Step | Hyp | Ref
| Expression |
1 | | psmetf 13119 |
. . . 4
⊢ (𝐷 ∈ (PsMet‘𝑋) → 𝐷:(𝑋 × 𝑋)⟶ℝ*) |
2 | 1 | adantr 274 |
. . 3
⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑅 ⊆ 𝑋) → 𝐷:(𝑋 × 𝑋)⟶ℝ*) |
3 | | simpr 109 |
. . . 4
⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑅 ⊆ 𝑋) → 𝑅 ⊆ 𝑋) |
4 | | xpss12 4718 |
. . . 4
⊢ ((𝑅 ⊆ 𝑋 ∧ 𝑅 ⊆ 𝑋) → (𝑅 × 𝑅) ⊆ (𝑋 × 𝑋)) |
5 | 3, 3, 4 | syl2anc 409 |
. . 3
⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑅 ⊆ 𝑋) → (𝑅 × 𝑅) ⊆ (𝑋 × 𝑋)) |
6 | 2, 5 | fssresd 5374 |
. 2
⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑅 ⊆ 𝑋) → (𝐷 ↾ (𝑅 × 𝑅)):(𝑅 × 𝑅)⟶ℝ*) |
7 | | simpr 109 |
. . . . . 6
⊢ (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑅 ⊆ 𝑋) ∧ 𝑎 ∈ 𝑅) → 𝑎 ∈ 𝑅) |
8 | 7, 7 | ovresd 5993 |
. . . . 5
⊢ (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑅 ⊆ 𝑋) ∧ 𝑎 ∈ 𝑅) → (𝑎(𝐷 ↾ (𝑅 × 𝑅))𝑎) = (𝑎𝐷𝑎)) |
9 | | simpll 524 |
. . . . . 6
⊢ (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑅 ⊆ 𝑋) ∧ 𝑎 ∈ 𝑅) → 𝐷 ∈ (PsMet‘𝑋)) |
10 | 3 | sselda 3147 |
. . . . . 6
⊢ (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑅 ⊆ 𝑋) ∧ 𝑎 ∈ 𝑅) → 𝑎 ∈ 𝑋) |
11 | | psmet0 13121 |
. . . . . 6
⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎 ∈ 𝑋) → (𝑎𝐷𝑎) = 0) |
12 | 9, 10, 11 | syl2anc 409 |
. . . . 5
⊢ (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑅 ⊆ 𝑋) ∧ 𝑎 ∈ 𝑅) → (𝑎𝐷𝑎) = 0) |
13 | 8, 12 | eqtrd 2203 |
. . . 4
⊢ (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑅 ⊆ 𝑋) ∧ 𝑎 ∈ 𝑅) → (𝑎(𝐷 ↾ (𝑅 × 𝑅))𝑎) = 0) |
14 | 9 | ad2antrr 485 |
. . . . . . . 8
⊢
(((((𝐷 ∈
(PsMet‘𝑋) ∧ 𝑅 ⊆ 𝑋) ∧ 𝑎 ∈ 𝑅) ∧ 𝑏 ∈ 𝑅) ∧ 𝑐 ∈ 𝑅) → 𝐷 ∈ (PsMet‘𝑋)) |
15 | 3 | ad2antrr 485 |
. . . . . . . . 9
⊢ ((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑅 ⊆ 𝑋) ∧ 𝑎 ∈ 𝑅) ∧ 𝑏 ∈ 𝑅) → 𝑅 ⊆ 𝑋) |
16 | 15 | sselda 3147 |
. . . . . . . 8
⊢
(((((𝐷 ∈
(PsMet‘𝑋) ∧ 𝑅 ⊆ 𝑋) ∧ 𝑎 ∈ 𝑅) ∧ 𝑏 ∈ 𝑅) ∧ 𝑐 ∈ 𝑅) → 𝑐 ∈ 𝑋) |
17 | 10 | ad2antrr 485 |
. . . . . . . 8
⊢
(((((𝐷 ∈
(PsMet‘𝑋) ∧ 𝑅 ⊆ 𝑋) ∧ 𝑎 ∈ 𝑅) ∧ 𝑏 ∈ 𝑅) ∧ 𝑐 ∈ 𝑅) → 𝑎 ∈ 𝑋) |
18 | 3 | adantr 274 |
. . . . . . . . . 10
⊢ (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑅 ⊆ 𝑋) ∧ 𝑎 ∈ 𝑅) → 𝑅 ⊆ 𝑋) |
19 | 18 | sselda 3147 |
. . . . . . . . 9
⊢ ((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑅 ⊆ 𝑋) ∧ 𝑎 ∈ 𝑅) ∧ 𝑏 ∈ 𝑅) → 𝑏 ∈ 𝑋) |
20 | 19 | adantr 274 |
. . . . . . . 8
⊢
(((((𝐷 ∈
(PsMet‘𝑋) ∧ 𝑅 ⊆ 𝑋) ∧ 𝑎 ∈ 𝑅) ∧ 𝑏 ∈ 𝑅) ∧ 𝑐 ∈ 𝑅) → 𝑏 ∈ 𝑋) |
21 | | psmettri2 13122 |
. . . . . . . 8
⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝑐 ∈ 𝑋 ∧ 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋)) → (𝑎𝐷𝑏) ≤ ((𝑐𝐷𝑎) +𝑒 (𝑐𝐷𝑏))) |
22 | 14, 16, 17, 20, 21 | syl13anc 1235 |
. . . . . . 7
⊢
(((((𝐷 ∈
(PsMet‘𝑋) ∧ 𝑅 ⊆ 𝑋) ∧ 𝑎 ∈ 𝑅) ∧ 𝑏 ∈ 𝑅) ∧ 𝑐 ∈ 𝑅) → (𝑎𝐷𝑏) ≤ ((𝑐𝐷𝑎) +𝑒 (𝑐𝐷𝑏))) |
23 | 7 | adantr 274 |
. . . . . . . . 9
⊢ ((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑅 ⊆ 𝑋) ∧ 𝑎 ∈ 𝑅) ∧ 𝑏 ∈ 𝑅) → 𝑎 ∈ 𝑅) |
24 | | simpr 109 |
. . . . . . . . 9
⊢ ((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑅 ⊆ 𝑋) ∧ 𝑎 ∈ 𝑅) ∧ 𝑏 ∈ 𝑅) → 𝑏 ∈ 𝑅) |
25 | 23, 24 | ovresd 5993 |
. . . . . . . 8
⊢ ((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑅 ⊆ 𝑋) ∧ 𝑎 ∈ 𝑅) ∧ 𝑏 ∈ 𝑅) → (𝑎(𝐷 ↾ (𝑅 × 𝑅))𝑏) = (𝑎𝐷𝑏)) |
26 | 25 | adantr 274 |
. . . . . . 7
⊢
(((((𝐷 ∈
(PsMet‘𝑋) ∧ 𝑅 ⊆ 𝑋) ∧ 𝑎 ∈ 𝑅) ∧ 𝑏 ∈ 𝑅) ∧ 𝑐 ∈ 𝑅) → (𝑎(𝐷 ↾ (𝑅 × 𝑅))𝑏) = (𝑎𝐷𝑏)) |
27 | | simpr 109 |
. . . . . . . . 9
⊢
(((((𝐷 ∈
(PsMet‘𝑋) ∧ 𝑅 ⊆ 𝑋) ∧ 𝑎 ∈ 𝑅) ∧ 𝑏 ∈ 𝑅) ∧ 𝑐 ∈ 𝑅) → 𝑐 ∈ 𝑅) |
28 | 7 | ad2antrr 485 |
. . . . . . . . 9
⊢
(((((𝐷 ∈
(PsMet‘𝑋) ∧ 𝑅 ⊆ 𝑋) ∧ 𝑎 ∈ 𝑅) ∧ 𝑏 ∈ 𝑅) ∧ 𝑐 ∈ 𝑅) → 𝑎 ∈ 𝑅) |
29 | 27, 28 | ovresd 5993 |
. . . . . . . 8
⊢
(((((𝐷 ∈
(PsMet‘𝑋) ∧ 𝑅 ⊆ 𝑋) ∧ 𝑎 ∈ 𝑅) ∧ 𝑏 ∈ 𝑅) ∧ 𝑐 ∈ 𝑅) → (𝑐(𝐷 ↾ (𝑅 × 𝑅))𝑎) = (𝑐𝐷𝑎)) |
30 | 24 | adantr 274 |
. . . . . . . . 9
⊢
(((((𝐷 ∈
(PsMet‘𝑋) ∧ 𝑅 ⊆ 𝑋) ∧ 𝑎 ∈ 𝑅) ∧ 𝑏 ∈ 𝑅) ∧ 𝑐 ∈ 𝑅) → 𝑏 ∈ 𝑅) |
31 | 27, 30 | ovresd 5993 |
. . . . . . . 8
⊢
(((((𝐷 ∈
(PsMet‘𝑋) ∧ 𝑅 ⊆ 𝑋) ∧ 𝑎 ∈ 𝑅) ∧ 𝑏 ∈ 𝑅) ∧ 𝑐 ∈ 𝑅) → (𝑐(𝐷 ↾ (𝑅 × 𝑅))𝑏) = (𝑐𝐷𝑏)) |
32 | 29, 31 | oveq12d 5871 |
. . . . . . 7
⊢
(((((𝐷 ∈
(PsMet‘𝑋) ∧ 𝑅 ⊆ 𝑋) ∧ 𝑎 ∈ 𝑅) ∧ 𝑏 ∈ 𝑅) ∧ 𝑐 ∈ 𝑅) → ((𝑐(𝐷 ↾ (𝑅 × 𝑅))𝑎) +𝑒 (𝑐(𝐷 ↾ (𝑅 × 𝑅))𝑏)) = ((𝑐𝐷𝑎) +𝑒 (𝑐𝐷𝑏))) |
33 | 22, 26, 32 | 3brtr4d 4021 |
. . . . . 6
⊢
(((((𝐷 ∈
(PsMet‘𝑋) ∧ 𝑅 ⊆ 𝑋) ∧ 𝑎 ∈ 𝑅) ∧ 𝑏 ∈ 𝑅) ∧ 𝑐 ∈ 𝑅) → (𝑎(𝐷 ↾ (𝑅 × 𝑅))𝑏) ≤ ((𝑐(𝐷 ↾ (𝑅 × 𝑅))𝑎) +𝑒 (𝑐(𝐷 ↾ (𝑅 × 𝑅))𝑏))) |
34 | 33 | ralrimiva 2543 |
. . . . 5
⊢ ((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑅 ⊆ 𝑋) ∧ 𝑎 ∈ 𝑅) ∧ 𝑏 ∈ 𝑅) → ∀𝑐 ∈ 𝑅 (𝑎(𝐷 ↾ (𝑅 × 𝑅))𝑏) ≤ ((𝑐(𝐷 ↾ (𝑅 × 𝑅))𝑎) +𝑒 (𝑐(𝐷 ↾ (𝑅 × 𝑅))𝑏))) |
35 | 34 | ralrimiva 2543 |
. . . 4
⊢ (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑅 ⊆ 𝑋) ∧ 𝑎 ∈ 𝑅) → ∀𝑏 ∈ 𝑅 ∀𝑐 ∈ 𝑅 (𝑎(𝐷 ↾ (𝑅 × 𝑅))𝑏) ≤ ((𝑐(𝐷 ↾ (𝑅 × 𝑅))𝑎) +𝑒 (𝑐(𝐷 ↾ (𝑅 × 𝑅))𝑏))) |
36 | 13, 35 | jca 304 |
. . 3
⊢ (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑅 ⊆ 𝑋) ∧ 𝑎 ∈ 𝑅) → ((𝑎(𝐷 ↾ (𝑅 × 𝑅))𝑎) = 0 ∧ ∀𝑏 ∈ 𝑅 ∀𝑐 ∈ 𝑅 (𝑎(𝐷 ↾ (𝑅 × 𝑅))𝑏) ≤ ((𝑐(𝐷 ↾ (𝑅 × 𝑅))𝑎) +𝑒 (𝑐(𝐷 ↾ (𝑅 × 𝑅))𝑏)))) |
37 | 36 | ralrimiva 2543 |
. 2
⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑅 ⊆ 𝑋) → ∀𝑎 ∈ 𝑅 ((𝑎(𝐷 ↾ (𝑅 × 𝑅))𝑎) = 0 ∧ ∀𝑏 ∈ 𝑅 ∀𝑐 ∈ 𝑅 (𝑎(𝐷 ↾ (𝑅 × 𝑅))𝑏) ≤ ((𝑐(𝐷 ↾ (𝑅 × 𝑅))𝑎) +𝑒 (𝑐(𝐷 ↾ (𝑅 × 𝑅))𝑏)))) |
38 | | df-psmet 12781 |
. . . . . 6
⊢ PsMet =
(𝑎 ∈ V ↦ {𝑏 ∈ (ℝ*
↑𝑚 (𝑎 × 𝑎)) ∣ ∀𝑐 ∈ 𝑎 ((𝑐𝑏𝑐) = 0 ∧ ∀𝑑 ∈ 𝑎 ∀𝑒 ∈ 𝑎 (𝑐𝑏𝑑) ≤ ((𝑒𝑏𝑐) +𝑒 (𝑒𝑏𝑑)))}) |
39 | 38 | mptrcl 5578 |
. . . . 5
⊢ (𝐷 ∈ (PsMet‘𝑋) → 𝑋 ∈ V) |
40 | 39 | adantr 274 |
. . . 4
⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑅 ⊆ 𝑋) → 𝑋 ∈ V) |
41 | 40, 3 | ssexd 4129 |
. . 3
⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑅 ⊆ 𝑋) → 𝑅 ∈ V) |
42 | | ispsmet 13117 |
. . 3
⊢ (𝑅 ∈ V → ((𝐷 ↾ (𝑅 × 𝑅)) ∈ (PsMet‘𝑅) ↔ ((𝐷 ↾ (𝑅 × 𝑅)):(𝑅 × 𝑅)⟶ℝ* ∧
∀𝑎 ∈ 𝑅 ((𝑎(𝐷 ↾ (𝑅 × 𝑅))𝑎) = 0 ∧ ∀𝑏 ∈ 𝑅 ∀𝑐 ∈ 𝑅 (𝑎(𝐷 ↾ (𝑅 × 𝑅))𝑏) ≤ ((𝑐(𝐷 ↾ (𝑅 × 𝑅))𝑎) +𝑒 (𝑐(𝐷 ↾ (𝑅 × 𝑅))𝑏)))))) |
43 | 41, 42 | syl 14 |
. 2
⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑅 ⊆ 𝑋) → ((𝐷 ↾ (𝑅 × 𝑅)) ∈ (PsMet‘𝑅) ↔ ((𝐷 ↾ (𝑅 × 𝑅)):(𝑅 × 𝑅)⟶ℝ* ∧
∀𝑎 ∈ 𝑅 ((𝑎(𝐷 ↾ (𝑅 × 𝑅))𝑎) = 0 ∧ ∀𝑏 ∈ 𝑅 ∀𝑐 ∈ 𝑅 (𝑎(𝐷 ↾ (𝑅 × 𝑅))𝑏) ≤ ((𝑐(𝐷 ↾ (𝑅 × 𝑅))𝑎) +𝑒 (𝑐(𝐷 ↾ (𝑅 × 𝑅))𝑏)))))) |
44 | 6, 37, 43 | mpbir2and 939 |
1
⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑅 ⊆ 𝑋) → (𝐷 ↾ (𝑅 × 𝑅)) ∈ (PsMet‘𝑅)) |