Detailed syntax breakdown of Definition df-psmet
Step | Hyp | Ref
| Expression |
1 | | cpsmet 12773 |
. 2
class
PsMet |
2 | | vx |
. . 3
setvar 𝑥 |
3 | | cvv 2730 |
. . 3
class
V |
4 | | vy |
. . . . . . . . 9
setvar 𝑦 |
5 | 4 | cv 1347 |
. . . . . . . 8
class 𝑦 |
6 | | vd |
. . . . . . . . 9
setvar 𝑑 |
7 | 6 | cv 1347 |
. . . . . . . 8
class 𝑑 |
8 | 5, 5, 7 | co 5853 |
. . . . . . 7
class (𝑦𝑑𝑦) |
9 | | cc0 7774 |
. . . . . . 7
class
0 |
10 | 8, 9 | wceq 1348 |
. . . . . 6
wff (𝑦𝑑𝑦) = 0 |
11 | | vz |
. . . . . . . . . . 11
setvar 𝑧 |
12 | 11 | cv 1347 |
. . . . . . . . . 10
class 𝑧 |
13 | 5, 12, 7 | co 5853 |
. . . . . . . . 9
class (𝑦𝑑𝑧) |
14 | | vw |
. . . . . . . . . . . 12
setvar 𝑤 |
15 | 14 | cv 1347 |
. . . . . . . . . . 11
class 𝑤 |
16 | 15, 5, 7 | co 5853 |
. . . . . . . . . 10
class (𝑤𝑑𝑦) |
17 | 15, 12, 7 | co 5853 |
. . . . . . . . . 10
class (𝑤𝑑𝑧) |
18 | | cxad 9727 |
. . . . . . . . . 10
class
+𝑒 |
19 | 16, 17, 18 | co 5853 |
. . . . . . . . 9
class ((𝑤𝑑𝑦) +𝑒 (𝑤𝑑𝑧)) |
20 | | cle 7955 |
. . . . . . . . 9
class
≤ |
21 | 13, 19, 20 | wbr 3989 |
. . . . . . . 8
wff (𝑦𝑑𝑧) ≤ ((𝑤𝑑𝑦) +𝑒 (𝑤𝑑𝑧)) |
22 | 2 | cv 1347 |
. . . . . . . 8
class 𝑥 |
23 | 21, 14, 22 | wral 2448 |
. . . . . . 7
wff
∀𝑤 ∈
𝑥 (𝑦𝑑𝑧) ≤ ((𝑤𝑑𝑦) +𝑒 (𝑤𝑑𝑧)) |
24 | 23, 11, 22 | wral 2448 |
. . . . . 6
wff
∀𝑧 ∈
𝑥 ∀𝑤 ∈ 𝑥 (𝑦𝑑𝑧) ≤ ((𝑤𝑑𝑦) +𝑒 (𝑤𝑑𝑧)) |
25 | 10, 24 | wa 103 |
. . . . 5
wff ((𝑦𝑑𝑦) = 0 ∧ ∀𝑧 ∈ 𝑥 ∀𝑤 ∈ 𝑥 (𝑦𝑑𝑧) ≤ ((𝑤𝑑𝑦) +𝑒 (𝑤𝑑𝑧))) |
26 | 25, 4, 22 | wral 2448 |
. . . 4
wff
∀𝑦 ∈
𝑥 ((𝑦𝑑𝑦) = 0 ∧ ∀𝑧 ∈ 𝑥 ∀𝑤 ∈ 𝑥 (𝑦𝑑𝑧) ≤ ((𝑤𝑑𝑦) +𝑒 (𝑤𝑑𝑧))) |
27 | | cxr 7953 |
. . . . 5
class
ℝ* |
28 | 22, 22 | cxp 4609 |
. . . . 5
class (𝑥 × 𝑥) |
29 | | cmap 6626 |
. . . . 5
class
↑𝑚 |
30 | 27, 28, 29 | co 5853 |
. . . 4
class
(ℝ* ↑𝑚 (𝑥 × 𝑥)) |
31 | 26, 6, 30 | crab 2452 |
. . 3
class {𝑑 ∈ (ℝ*
↑𝑚 (𝑥 × 𝑥)) ∣ ∀𝑦 ∈ 𝑥 ((𝑦𝑑𝑦) = 0 ∧ ∀𝑧 ∈ 𝑥 ∀𝑤 ∈ 𝑥 (𝑦𝑑𝑧) ≤ ((𝑤𝑑𝑦) +𝑒 (𝑤𝑑𝑧)))} |
32 | 2, 3, 31 | cmpt 4050 |
. 2
class (𝑥 ∈ V ↦ {𝑑 ∈ (ℝ*
↑𝑚 (𝑥 × 𝑥)) ∣ ∀𝑦 ∈ 𝑥 ((𝑦𝑑𝑦) = 0 ∧ ∀𝑧 ∈ 𝑥 ∀𝑤 ∈ 𝑥 (𝑦𝑑𝑧) ≤ ((𝑤𝑑𝑦) +𝑒 (𝑤𝑑𝑧)))}) |
33 | 1, 32 | wceq 1348 |
1
wff PsMet =
(𝑥 ∈ V ↦ {𝑑 ∈ (ℝ*
↑𝑚 (𝑥 × 𝑥)) ∣ ∀𝑦 ∈ 𝑥 ((𝑦𝑑𝑦) = 0 ∧ ∀𝑧 ∈ 𝑥 ∀𝑤 ∈ 𝑥 (𝑦𝑑𝑧) ≤ ((𝑤𝑑𝑦) +𝑒 (𝑤𝑑𝑧)))}) |