| Step | Hyp | Ref
 | Expression | 
| 1 |   | df-psmet 14099 | 
. . . . 5
⊢ PsMet =
(𝑢 ∈ V ↦ {𝑑 ∈ (ℝ*
↑𝑚 (𝑢 × 𝑢)) ∣ ∀𝑥 ∈ 𝑢 ((𝑥𝑑𝑥) = 0 ∧ ∀𝑦 ∈ 𝑢 ∀𝑧 ∈ 𝑢 (𝑥𝑑𝑦) ≤ ((𝑧𝑑𝑥) +𝑒 (𝑧𝑑𝑦)))}) | 
| 2 |   | id 19 | 
. . . . . . . 8
⊢ (𝑢 = 𝑋 → 𝑢 = 𝑋) | 
| 3 | 2 | sqxpeqd 4689 | 
. . . . . . 7
⊢ (𝑢 = 𝑋 → (𝑢 × 𝑢) = (𝑋 × 𝑋)) | 
| 4 | 3 | oveq2d 5938 | 
. . . . . 6
⊢ (𝑢 = 𝑋 → (ℝ*
↑𝑚 (𝑢 × 𝑢)) = (ℝ*
↑𝑚 (𝑋 × 𝑋))) | 
| 5 |   | raleq 2693 | 
. . . . . . . . 9
⊢ (𝑢 = 𝑋 → (∀𝑧 ∈ 𝑢 (𝑥𝑑𝑦) ≤ ((𝑧𝑑𝑥) +𝑒 (𝑧𝑑𝑦)) ↔ ∀𝑧 ∈ 𝑋 (𝑥𝑑𝑦) ≤ ((𝑧𝑑𝑥) +𝑒 (𝑧𝑑𝑦)))) | 
| 6 | 5 | raleqbi1dv 2705 | 
. . . . . . . 8
⊢ (𝑢 = 𝑋 → (∀𝑦 ∈ 𝑢 ∀𝑧 ∈ 𝑢 (𝑥𝑑𝑦) ≤ ((𝑧𝑑𝑥) +𝑒 (𝑧𝑑𝑦)) ↔ ∀𝑦 ∈ 𝑋 ∀𝑧 ∈ 𝑋 (𝑥𝑑𝑦) ≤ ((𝑧𝑑𝑥) +𝑒 (𝑧𝑑𝑦)))) | 
| 7 | 6 | anbi2d 464 | 
. . . . . . 7
⊢ (𝑢 = 𝑋 → (((𝑥𝑑𝑥) = 0 ∧ ∀𝑦 ∈ 𝑢 ∀𝑧 ∈ 𝑢 (𝑥𝑑𝑦) ≤ ((𝑧𝑑𝑥) +𝑒 (𝑧𝑑𝑦))) ↔ ((𝑥𝑑𝑥) = 0 ∧ ∀𝑦 ∈ 𝑋 ∀𝑧 ∈ 𝑋 (𝑥𝑑𝑦) ≤ ((𝑧𝑑𝑥) +𝑒 (𝑧𝑑𝑦))))) | 
| 8 | 7 | raleqbi1dv 2705 | 
. . . . . 6
⊢ (𝑢 = 𝑋 → (∀𝑥 ∈ 𝑢 ((𝑥𝑑𝑥) = 0 ∧ ∀𝑦 ∈ 𝑢 ∀𝑧 ∈ 𝑢 (𝑥𝑑𝑦) ≤ ((𝑧𝑑𝑥) +𝑒 (𝑧𝑑𝑦))) ↔ ∀𝑥 ∈ 𝑋 ((𝑥𝑑𝑥) = 0 ∧ ∀𝑦 ∈ 𝑋 ∀𝑧 ∈ 𝑋 (𝑥𝑑𝑦) ≤ ((𝑧𝑑𝑥) +𝑒 (𝑧𝑑𝑦))))) | 
| 9 | 4, 8 | rabeqbidv 2758 | 
. . . . 5
⊢ (𝑢 = 𝑋 → {𝑑 ∈ (ℝ*
↑𝑚 (𝑢 × 𝑢)) ∣ ∀𝑥 ∈ 𝑢 ((𝑥𝑑𝑥) = 0 ∧ ∀𝑦 ∈ 𝑢 ∀𝑧 ∈ 𝑢 (𝑥𝑑𝑦) ≤ ((𝑧𝑑𝑥) +𝑒 (𝑧𝑑𝑦)))} = {𝑑 ∈ (ℝ*
↑𝑚 (𝑋 × 𝑋)) ∣ ∀𝑥 ∈ 𝑋 ((𝑥𝑑𝑥) = 0 ∧ ∀𝑦 ∈ 𝑋 ∀𝑧 ∈ 𝑋 (𝑥𝑑𝑦) ≤ ((𝑧𝑑𝑥) +𝑒 (𝑧𝑑𝑦)))}) | 
| 10 |   | elex 2774 | 
. . . . 5
⊢ (𝑋 ∈ 𝑉 → 𝑋 ∈ V) | 
| 11 |   | xrex 9931 | 
. . . . . . . 8
⊢
ℝ* ∈ V | 
| 12 |   | sqxpexg 4779 | 
. . . . . . . 8
⊢ (𝑋 ∈ 𝑉 → (𝑋 × 𝑋) ∈ V) | 
| 13 |   | mapvalg 6717 | 
. . . . . . . 8
⊢
((ℝ* ∈ V ∧ (𝑋 × 𝑋) ∈ V) → (ℝ*
↑𝑚 (𝑋 × 𝑋)) = {𝑓 ∣ 𝑓:(𝑋 × 𝑋)⟶ℝ*}) | 
| 14 | 11, 12, 13 | sylancr 414 | 
. . . . . . 7
⊢ (𝑋 ∈ 𝑉 → (ℝ*
↑𝑚 (𝑋 × 𝑋)) = {𝑓 ∣ 𝑓:(𝑋 × 𝑋)⟶ℝ*}) | 
| 15 |   | mapex 6713 | 
. . . . . . . 8
⊢ (((𝑋 × 𝑋) ∈ V ∧ ℝ* ∈
V) → {𝑓 ∣ 𝑓:(𝑋 × 𝑋)⟶ℝ*} ∈
V) | 
| 16 | 12, 11, 15 | sylancl 413 | 
. . . . . . 7
⊢ (𝑋 ∈ 𝑉 → {𝑓 ∣ 𝑓:(𝑋 × 𝑋)⟶ℝ*} ∈
V) | 
| 17 | 14, 16 | eqeltrd 2273 | 
. . . . . 6
⊢ (𝑋 ∈ 𝑉 → (ℝ*
↑𝑚 (𝑋 × 𝑋)) ∈ V) | 
| 18 |   | rabexg 4176 | 
. . . . . 6
⊢
((ℝ* ↑𝑚 (𝑋 × 𝑋)) ∈ V → {𝑑 ∈ (ℝ*
↑𝑚 (𝑋 × 𝑋)) ∣ ∀𝑥 ∈ 𝑋 ((𝑥𝑑𝑥) = 0 ∧ ∀𝑦 ∈ 𝑋 ∀𝑧 ∈ 𝑋 (𝑥𝑑𝑦) ≤ ((𝑧𝑑𝑥) +𝑒 (𝑧𝑑𝑦)))} ∈ V) | 
| 19 | 17, 18 | syl 14 | 
. . . . 5
⊢ (𝑋 ∈ 𝑉 → {𝑑 ∈ (ℝ*
↑𝑚 (𝑋 × 𝑋)) ∣ ∀𝑥 ∈ 𝑋 ((𝑥𝑑𝑥) = 0 ∧ ∀𝑦 ∈ 𝑋 ∀𝑧 ∈ 𝑋 (𝑥𝑑𝑦) ≤ ((𝑧𝑑𝑥) +𝑒 (𝑧𝑑𝑦)))} ∈ V) | 
| 20 | 1, 9, 10, 19 | fvmptd3 5655 | 
. . . 4
⊢ (𝑋 ∈ 𝑉 → (PsMet‘𝑋) = {𝑑 ∈ (ℝ*
↑𝑚 (𝑋 × 𝑋)) ∣ ∀𝑥 ∈ 𝑋 ((𝑥𝑑𝑥) = 0 ∧ ∀𝑦 ∈ 𝑋 ∀𝑧 ∈ 𝑋 (𝑥𝑑𝑦) ≤ ((𝑧𝑑𝑥) +𝑒 (𝑧𝑑𝑦)))}) | 
| 21 | 20 | eleq2d 2266 | 
. . 3
⊢ (𝑋 ∈ 𝑉 → (𝐷 ∈ (PsMet‘𝑋) ↔ 𝐷 ∈ {𝑑 ∈ (ℝ*
↑𝑚 (𝑋 × 𝑋)) ∣ ∀𝑥 ∈ 𝑋 ((𝑥𝑑𝑥) = 0 ∧ ∀𝑦 ∈ 𝑋 ∀𝑧 ∈ 𝑋 (𝑥𝑑𝑦) ≤ ((𝑧𝑑𝑥) +𝑒 (𝑧𝑑𝑦)))})) | 
| 22 |   | oveq 5928 | 
. . . . . . 7
⊢ (𝑑 = 𝐷 → (𝑥𝑑𝑥) = (𝑥𝐷𝑥)) | 
| 23 | 22 | eqeq1d 2205 | 
. . . . . 6
⊢ (𝑑 = 𝐷 → ((𝑥𝑑𝑥) = 0 ↔ (𝑥𝐷𝑥) = 0)) | 
| 24 |   | oveq 5928 | 
. . . . . . . 8
⊢ (𝑑 = 𝐷 → (𝑥𝑑𝑦) = (𝑥𝐷𝑦)) | 
| 25 |   | oveq 5928 | 
. . . . . . . . 9
⊢ (𝑑 = 𝐷 → (𝑧𝑑𝑥) = (𝑧𝐷𝑥)) | 
| 26 |   | oveq 5928 | 
. . . . . . . . 9
⊢ (𝑑 = 𝐷 → (𝑧𝑑𝑦) = (𝑧𝐷𝑦)) | 
| 27 | 25, 26 | oveq12d 5940 | 
. . . . . . . 8
⊢ (𝑑 = 𝐷 → ((𝑧𝑑𝑥) +𝑒 (𝑧𝑑𝑦)) = ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦))) | 
| 28 | 24, 27 | breq12d 4046 | 
. . . . . . 7
⊢ (𝑑 = 𝐷 → ((𝑥𝑑𝑦) ≤ ((𝑧𝑑𝑥) +𝑒 (𝑧𝑑𝑦)) ↔ (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦)))) | 
| 29 | 28 | 2ralbidv 2521 | 
. . . . . 6
⊢ (𝑑 = 𝐷 → (∀𝑦 ∈ 𝑋 ∀𝑧 ∈ 𝑋 (𝑥𝑑𝑦) ≤ ((𝑧𝑑𝑥) +𝑒 (𝑧𝑑𝑦)) ↔ ∀𝑦 ∈ 𝑋 ∀𝑧 ∈ 𝑋 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦)))) | 
| 30 | 23, 29 | anbi12d 473 | 
. . . . 5
⊢ (𝑑 = 𝐷 → (((𝑥𝑑𝑥) = 0 ∧ ∀𝑦 ∈ 𝑋 ∀𝑧 ∈ 𝑋 (𝑥𝑑𝑦) ≤ ((𝑧𝑑𝑥) +𝑒 (𝑧𝑑𝑦))) ↔ ((𝑥𝐷𝑥) = 0 ∧ ∀𝑦 ∈ 𝑋 ∀𝑧 ∈ 𝑋 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦))))) | 
| 31 | 30 | ralbidv 2497 | 
. . . 4
⊢ (𝑑 = 𝐷 → (∀𝑥 ∈ 𝑋 ((𝑥𝑑𝑥) = 0 ∧ ∀𝑦 ∈ 𝑋 ∀𝑧 ∈ 𝑋 (𝑥𝑑𝑦) ≤ ((𝑧𝑑𝑥) +𝑒 (𝑧𝑑𝑦))) ↔ ∀𝑥 ∈ 𝑋 ((𝑥𝐷𝑥) = 0 ∧ ∀𝑦 ∈ 𝑋 ∀𝑧 ∈ 𝑋 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦))))) | 
| 32 | 31 | elrab 2920 | 
. . 3
⊢ (𝐷 ∈ {𝑑 ∈ (ℝ*
↑𝑚 (𝑋 × 𝑋)) ∣ ∀𝑥 ∈ 𝑋 ((𝑥𝑑𝑥) = 0 ∧ ∀𝑦 ∈ 𝑋 ∀𝑧 ∈ 𝑋 (𝑥𝑑𝑦) ≤ ((𝑧𝑑𝑥) +𝑒 (𝑧𝑑𝑦)))} ↔ (𝐷 ∈ (ℝ*
↑𝑚 (𝑋 × 𝑋)) ∧ ∀𝑥 ∈ 𝑋 ((𝑥𝐷𝑥) = 0 ∧ ∀𝑦 ∈ 𝑋 ∀𝑧 ∈ 𝑋 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦))))) | 
| 33 | 21, 32 | bitrdi 196 | 
. 2
⊢ (𝑋 ∈ 𝑉 → (𝐷 ∈ (PsMet‘𝑋) ↔ (𝐷 ∈ (ℝ*
↑𝑚 (𝑋 × 𝑋)) ∧ ∀𝑥 ∈ 𝑋 ((𝑥𝐷𝑥) = 0 ∧ ∀𝑦 ∈ 𝑋 ∀𝑧 ∈ 𝑋 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦)))))) | 
| 34 |   | elmapg 6720 | 
. . . 4
⊢
((ℝ* ∈ V ∧ (𝑋 × 𝑋) ∈ V) → (𝐷 ∈ (ℝ*
↑𝑚 (𝑋 × 𝑋)) ↔ 𝐷:(𝑋 × 𝑋)⟶ℝ*)) | 
| 35 | 11, 12, 34 | sylancr 414 | 
. . 3
⊢ (𝑋 ∈ 𝑉 → (𝐷 ∈ (ℝ*
↑𝑚 (𝑋 × 𝑋)) ↔ 𝐷:(𝑋 × 𝑋)⟶ℝ*)) | 
| 36 | 35 | anbi1d 465 | 
. 2
⊢ (𝑋 ∈ 𝑉 → ((𝐷 ∈ (ℝ*
↑𝑚 (𝑋 × 𝑋)) ∧ ∀𝑥 ∈ 𝑋 ((𝑥𝐷𝑥) = 0 ∧ ∀𝑦 ∈ 𝑋 ∀𝑧 ∈ 𝑋 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦)))) ↔ (𝐷:(𝑋 × 𝑋)⟶ℝ* ∧
∀𝑥 ∈ 𝑋 ((𝑥𝐷𝑥) = 0 ∧ ∀𝑦 ∈ 𝑋 ∀𝑧 ∈ 𝑋 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦)))))) | 
| 37 | 33, 36 | bitrd 188 | 
1
⊢ (𝑋 ∈ 𝑉 → (𝐷 ∈ (PsMet‘𝑋) ↔ (𝐷:(𝑋 × 𝑋)⟶ℝ* ∧
∀𝑥 ∈ 𝑋 ((𝑥𝐷𝑥) = 0 ∧ ∀𝑦 ∈ 𝑋 ∀𝑧 ∈ 𝑋 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦)))))) |