Step | Hyp | Ref
| Expression |
1 | | df-psmet 12781 |
. . . . . . . . 9
⊢ PsMet =
(𝑑 ∈ V ↦ {𝑒 ∈ (ℝ*
↑𝑚 (𝑑 × 𝑑)) ∣ ∀𝑎 ∈ 𝑑 ((𝑎𝑒𝑎) = 0 ∧ ∀𝑏 ∈ 𝑑 ∀𝑐 ∈ 𝑑 (𝑎𝑒𝑏) ≤ ((𝑐𝑒𝑎) +𝑒 (𝑐𝑒𝑏)))}) |
2 | 1 | mptrcl 5578 |
. . . . . . . 8
⊢ (𝐷 ∈ (PsMet‘𝑋) → 𝑋 ∈ V) |
3 | | ispsmet 13117 |
. . . . . . . 8
⊢ (𝑋 ∈ V → (𝐷 ∈ (PsMet‘𝑋) ↔ (𝐷:(𝑋 × 𝑋)⟶ℝ* ∧
∀𝑎 ∈ 𝑋 ((𝑎𝐷𝑎) = 0 ∧ ∀𝑏 ∈ 𝑋 ∀𝑐 ∈ 𝑋 (𝑎𝐷𝑏) ≤ ((𝑐𝐷𝑎) +𝑒 (𝑐𝐷𝑏)))))) |
4 | 2, 3 | syl 14 |
. . . . . . 7
⊢ (𝐷 ∈ (PsMet‘𝑋) → (𝐷 ∈ (PsMet‘𝑋) ↔ (𝐷:(𝑋 × 𝑋)⟶ℝ* ∧
∀𝑎 ∈ 𝑋 ((𝑎𝐷𝑎) = 0 ∧ ∀𝑏 ∈ 𝑋 ∀𝑐 ∈ 𝑋 (𝑎𝐷𝑏) ≤ ((𝑐𝐷𝑎) +𝑒 (𝑐𝐷𝑏)))))) |
5 | 4 | ibi 175 |
. . . . . 6
⊢ (𝐷 ∈ (PsMet‘𝑋) → (𝐷:(𝑋 × 𝑋)⟶ℝ* ∧
∀𝑎 ∈ 𝑋 ((𝑎𝐷𝑎) = 0 ∧ ∀𝑏 ∈ 𝑋 ∀𝑐 ∈ 𝑋 (𝑎𝐷𝑏) ≤ ((𝑐𝐷𝑎) +𝑒 (𝑐𝐷𝑏))))) |
6 | 5 | simprd 113 |
. . . . 5
⊢ (𝐷 ∈ (PsMet‘𝑋) → ∀𝑎 ∈ 𝑋 ((𝑎𝐷𝑎) = 0 ∧ ∀𝑏 ∈ 𝑋 ∀𝑐 ∈ 𝑋 (𝑎𝐷𝑏) ≤ ((𝑐𝐷𝑎) +𝑒 (𝑐𝐷𝑏)))) |
7 | 6 | r19.21bi 2558 |
. . . 4
⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎 ∈ 𝑋) → ((𝑎𝐷𝑎) = 0 ∧ ∀𝑏 ∈ 𝑋 ∀𝑐 ∈ 𝑋 (𝑎𝐷𝑏) ≤ ((𝑐𝐷𝑎) +𝑒 (𝑐𝐷𝑏)))) |
8 | 7 | simprd 113 |
. . 3
⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎 ∈ 𝑋) → ∀𝑏 ∈ 𝑋 ∀𝑐 ∈ 𝑋 (𝑎𝐷𝑏) ≤ ((𝑐𝐷𝑎) +𝑒 (𝑐𝐷𝑏))) |
9 | 8 | ralrimiva 2543 |
. 2
⊢ (𝐷 ∈ (PsMet‘𝑋) → ∀𝑎 ∈ 𝑋 ∀𝑏 ∈ 𝑋 ∀𝑐 ∈ 𝑋 (𝑎𝐷𝑏) ≤ ((𝑐𝐷𝑎) +𝑒 (𝑐𝐷𝑏))) |
10 | | oveq1 5860 |
. . . . 5
⊢ (𝑎 = 𝐴 → (𝑎𝐷𝑏) = (𝐴𝐷𝑏)) |
11 | | oveq2 5861 |
. . . . . 6
⊢ (𝑎 = 𝐴 → (𝑐𝐷𝑎) = (𝑐𝐷𝐴)) |
12 | 11 | oveq1d 5868 |
. . . . 5
⊢ (𝑎 = 𝐴 → ((𝑐𝐷𝑎) +𝑒 (𝑐𝐷𝑏)) = ((𝑐𝐷𝐴) +𝑒 (𝑐𝐷𝑏))) |
13 | 10, 12 | breq12d 4002 |
. . . 4
⊢ (𝑎 = 𝐴 → ((𝑎𝐷𝑏) ≤ ((𝑐𝐷𝑎) +𝑒 (𝑐𝐷𝑏)) ↔ (𝐴𝐷𝑏) ≤ ((𝑐𝐷𝐴) +𝑒 (𝑐𝐷𝑏)))) |
14 | | oveq2 5861 |
. . . . 5
⊢ (𝑏 = 𝐵 → (𝐴𝐷𝑏) = (𝐴𝐷𝐵)) |
15 | | oveq2 5861 |
. . . . . 6
⊢ (𝑏 = 𝐵 → (𝑐𝐷𝑏) = (𝑐𝐷𝐵)) |
16 | 15 | oveq2d 5869 |
. . . . 5
⊢ (𝑏 = 𝐵 → ((𝑐𝐷𝐴) +𝑒 (𝑐𝐷𝑏)) = ((𝑐𝐷𝐴) +𝑒 (𝑐𝐷𝐵))) |
17 | 14, 16 | breq12d 4002 |
. . . 4
⊢ (𝑏 = 𝐵 → ((𝐴𝐷𝑏) ≤ ((𝑐𝐷𝐴) +𝑒 (𝑐𝐷𝑏)) ↔ (𝐴𝐷𝐵) ≤ ((𝑐𝐷𝐴) +𝑒 (𝑐𝐷𝐵)))) |
18 | | oveq1 5860 |
. . . . . 6
⊢ (𝑐 = 𝐶 → (𝑐𝐷𝐴) = (𝐶𝐷𝐴)) |
19 | | oveq1 5860 |
. . . . . 6
⊢ (𝑐 = 𝐶 → (𝑐𝐷𝐵) = (𝐶𝐷𝐵)) |
20 | 18, 19 | oveq12d 5871 |
. . . . 5
⊢ (𝑐 = 𝐶 → ((𝑐𝐷𝐴) +𝑒 (𝑐𝐷𝐵)) = ((𝐶𝐷𝐴) +𝑒 (𝐶𝐷𝐵))) |
21 | 20 | breq2d 4001 |
. . . 4
⊢ (𝑐 = 𝐶 → ((𝐴𝐷𝐵) ≤ ((𝑐𝐷𝐴) +𝑒 (𝑐𝐷𝐵)) ↔ (𝐴𝐷𝐵) ≤ ((𝐶𝐷𝐴) +𝑒 (𝐶𝐷𝐵)))) |
22 | 13, 17, 21 | rspc3v 2850 |
. . 3
⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋) → (∀𝑎 ∈ 𝑋 ∀𝑏 ∈ 𝑋 ∀𝑐 ∈ 𝑋 (𝑎𝐷𝑏) ≤ ((𝑐𝐷𝑎) +𝑒 (𝑐𝐷𝑏)) → (𝐴𝐷𝐵) ≤ ((𝐶𝐷𝐴) +𝑒 (𝐶𝐷𝐵)))) |
23 | 22 | 3comr 1206 |
. 2
⊢ ((𝐶 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (∀𝑎 ∈ 𝑋 ∀𝑏 ∈ 𝑋 ∀𝑐 ∈ 𝑋 (𝑎𝐷𝑏) ≤ ((𝑐𝐷𝑎) +𝑒 (𝑐𝐷𝑏)) → (𝐴𝐷𝐵) ≤ ((𝐶𝐷𝐴) +𝑒 (𝐶𝐷𝐵)))) |
24 | 9, 23 | mpan9 279 |
1
⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝐶 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → (𝐴𝐷𝐵) ≤ ((𝐶𝐷𝐴) +𝑒 (𝐶𝐷𝐵))) |