Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  psmet0 GIF version

Theorem psmet0 12571
 Description: The distance function of a pseudometric space is zero if its arguments are equal. (Contributed by Thierry Arnoux, 7-Feb-2018.)
Assertion
Ref Expression
psmet0 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝑋) → (𝐴𝐷𝐴) = 0)

Proof of Theorem psmet0
Dummy variables 𝑎 𝑏 𝑐 𝑑 𝑒 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-psmet 12231 . . . . . . . . 9 PsMet = (𝑑 ∈ V ↦ {𝑒 ∈ (ℝ*𝑚 (𝑑 × 𝑑)) ∣ ∀𝑎𝑑 ((𝑎𝑒𝑎) = 0 ∧ ∀𝑏𝑑𝑐𝑑 (𝑎𝑒𝑏) ≤ ((𝑐𝑒𝑎) +𝑒 (𝑐𝑒𝑏)))})
21mptrcl 5515 . . . . . . . 8 (𝐷 ∈ (PsMet‘𝑋) → 𝑋 ∈ V)
3 ispsmet 12567 . . . . . . . 8 (𝑋 ∈ V → (𝐷 ∈ (PsMet‘𝑋) ↔ (𝐷:(𝑋 × 𝑋)⟶ℝ* ∧ ∀𝑎𝑋 ((𝑎𝐷𝑎) = 0 ∧ ∀𝑏𝑋𝑐𝑋 (𝑎𝐷𝑏) ≤ ((𝑐𝐷𝑎) +𝑒 (𝑐𝐷𝑏))))))
42, 3syl 14 . . . . . . 7 (𝐷 ∈ (PsMet‘𝑋) → (𝐷 ∈ (PsMet‘𝑋) ↔ (𝐷:(𝑋 × 𝑋)⟶ℝ* ∧ ∀𝑎𝑋 ((𝑎𝐷𝑎) = 0 ∧ ∀𝑏𝑋𝑐𝑋 (𝑎𝐷𝑏) ≤ ((𝑐𝐷𝑎) +𝑒 (𝑐𝐷𝑏))))))
54ibi 175 . . . . . 6 (𝐷 ∈ (PsMet‘𝑋) → (𝐷:(𝑋 × 𝑋)⟶ℝ* ∧ ∀𝑎𝑋 ((𝑎𝐷𝑎) = 0 ∧ ∀𝑏𝑋𝑐𝑋 (𝑎𝐷𝑏) ≤ ((𝑐𝐷𝑎) +𝑒 (𝑐𝐷𝑏)))))
65simprd 113 . . . . 5 (𝐷 ∈ (PsMet‘𝑋) → ∀𝑎𝑋 ((𝑎𝐷𝑎) = 0 ∧ ∀𝑏𝑋𝑐𝑋 (𝑎𝐷𝑏) ≤ ((𝑐𝐷𝑎) +𝑒 (𝑐𝐷𝑏))))
76r19.21bi 2525 . . . 4 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎𝑋) → ((𝑎𝐷𝑎) = 0 ∧ ∀𝑏𝑋𝑐𝑋 (𝑎𝐷𝑏) ≤ ((𝑐𝐷𝑎) +𝑒 (𝑐𝐷𝑏))))
87simpld 111 . . 3 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎𝑋) → (𝑎𝐷𝑎) = 0)
98ralrimiva 2510 . 2 (𝐷 ∈ (PsMet‘𝑋) → ∀𝑎𝑋 (𝑎𝐷𝑎) = 0)
10 id 19 . . . . 5 (𝑎 = 𝐴𝑎 = 𝐴)
1110, 10oveq12d 5804 . . . 4 (𝑎 = 𝐴 → (𝑎𝐷𝑎) = (𝐴𝐷𝐴))
1211eqeq1d 2150 . . 3 (𝑎 = 𝐴 → ((𝑎𝐷𝑎) = 0 ↔ (𝐴𝐷𝐴) = 0))
1312rspcv 2791 . 2 (𝐴𝑋 → (∀𝑎𝑋 (𝑎𝐷𝑎) = 0 → (𝐴𝐷𝐴) = 0))
149, 13mpan9 279 1 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝑋) → (𝐴𝐷𝐴) = 0)
 Colors of variables: wff set class Syntax hints:   → wi 4   ∧ wa 103   ↔ wb 104   = wceq 1332   ∈ wcel 2112  ∀wral 2418  {crab 2422  Vcvv 2691   class class class wbr 3939   × cxp 4549  ⟶wf 5131  ‘cfv 5135  (class class class)co 5786   ↑𝑚 cmap 6554  0cc0 7673  ℝ*cxr 7852   ≤ cle 7854   +𝑒 cxad 9616  PsMetcpsmet 12223 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1481  ax-10 1482  ax-11 1483  ax-i12 1484  ax-bndl 1486  ax-4 1487  ax-17 1503  ax-i9 1507  ax-ial 1511  ax-i5r 1512  ax-13 2114  ax-14 2115  ax-ext 2123  ax-sep 4056  ax-pow 4108  ax-pr 4142  ax-un 4366  ax-setind 4463  ax-cnex 7764  ax-resscn 7765 This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1732  df-eu 1993  df-mo 1994  df-clab 2128  df-cleq 2134  df-clel 2137  df-nfc 2272  df-ne 2311  df-ral 2423  df-rex 2424  df-rab 2427  df-v 2693  df-sbc 2916  df-csb 3010  df-dif 3080  df-un 3082  df-in 3084  df-ss 3091  df-pw 3519  df-sn 3540  df-pr 3541  df-op 3543  df-uni 3747  df-br 3940  df-opab 4000  df-mpt 4001  df-id 4226  df-xp 4557  df-rel 4558  df-cnv 4559  df-co 4560  df-dm 4561  df-rn 4562  df-res 4563  df-ima 4564  df-iota 5100  df-fun 5137  df-fn 5138  df-f 5139  df-fv 5143  df-ov 5789  df-oprab 5790  df-mpo 5791  df-map 6556  df-pnf 7855  df-mnf 7856  df-xr 7857  df-psmet 12231 This theorem is referenced by:  psmetsym  12573  psmetge0  12575  psmetres2  12577  distspace  12579  xblcntrps  12657  ssblps  12669
 Copyright terms: Public domain W3C validator