Detailed syntax breakdown of Definition df-psmet
| Step | Hyp | Ref
 | Expression | 
| 1 |   | cpsmet 14091 | 
. 2
class
PsMet | 
| 2 |   | vx | 
. . 3
setvar 𝑥 | 
| 3 |   | cvv 2763 | 
. . 3
class
V | 
| 4 |   | vy | 
. . . . . . . . 9
setvar 𝑦 | 
| 5 | 4 | cv 1363 | 
. . . . . . . 8
class 𝑦 | 
| 6 |   | vd | 
. . . . . . . . 9
setvar 𝑑 | 
| 7 | 6 | cv 1363 | 
. . . . . . . 8
class 𝑑 | 
| 8 | 5, 5, 7 | co 5922 | 
. . . . . . 7
class (𝑦𝑑𝑦) | 
| 9 |   | cc0 7879 | 
. . . . . . 7
class
0 | 
| 10 | 8, 9 | wceq 1364 | 
. . . . . 6
wff (𝑦𝑑𝑦) = 0 | 
| 11 |   | vz | 
. . . . . . . . . . 11
setvar 𝑧 | 
| 12 | 11 | cv 1363 | 
. . . . . . . . . 10
class 𝑧 | 
| 13 | 5, 12, 7 | co 5922 | 
. . . . . . . . 9
class (𝑦𝑑𝑧) | 
| 14 |   | vw | 
. . . . . . . . . . . 12
setvar 𝑤 | 
| 15 | 14 | cv 1363 | 
. . . . . . . . . . 11
class 𝑤 | 
| 16 | 15, 5, 7 | co 5922 | 
. . . . . . . . . 10
class (𝑤𝑑𝑦) | 
| 17 | 15, 12, 7 | co 5922 | 
. . . . . . . . . 10
class (𝑤𝑑𝑧) | 
| 18 |   | cxad 9845 | 
. . . . . . . . . 10
class 
+𝑒 | 
| 19 | 16, 17, 18 | co 5922 | 
. . . . . . . . 9
class ((𝑤𝑑𝑦) +𝑒 (𝑤𝑑𝑧)) | 
| 20 |   | cle 8062 | 
. . . . . . . . 9
class 
≤ | 
| 21 | 13, 19, 20 | wbr 4033 | 
. . . . . . . 8
wff (𝑦𝑑𝑧) ≤ ((𝑤𝑑𝑦) +𝑒 (𝑤𝑑𝑧)) | 
| 22 | 2 | cv 1363 | 
. . . . . . . 8
class 𝑥 | 
| 23 | 21, 14, 22 | wral 2475 | 
. . . . . . 7
wff
∀𝑤 ∈
𝑥 (𝑦𝑑𝑧) ≤ ((𝑤𝑑𝑦) +𝑒 (𝑤𝑑𝑧)) | 
| 24 | 23, 11, 22 | wral 2475 | 
. . . . . 6
wff
∀𝑧 ∈
𝑥 ∀𝑤 ∈ 𝑥 (𝑦𝑑𝑧) ≤ ((𝑤𝑑𝑦) +𝑒 (𝑤𝑑𝑧)) | 
| 25 | 10, 24 | wa 104 | 
. . . . 5
wff ((𝑦𝑑𝑦) = 0 ∧ ∀𝑧 ∈ 𝑥 ∀𝑤 ∈ 𝑥 (𝑦𝑑𝑧) ≤ ((𝑤𝑑𝑦) +𝑒 (𝑤𝑑𝑧))) | 
| 26 | 25, 4, 22 | wral 2475 | 
. . . 4
wff
∀𝑦 ∈
𝑥 ((𝑦𝑑𝑦) = 0 ∧ ∀𝑧 ∈ 𝑥 ∀𝑤 ∈ 𝑥 (𝑦𝑑𝑧) ≤ ((𝑤𝑑𝑦) +𝑒 (𝑤𝑑𝑧))) | 
| 27 |   | cxr 8060 | 
. . . . 5
class
ℝ* | 
| 28 | 22, 22 | cxp 4661 | 
. . . . 5
class (𝑥 × 𝑥) | 
| 29 |   | cmap 6707 | 
. . . . 5
class 
↑𝑚 | 
| 30 | 27, 28, 29 | co 5922 | 
. . . 4
class
(ℝ* ↑𝑚 (𝑥 × 𝑥)) | 
| 31 | 26, 6, 30 | crab 2479 | 
. . 3
class {𝑑 ∈ (ℝ*
↑𝑚 (𝑥 × 𝑥)) ∣ ∀𝑦 ∈ 𝑥 ((𝑦𝑑𝑦) = 0 ∧ ∀𝑧 ∈ 𝑥 ∀𝑤 ∈ 𝑥 (𝑦𝑑𝑧) ≤ ((𝑤𝑑𝑦) +𝑒 (𝑤𝑑𝑧)))} | 
| 32 | 2, 3, 31 | cmpt 4094 | 
. 2
class (𝑥 ∈ V ↦ {𝑑 ∈ (ℝ*
↑𝑚 (𝑥 × 𝑥)) ∣ ∀𝑦 ∈ 𝑥 ((𝑦𝑑𝑦) = 0 ∧ ∀𝑧 ∈ 𝑥 ∀𝑤 ∈ 𝑥 (𝑦𝑑𝑧) ≤ ((𝑤𝑑𝑦) +𝑒 (𝑤𝑑𝑧)))}) | 
| 33 | 1, 32 | wceq 1364 | 
1
wff PsMet =
(𝑥 ∈ V ↦ {𝑑 ∈ (ℝ*
↑𝑚 (𝑥 × 𝑥)) ∣ ∀𝑦 ∈ 𝑥 ((𝑦𝑑𝑦) = 0 ∧ ∀𝑧 ∈ 𝑥 ∀𝑤 ∈ 𝑥 (𝑦𝑑𝑧) ≤ ((𝑤𝑑𝑦) +𝑒 (𝑤𝑑𝑧)))}) |