ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  psmetres2 GIF version

Theorem psmetres2 14501
Description: Restriction of a pseudometric. (Contributed by Thierry Arnoux, 11-Feb-2018.)
Assertion
Ref Expression
psmetres2 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑅𝑋) → (𝐷 ↾ (𝑅 × 𝑅)) ∈ (PsMet‘𝑅))

Proof of Theorem psmetres2
Dummy variables 𝑎 𝑏 𝑐 𝑑 𝑒 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 psmetf 14493 . . . 4 (𝐷 ∈ (PsMet‘𝑋) → 𝐷:(𝑋 × 𝑋)⟶ℝ*)
21adantr 276 . . 3 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑅𝑋) → 𝐷:(𝑋 × 𝑋)⟶ℝ*)
3 simpr 110 . . . 4 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑅𝑋) → 𝑅𝑋)
4 xpss12 4766 . . . 4 ((𝑅𝑋𝑅𝑋) → (𝑅 × 𝑅) ⊆ (𝑋 × 𝑋))
53, 3, 4syl2anc 411 . . 3 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑅𝑋) → (𝑅 × 𝑅) ⊆ (𝑋 × 𝑋))
62, 5fssresd 5430 . 2 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑅𝑋) → (𝐷 ↾ (𝑅 × 𝑅)):(𝑅 × 𝑅)⟶ℝ*)
7 simpr 110 . . . . . 6 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑅𝑋) ∧ 𝑎𝑅) → 𝑎𝑅)
87, 7ovresd 6059 . . . . 5 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑅𝑋) ∧ 𝑎𝑅) → (𝑎(𝐷 ↾ (𝑅 × 𝑅))𝑎) = (𝑎𝐷𝑎))
9 simpll 527 . . . . . 6 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑅𝑋) ∧ 𝑎𝑅) → 𝐷 ∈ (PsMet‘𝑋))
103sselda 3179 . . . . . 6 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑅𝑋) ∧ 𝑎𝑅) → 𝑎𝑋)
11 psmet0 14495 . . . . . 6 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎𝑋) → (𝑎𝐷𝑎) = 0)
129, 10, 11syl2anc 411 . . . . 5 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑅𝑋) ∧ 𝑎𝑅) → (𝑎𝐷𝑎) = 0)
138, 12eqtrd 2226 . . . 4 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑅𝑋) ∧ 𝑎𝑅) → (𝑎(𝐷 ↾ (𝑅 × 𝑅))𝑎) = 0)
149ad2antrr 488 . . . . . . . 8 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑅𝑋) ∧ 𝑎𝑅) ∧ 𝑏𝑅) ∧ 𝑐𝑅) → 𝐷 ∈ (PsMet‘𝑋))
153ad2antrr 488 . . . . . . . . 9 ((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑅𝑋) ∧ 𝑎𝑅) ∧ 𝑏𝑅) → 𝑅𝑋)
1615sselda 3179 . . . . . . . 8 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑅𝑋) ∧ 𝑎𝑅) ∧ 𝑏𝑅) ∧ 𝑐𝑅) → 𝑐𝑋)
1710ad2antrr 488 . . . . . . . 8 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑅𝑋) ∧ 𝑎𝑅) ∧ 𝑏𝑅) ∧ 𝑐𝑅) → 𝑎𝑋)
183adantr 276 . . . . . . . . . 10 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑅𝑋) ∧ 𝑎𝑅) → 𝑅𝑋)
1918sselda 3179 . . . . . . . . 9 ((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑅𝑋) ∧ 𝑎𝑅) ∧ 𝑏𝑅) → 𝑏𝑋)
2019adantr 276 . . . . . . . 8 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑅𝑋) ∧ 𝑎𝑅) ∧ 𝑏𝑅) ∧ 𝑐𝑅) → 𝑏𝑋)
21 psmettri2 14496 . . . . . . . 8 ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝑐𝑋𝑎𝑋𝑏𝑋)) → (𝑎𝐷𝑏) ≤ ((𝑐𝐷𝑎) +𝑒 (𝑐𝐷𝑏)))
2214, 16, 17, 20, 21syl13anc 1251 . . . . . . 7 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑅𝑋) ∧ 𝑎𝑅) ∧ 𝑏𝑅) ∧ 𝑐𝑅) → (𝑎𝐷𝑏) ≤ ((𝑐𝐷𝑎) +𝑒 (𝑐𝐷𝑏)))
237adantr 276 . . . . . . . . 9 ((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑅𝑋) ∧ 𝑎𝑅) ∧ 𝑏𝑅) → 𝑎𝑅)
24 simpr 110 . . . . . . . . 9 ((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑅𝑋) ∧ 𝑎𝑅) ∧ 𝑏𝑅) → 𝑏𝑅)
2523, 24ovresd 6059 . . . . . . . 8 ((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑅𝑋) ∧ 𝑎𝑅) ∧ 𝑏𝑅) → (𝑎(𝐷 ↾ (𝑅 × 𝑅))𝑏) = (𝑎𝐷𝑏))
2625adantr 276 . . . . . . 7 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑅𝑋) ∧ 𝑎𝑅) ∧ 𝑏𝑅) ∧ 𝑐𝑅) → (𝑎(𝐷 ↾ (𝑅 × 𝑅))𝑏) = (𝑎𝐷𝑏))
27 simpr 110 . . . . . . . . 9 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑅𝑋) ∧ 𝑎𝑅) ∧ 𝑏𝑅) ∧ 𝑐𝑅) → 𝑐𝑅)
287ad2antrr 488 . . . . . . . . 9 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑅𝑋) ∧ 𝑎𝑅) ∧ 𝑏𝑅) ∧ 𝑐𝑅) → 𝑎𝑅)
2927, 28ovresd 6059 . . . . . . . 8 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑅𝑋) ∧ 𝑎𝑅) ∧ 𝑏𝑅) ∧ 𝑐𝑅) → (𝑐(𝐷 ↾ (𝑅 × 𝑅))𝑎) = (𝑐𝐷𝑎))
3024adantr 276 . . . . . . . . 9 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑅𝑋) ∧ 𝑎𝑅) ∧ 𝑏𝑅) ∧ 𝑐𝑅) → 𝑏𝑅)
3127, 30ovresd 6059 . . . . . . . 8 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑅𝑋) ∧ 𝑎𝑅) ∧ 𝑏𝑅) ∧ 𝑐𝑅) → (𝑐(𝐷 ↾ (𝑅 × 𝑅))𝑏) = (𝑐𝐷𝑏))
3229, 31oveq12d 5936 . . . . . . 7 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑅𝑋) ∧ 𝑎𝑅) ∧ 𝑏𝑅) ∧ 𝑐𝑅) → ((𝑐(𝐷 ↾ (𝑅 × 𝑅))𝑎) +𝑒 (𝑐(𝐷 ↾ (𝑅 × 𝑅))𝑏)) = ((𝑐𝐷𝑎) +𝑒 (𝑐𝐷𝑏)))
3322, 26, 323brtr4d 4061 . . . . . 6 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑅𝑋) ∧ 𝑎𝑅) ∧ 𝑏𝑅) ∧ 𝑐𝑅) → (𝑎(𝐷 ↾ (𝑅 × 𝑅))𝑏) ≤ ((𝑐(𝐷 ↾ (𝑅 × 𝑅))𝑎) +𝑒 (𝑐(𝐷 ↾ (𝑅 × 𝑅))𝑏)))
3433ralrimiva 2567 . . . . 5 ((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑅𝑋) ∧ 𝑎𝑅) ∧ 𝑏𝑅) → ∀𝑐𝑅 (𝑎(𝐷 ↾ (𝑅 × 𝑅))𝑏) ≤ ((𝑐(𝐷 ↾ (𝑅 × 𝑅))𝑎) +𝑒 (𝑐(𝐷 ↾ (𝑅 × 𝑅))𝑏)))
3534ralrimiva 2567 . . . 4 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑅𝑋) ∧ 𝑎𝑅) → ∀𝑏𝑅𝑐𝑅 (𝑎(𝐷 ↾ (𝑅 × 𝑅))𝑏) ≤ ((𝑐(𝐷 ↾ (𝑅 × 𝑅))𝑎) +𝑒 (𝑐(𝐷 ↾ (𝑅 × 𝑅))𝑏)))
3613, 35jca 306 . . 3 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑅𝑋) ∧ 𝑎𝑅) → ((𝑎(𝐷 ↾ (𝑅 × 𝑅))𝑎) = 0 ∧ ∀𝑏𝑅𝑐𝑅 (𝑎(𝐷 ↾ (𝑅 × 𝑅))𝑏) ≤ ((𝑐(𝐷 ↾ (𝑅 × 𝑅))𝑎) +𝑒 (𝑐(𝐷 ↾ (𝑅 × 𝑅))𝑏))))
3736ralrimiva 2567 . 2 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑅𝑋) → ∀𝑎𝑅 ((𝑎(𝐷 ↾ (𝑅 × 𝑅))𝑎) = 0 ∧ ∀𝑏𝑅𝑐𝑅 (𝑎(𝐷 ↾ (𝑅 × 𝑅))𝑏) ≤ ((𝑐(𝐷 ↾ (𝑅 × 𝑅))𝑎) +𝑒 (𝑐(𝐷 ↾ (𝑅 × 𝑅))𝑏))))
38 df-psmet 14039 . . . . . 6 PsMet = (𝑎 ∈ V ↦ {𝑏 ∈ (ℝ*𝑚 (𝑎 × 𝑎)) ∣ ∀𝑐𝑎 ((𝑐𝑏𝑐) = 0 ∧ ∀𝑑𝑎𝑒𝑎 (𝑐𝑏𝑑) ≤ ((𝑒𝑏𝑐) +𝑒 (𝑒𝑏𝑑)))})
3938mptrcl 5640 . . . . 5 (𝐷 ∈ (PsMet‘𝑋) → 𝑋 ∈ V)
4039adantr 276 . . . 4 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑅𝑋) → 𝑋 ∈ V)
4140, 3ssexd 4169 . . 3 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑅𝑋) → 𝑅 ∈ V)
42 ispsmet 14491 . . 3 (𝑅 ∈ V → ((𝐷 ↾ (𝑅 × 𝑅)) ∈ (PsMet‘𝑅) ↔ ((𝐷 ↾ (𝑅 × 𝑅)):(𝑅 × 𝑅)⟶ℝ* ∧ ∀𝑎𝑅 ((𝑎(𝐷 ↾ (𝑅 × 𝑅))𝑎) = 0 ∧ ∀𝑏𝑅𝑐𝑅 (𝑎(𝐷 ↾ (𝑅 × 𝑅))𝑏) ≤ ((𝑐(𝐷 ↾ (𝑅 × 𝑅))𝑎) +𝑒 (𝑐(𝐷 ↾ (𝑅 × 𝑅))𝑏))))))
4341, 42syl 14 . 2 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑅𝑋) → ((𝐷 ↾ (𝑅 × 𝑅)) ∈ (PsMet‘𝑅) ↔ ((𝐷 ↾ (𝑅 × 𝑅)):(𝑅 × 𝑅)⟶ℝ* ∧ ∀𝑎𝑅 ((𝑎(𝐷 ↾ (𝑅 × 𝑅))𝑎) = 0 ∧ ∀𝑏𝑅𝑐𝑅 (𝑎(𝐷 ↾ (𝑅 × 𝑅))𝑏) ≤ ((𝑐(𝐷 ↾ (𝑅 × 𝑅))𝑎) +𝑒 (𝑐(𝐷 ↾ (𝑅 × 𝑅))𝑏))))))
446, 37, 43mpbir2and 946 1 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑅𝑋) → (𝐷 ↾ (𝑅 × 𝑅)) ∈ (PsMet‘𝑅))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1364  wcel 2164  wral 2472  {crab 2476  Vcvv 2760  wss 3153   class class class wbr 4029   × cxp 4657  cres 4661  wf 5250  cfv 5254  (class class class)co 5918  𝑚 cmap 6702  0cc0 7872  *cxr 8053  cle 8055   +𝑒 cxad 9836  PsMetcpsmet 14031
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-cnex 7963  ax-resscn 7964
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-fv 5262  df-ov 5921  df-oprab 5922  df-mpo 5923  df-map 6704  df-pnf 8056  df-mnf 8057  df-xr 8058  df-psmet 14039
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator