ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  psmetres2 GIF version

Theorem psmetres2 12541
Description: Restriction of a pseudometric. (Contributed by Thierry Arnoux, 11-Feb-2018.)
Assertion
Ref Expression
psmetres2 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑅𝑋) → (𝐷 ↾ (𝑅 × 𝑅)) ∈ (PsMet‘𝑅))

Proof of Theorem psmetres2
Dummy variables 𝑎 𝑏 𝑐 𝑑 𝑒 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 psmetf 12533 . . . 4 (𝐷 ∈ (PsMet‘𝑋) → 𝐷:(𝑋 × 𝑋)⟶ℝ*)
21adantr 274 . . 3 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑅𝑋) → 𝐷:(𝑋 × 𝑋)⟶ℝ*)
3 simpr 109 . . . 4 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑅𝑋) → 𝑅𝑋)
4 xpss12 4654 . . . 4 ((𝑅𝑋𝑅𝑋) → (𝑅 × 𝑅) ⊆ (𝑋 × 𝑋))
53, 3, 4syl2anc 409 . . 3 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑅𝑋) → (𝑅 × 𝑅) ⊆ (𝑋 × 𝑋))
62, 5fssresd 5307 . 2 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑅𝑋) → (𝐷 ↾ (𝑅 × 𝑅)):(𝑅 × 𝑅)⟶ℝ*)
7 simpr 109 . . . . . 6 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑅𝑋) ∧ 𝑎𝑅) → 𝑎𝑅)
87, 7ovresd 5919 . . . . 5 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑅𝑋) ∧ 𝑎𝑅) → (𝑎(𝐷 ↾ (𝑅 × 𝑅))𝑎) = (𝑎𝐷𝑎))
9 simpll 519 . . . . . 6 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑅𝑋) ∧ 𝑎𝑅) → 𝐷 ∈ (PsMet‘𝑋))
103sselda 3102 . . . . . 6 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑅𝑋) ∧ 𝑎𝑅) → 𝑎𝑋)
11 psmet0 12535 . . . . . 6 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎𝑋) → (𝑎𝐷𝑎) = 0)
129, 10, 11syl2anc 409 . . . . 5 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑅𝑋) ∧ 𝑎𝑅) → (𝑎𝐷𝑎) = 0)
138, 12eqtrd 2173 . . . 4 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑅𝑋) ∧ 𝑎𝑅) → (𝑎(𝐷 ↾ (𝑅 × 𝑅))𝑎) = 0)
149ad2antrr 480 . . . . . . . 8 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑅𝑋) ∧ 𝑎𝑅) ∧ 𝑏𝑅) ∧ 𝑐𝑅) → 𝐷 ∈ (PsMet‘𝑋))
153ad2antrr 480 . . . . . . . . 9 ((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑅𝑋) ∧ 𝑎𝑅) ∧ 𝑏𝑅) → 𝑅𝑋)
1615sselda 3102 . . . . . . . 8 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑅𝑋) ∧ 𝑎𝑅) ∧ 𝑏𝑅) ∧ 𝑐𝑅) → 𝑐𝑋)
1710ad2antrr 480 . . . . . . . 8 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑅𝑋) ∧ 𝑎𝑅) ∧ 𝑏𝑅) ∧ 𝑐𝑅) → 𝑎𝑋)
183adantr 274 . . . . . . . . . 10 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑅𝑋) ∧ 𝑎𝑅) → 𝑅𝑋)
1918sselda 3102 . . . . . . . . 9 ((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑅𝑋) ∧ 𝑎𝑅) ∧ 𝑏𝑅) → 𝑏𝑋)
2019adantr 274 . . . . . . . 8 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑅𝑋) ∧ 𝑎𝑅) ∧ 𝑏𝑅) ∧ 𝑐𝑅) → 𝑏𝑋)
21 psmettri2 12536 . . . . . . . 8 ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝑐𝑋𝑎𝑋𝑏𝑋)) → (𝑎𝐷𝑏) ≤ ((𝑐𝐷𝑎) +𝑒 (𝑐𝐷𝑏)))
2214, 16, 17, 20, 21syl13anc 1219 . . . . . . 7 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑅𝑋) ∧ 𝑎𝑅) ∧ 𝑏𝑅) ∧ 𝑐𝑅) → (𝑎𝐷𝑏) ≤ ((𝑐𝐷𝑎) +𝑒 (𝑐𝐷𝑏)))
237adantr 274 . . . . . . . . 9 ((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑅𝑋) ∧ 𝑎𝑅) ∧ 𝑏𝑅) → 𝑎𝑅)
24 simpr 109 . . . . . . . . 9 ((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑅𝑋) ∧ 𝑎𝑅) ∧ 𝑏𝑅) → 𝑏𝑅)
2523, 24ovresd 5919 . . . . . . . 8 ((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑅𝑋) ∧ 𝑎𝑅) ∧ 𝑏𝑅) → (𝑎(𝐷 ↾ (𝑅 × 𝑅))𝑏) = (𝑎𝐷𝑏))
2625adantr 274 . . . . . . 7 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑅𝑋) ∧ 𝑎𝑅) ∧ 𝑏𝑅) ∧ 𝑐𝑅) → (𝑎(𝐷 ↾ (𝑅 × 𝑅))𝑏) = (𝑎𝐷𝑏))
27 simpr 109 . . . . . . . . 9 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑅𝑋) ∧ 𝑎𝑅) ∧ 𝑏𝑅) ∧ 𝑐𝑅) → 𝑐𝑅)
287ad2antrr 480 . . . . . . . . 9 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑅𝑋) ∧ 𝑎𝑅) ∧ 𝑏𝑅) ∧ 𝑐𝑅) → 𝑎𝑅)
2927, 28ovresd 5919 . . . . . . . 8 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑅𝑋) ∧ 𝑎𝑅) ∧ 𝑏𝑅) ∧ 𝑐𝑅) → (𝑐(𝐷 ↾ (𝑅 × 𝑅))𝑎) = (𝑐𝐷𝑎))
3024adantr 274 . . . . . . . . 9 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑅𝑋) ∧ 𝑎𝑅) ∧ 𝑏𝑅) ∧ 𝑐𝑅) → 𝑏𝑅)
3127, 30ovresd 5919 . . . . . . . 8 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑅𝑋) ∧ 𝑎𝑅) ∧ 𝑏𝑅) ∧ 𝑐𝑅) → (𝑐(𝐷 ↾ (𝑅 × 𝑅))𝑏) = (𝑐𝐷𝑏))
3229, 31oveq12d 5800 . . . . . . 7 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑅𝑋) ∧ 𝑎𝑅) ∧ 𝑏𝑅) ∧ 𝑐𝑅) → ((𝑐(𝐷 ↾ (𝑅 × 𝑅))𝑎) +𝑒 (𝑐(𝐷 ↾ (𝑅 × 𝑅))𝑏)) = ((𝑐𝐷𝑎) +𝑒 (𝑐𝐷𝑏)))
3322, 26, 323brtr4d 3968 . . . . . 6 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑅𝑋) ∧ 𝑎𝑅) ∧ 𝑏𝑅) ∧ 𝑐𝑅) → (𝑎(𝐷 ↾ (𝑅 × 𝑅))𝑏) ≤ ((𝑐(𝐷 ↾ (𝑅 × 𝑅))𝑎) +𝑒 (𝑐(𝐷 ↾ (𝑅 × 𝑅))𝑏)))
3433ralrimiva 2508 . . . . 5 ((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑅𝑋) ∧ 𝑎𝑅) ∧ 𝑏𝑅) → ∀𝑐𝑅 (𝑎(𝐷 ↾ (𝑅 × 𝑅))𝑏) ≤ ((𝑐(𝐷 ↾ (𝑅 × 𝑅))𝑎) +𝑒 (𝑐(𝐷 ↾ (𝑅 × 𝑅))𝑏)))
3534ralrimiva 2508 . . . 4 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑅𝑋) ∧ 𝑎𝑅) → ∀𝑏𝑅𝑐𝑅 (𝑎(𝐷 ↾ (𝑅 × 𝑅))𝑏) ≤ ((𝑐(𝐷 ↾ (𝑅 × 𝑅))𝑎) +𝑒 (𝑐(𝐷 ↾ (𝑅 × 𝑅))𝑏)))
3613, 35jca 304 . . 3 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑅𝑋) ∧ 𝑎𝑅) → ((𝑎(𝐷 ↾ (𝑅 × 𝑅))𝑎) = 0 ∧ ∀𝑏𝑅𝑐𝑅 (𝑎(𝐷 ↾ (𝑅 × 𝑅))𝑏) ≤ ((𝑐(𝐷 ↾ (𝑅 × 𝑅))𝑎) +𝑒 (𝑐(𝐷 ↾ (𝑅 × 𝑅))𝑏))))
3736ralrimiva 2508 . 2 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑅𝑋) → ∀𝑎𝑅 ((𝑎(𝐷 ↾ (𝑅 × 𝑅))𝑎) = 0 ∧ ∀𝑏𝑅𝑐𝑅 (𝑎(𝐷 ↾ (𝑅 × 𝑅))𝑏) ≤ ((𝑐(𝐷 ↾ (𝑅 × 𝑅))𝑎) +𝑒 (𝑐(𝐷 ↾ (𝑅 × 𝑅))𝑏))))
38 df-psmet 12195 . . . . . 6 PsMet = (𝑎 ∈ V ↦ {𝑏 ∈ (ℝ*𝑚 (𝑎 × 𝑎)) ∣ ∀𝑐𝑎 ((𝑐𝑏𝑐) = 0 ∧ ∀𝑑𝑎𝑒𝑎 (𝑐𝑏𝑑) ≤ ((𝑒𝑏𝑐) +𝑒 (𝑒𝑏𝑑)))})
3938mptrcl 5511 . . . . 5 (𝐷 ∈ (PsMet‘𝑋) → 𝑋 ∈ V)
4039adantr 274 . . . 4 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑅𝑋) → 𝑋 ∈ V)
4140, 3ssexd 4076 . . 3 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑅𝑋) → 𝑅 ∈ V)
42 ispsmet 12531 . . 3 (𝑅 ∈ V → ((𝐷 ↾ (𝑅 × 𝑅)) ∈ (PsMet‘𝑅) ↔ ((𝐷 ↾ (𝑅 × 𝑅)):(𝑅 × 𝑅)⟶ℝ* ∧ ∀𝑎𝑅 ((𝑎(𝐷 ↾ (𝑅 × 𝑅))𝑎) = 0 ∧ ∀𝑏𝑅𝑐𝑅 (𝑎(𝐷 ↾ (𝑅 × 𝑅))𝑏) ≤ ((𝑐(𝐷 ↾ (𝑅 × 𝑅))𝑎) +𝑒 (𝑐(𝐷 ↾ (𝑅 × 𝑅))𝑏))))))
4341, 42syl 14 . 2 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑅𝑋) → ((𝐷 ↾ (𝑅 × 𝑅)) ∈ (PsMet‘𝑅) ↔ ((𝐷 ↾ (𝑅 × 𝑅)):(𝑅 × 𝑅)⟶ℝ* ∧ ∀𝑎𝑅 ((𝑎(𝐷 ↾ (𝑅 × 𝑅))𝑎) = 0 ∧ ∀𝑏𝑅𝑐𝑅 (𝑎(𝐷 ↾ (𝑅 × 𝑅))𝑏) ≤ ((𝑐(𝐷 ↾ (𝑅 × 𝑅))𝑎) +𝑒 (𝑐(𝐷 ↾ (𝑅 × 𝑅))𝑏))))))
446, 37, 43mpbir2and 929 1 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑅𝑋) → (𝐷 ↾ (𝑅 × 𝑅)) ∈ (PsMet‘𝑅))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1332  wcel 1481  wral 2417  {crab 2421  Vcvv 2689  wss 3076   class class class wbr 3937   × cxp 4545  cres 4549  wf 5127  cfv 5131  (class class class)co 5782  𝑚 cmap 6550  0cc0 7644  *cxr 7823  cle 7825   +𝑒 cxad 9587  PsMetcpsmet 12187
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4054  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460  ax-cnex 7735  ax-resscn 7736
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-ral 2422  df-rex 2423  df-rab 2426  df-v 2691  df-sbc 2914  df-csb 3008  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-br 3938  df-opab 3998  df-mpt 3999  df-id 4223  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-fv 5139  df-ov 5785  df-oprab 5786  df-mpo 5787  df-map 6552  df-pnf 7826  df-mnf 7827  df-xr 7828  df-psmet 12195
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator