Step | Hyp | Ref
| Expression |
1 | | df-psmet 13486 |
. . . . . . . . 9
β’ PsMet =
(π β V β¦ {π β (β*
βπ (π Γ π)) β£ βπ β π ((πππ) = 0 β§ βπ β π βπ β π (πππ) β€ ((πππ) +π (πππ)))}) |
2 | 1 | mptrcl 5600 |
. . . . . . . 8
β’ (π· β (PsMetβπ) β π β V) |
3 | | ispsmet 13862 |
. . . . . . . 8
β’ (π β V β (π· β (PsMetβπ) β (π·:(π Γ π)βΆβ* β§
βπ β π ((ππ·π) = 0 β§ βπ β π βπ β π (ππ·π) β€ ((ππ·π) +π (ππ·π)))))) |
4 | 2, 3 | syl 14 |
. . . . . . 7
β’ (π· β (PsMetβπ) β (π· β (PsMetβπ) β (π·:(π Γ π)βΆβ* β§
βπ β π ((ππ·π) = 0 β§ βπ β π βπ β π (ππ·π) β€ ((ππ·π) +π (ππ·π)))))) |
5 | 4 | ibi 176 |
. . . . . 6
β’ (π· β (PsMetβπ) β (π·:(π Γ π)βΆβ* β§
βπ β π ((ππ·π) = 0 β§ βπ β π βπ β π (ππ·π) β€ ((ππ·π) +π (ππ·π))))) |
6 | 5 | simprd 114 |
. . . . 5
β’ (π· β (PsMetβπ) β βπ β π ((ππ·π) = 0 β§ βπ β π βπ β π (ππ·π) β€ ((ππ·π) +π (ππ·π)))) |
7 | 6 | r19.21bi 2565 |
. . . 4
β’ ((π· β (PsMetβπ) β§ π β π) β ((ππ·π) = 0 β§ βπ β π βπ β π (ππ·π) β€ ((ππ·π) +π (ππ·π)))) |
8 | 7 | simpld 112 |
. . 3
β’ ((π· β (PsMetβπ) β§ π β π) β (ππ·π) = 0) |
9 | 8 | ralrimiva 2550 |
. 2
β’ (π· β (PsMetβπ) β βπ β π (ππ·π) = 0) |
10 | | id 19 |
. . . . 5
β’ (π = π΄ β π = π΄) |
11 | 10, 10 | oveq12d 5895 |
. . . 4
β’ (π = π΄ β (ππ·π) = (π΄π·π΄)) |
12 | 11 | eqeq1d 2186 |
. . 3
β’ (π = π΄ β ((ππ·π) = 0 β (π΄π·π΄) = 0)) |
13 | 12 | rspcv 2839 |
. 2
β’ (π΄ β π β (βπ β π (ππ·π) = 0 β (π΄π·π΄) = 0)) |
14 | 9, 13 | mpan9 281 |
1
β’ ((π· β (PsMetβπ) β§ π΄ β π) β (π΄π·π΄) = 0) |