun 𝑓})
20193expia 1183 . . 3 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → ({𝑓 ∈ 𝒫 (𝐵 × 𝐴) ∣ Fun 𝑓} ∈ V → (𝐴pm 𝐵) = {𝑓 ∈ 𝒫 (𝐵 × 𝐴) ∣ Fun 𝑓}))
218, 9, 20syl2an 287 . 2 ((𝐴𝐶𝐵𝐷) → ({𝑓 ∈ 𝒫 (𝐵 × 𝐴) ∣ Fun 𝑓} ∈ V → (𝐴pm 𝐵) = {𝑓 ∈ 𝒫 (𝐵 × 𝐴) ∣ Fun 𝑓}))
227, 21mpd 13 1 ((𝐴𝐶𝐵𝐷) → (𝐴pm 𝐵) = {𝑓 ∈ 𝒫 (𝐵 × 𝐴) ∣ Fun 𝑓})
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1331  wcel 1480  {crab 2418  Vcvv 2681  wss 3066  𝒫 cpw 3505   × cxp 4532  Fun wfun 5112  (class class class)co 5767  pm cpm 6536
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-sep 4041  ax-pow 4093  ax-pr 4126  ax-un 4350  ax-setind 4447
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2000  df-mo 2001  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ne 2307  df-ral 2419  df-rex 2420  df-rab 2423  df-v 2683  df-sbc 2905  df-dif 3068  df-un 3070  df-in 3072  df-ss 3079  df-pw 3507  df-sn 3528  df-pr 3529  df-op 3531  df-uni 3732  df-br 3925  df-opab 3985  df-id 4210  df-xp 4540  df-rel 4541  df-cnv 4542  df-co 4543  df-dm 4544  df-iota 5083  df-fun 5120  df-fv 5126  df-ov 5770  df-oprab 5771  df-mpo 5772  df-pm 6538
This theorem is referenced by:  elpmg  6551
  Copyright terms: Public domain W3C validator