Step | Hyp | Ref
| Expression |
1 | | df-psmet 13486 |
. . . . 5
β’ PsMet =
(π’ β V β¦ {π β (β*
βπ (π’ Γ π’)) β£ βπ₯ β π’ ((π₯ππ₯) = 0 β§ βπ¦ β π’ βπ§ β π’ (π₯ππ¦) β€ ((π§ππ₯) +π (π§ππ¦)))}) |
2 | | id 19 |
. . . . . . . 8
β’ (π’ = π β π’ = π) |
3 | 2 | sqxpeqd 4654 |
. . . . . . 7
β’ (π’ = π β (π’ Γ π’) = (π Γ π)) |
4 | 3 | oveq2d 5893 |
. . . . . 6
β’ (π’ = π β (β*
βπ (π’ Γ π’)) = (β*
βπ (π Γ π))) |
5 | | raleq 2673 |
. . . . . . . . 9
β’ (π’ = π β (βπ§ β π’ (π₯ππ¦) β€ ((π§ππ₯) +π (π§ππ¦)) β βπ§ β π (π₯ππ¦) β€ ((π§ππ₯) +π (π§ππ¦)))) |
6 | 5 | raleqbi1dv 2681 |
. . . . . . . 8
β’ (π’ = π β (βπ¦ β π’ βπ§ β π’ (π₯ππ¦) β€ ((π§ππ₯) +π (π§ππ¦)) β βπ¦ β π βπ§ β π (π₯ππ¦) β€ ((π§ππ₯) +π (π§ππ¦)))) |
7 | 6 | anbi2d 464 |
. . . . . . 7
β’ (π’ = π β (((π₯ππ₯) = 0 β§ βπ¦ β π’ βπ§ β π’ (π₯ππ¦) β€ ((π§ππ₯) +π (π§ππ¦))) β ((π₯ππ₯) = 0 β§ βπ¦ β π βπ§ β π (π₯ππ¦) β€ ((π§ππ₯) +π (π§ππ¦))))) |
8 | 7 | raleqbi1dv 2681 |
. . . . . 6
β’ (π’ = π β (βπ₯ β π’ ((π₯ππ₯) = 0 β§ βπ¦ β π’ βπ§ β π’ (π₯ππ¦) β€ ((π§ππ₯) +π (π§ππ¦))) β βπ₯ β π ((π₯ππ₯) = 0 β§ βπ¦ β π βπ§ β π (π₯ππ¦) β€ ((π§ππ₯) +π (π§ππ¦))))) |
9 | 4, 8 | rabeqbidv 2734 |
. . . . 5
β’ (π’ = π β {π β (β*
βπ (π’ Γ π’)) β£ βπ₯ β π’ ((π₯ππ₯) = 0 β§ βπ¦ β π’ βπ§ β π’ (π₯ππ¦) β€ ((π§ππ₯) +π (π§ππ¦)))} = {π β (β*
βπ (π Γ π)) β£ βπ₯ β π ((π₯ππ₯) = 0 β§ βπ¦ β π βπ§ β π (π₯ππ¦) β€ ((π§ππ₯) +π (π§ππ¦)))}) |
10 | | elex 2750 |
. . . . 5
β’ (π β π β π β V) |
11 | | xrex 9858 |
. . . . . . . 8
β’
β* β V |
12 | | sqxpexg 4744 |
. . . . . . . 8
β’ (π β π β (π Γ π) β V) |
13 | | mapvalg 6660 |
. . . . . . . 8
β’
((β* β V β§ (π Γ π) β V) β (β*
βπ (π Γ π)) = {π β£ π:(π Γ π)βΆβ*}) |
14 | 11, 12, 13 | sylancr 414 |
. . . . . . 7
β’ (π β π β (β*
βπ (π Γ π)) = {π β£ π:(π Γ π)βΆβ*}) |
15 | | mapex 6656 |
. . . . . . . 8
β’ (((π Γ π) β V β§ β* β
V) β {π β£ π:(π Γ π)βΆβ*} β
V) |
16 | 12, 11, 15 | sylancl 413 |
. . . . . . 7
β’ (π β π β {π β£ π:(π Γ π)βΆβ*} β
V) |
17 | 14, 16 | eqeltrd 2254 |
. . . . . 6
β’ (π β π β (β*
βπ (π Γ π)) β V) |
18 | | rabexg 4148 |
. . . . . 6
β’
((β* βπ (π Γ π)) β V β {π β (β*
βπ (π Γ π)) β£ βπ₯ β π ((π₯ππ₯) = 0 β§ βπ¦ β π βπ§ β π (π₯ππ¦) β€ ((π§ππ₯) +π (π§ππ¦)))} β V) |
19 | 17, 18 | syl 14 |
. . . . 5
β’ (π β π β {π β (β*
βπ (π Γ π)) β£ βπ₯ β π ((π₯ππ₯) = 0 β§ βπ¦ β π βπ§ β π (π₯ππ¦) β€ ((π§ππ₯) +π (π§ππ¦)))} β V) |
20 | 1, 9, 10, 19 | fvmptd3 5611 |
. . . 4
β’ (π β π β (PsMetβπ) = {π β (β*
βπ (π Γ π)) β£ βπ₯ β π ((π₯ππ₯) = 0 β§ βπ¦ β π βπ§ β π (π₯ππ¦) β€ ((π§ππ₯) +π (π§ππ¦)))}) |
21 | 20 | eleq2d 2247 |
. . 3
β’ (π β π β (π· β (PsMetβπ) β π· β {π β (β*
βπ (π Γ π)) β£ βπ₯ β π ((π₯ππ₯) = 0 β§ βπ¦ β π βπ§ β π (π₯ππ¦) β€ ((π§ππ₯) +π (π§ππ¦)))})) |
22 | | oveq 5883 |
. . . . . . 7
β’ (π = π· β (π₯ππ₯) = (π₯π·π₯)) |
23 | 22 | eqeq1d 2186 |
. . . . . 6
β’ (π = π· β ((π₯ππ₯) = 0 β (π₯π·π₯) = 0)) |
24 | | oveq 5883 |
. . . . . . . 8
β’ (π = π· β (π₯ππ¦) = (π₯π·π¦)) |
25 | | oveq 5883 |
. . . . . . . . 9
β’ (π = π· β (π§ππ₯) = (π§π·π₯)) |
26 | | oveq 5883 |
. . . . . . . . 9
β’ (π = π· β (π§ππ¦) = (π§π·π¦)) |
27 | 25, 26 | oveq12d 5895 |
. . . . . . . 8
β’ (π = π· β ((π§ππ₯) +π (π§ππ¦)) = ((π§π·π₯) +π (π§π·π¦))) |
28 | 24, 27 | breq12d 4018 |
. . . . . . 7
β’ (π = π· β ((π₯ππ¦) β€ ((π§ππ₯) +π (π§ππ¦)) β (π₯π·π¦) β€ ((π§π·π₯) +π (π§π·π¦)))) |
29 | 28 | 2ralbidv 2501 |
. . . . . 6
β’ (π = π· β (βπ¦ β π βπ§ β π (π₯ππ¦) β€ ((π§ππ₯) +π (π§ππ¦)) β βπ¦ β π βπ§ β π (π₯π·π¦) β€ ((π§π·π₯) +π (π§π·π¦)))) |
30 | 23, 29 | anbi12d 473 |
. . . . 5
β’ (π = π· β (((π₯ππ₯) = 0 β§ βπ¦ β π βπ§ β π (π₯ππ¦) β€ ((π§ππ₯) +π (π§ππ¦))) β ((π₯π·π₯) = 0 β§ βπ¦ β π βπ§ β π (π₯π·π¦) β€ ((π§π·π₯) +π (π§π·π¦))))) |
31 | 30 | ralbidv 2477 |
. . . 4
β’ (π = π· β (βπ₯ β π ((π₯ππ₯) = 0 β§ βπ¦ β π βπ§ β π (π₯ππ¦) β€ ((π§ππ₯) +π (π§ππ¦))) β βπ₯ β π ((π₯π·π₯) = 0 β§ βπ¦ β π βπ§ β π (π₯π·π¦) β€ ((π§π·π₯) +π (π§π·π¦))))) |
32 | 31 | elrab 2895 |
. . 3
β’ (π· β {π β (β*
βπ (π Γ π)) β£ βπ₯ β π ((π₯ππ₯) = 0 β§ βπ¦ β π βπ§ β π (π₯ππ¦) β€ ((π§ππ₯) +π (π§ππ¦)))} β (π· β (β*
βπ (π Γ π)) β§ βπ₯ β π ((π₯π·π₯) = 0 β§ βπ¦ β π βπ§ β π (π₯π·π¦) β€ ((π§π·π₯) +π (π§π·π¦))))) |
33 | 21, 32 | bitrdi 196 |
. 2
β’ (π β π β (π· β (PsMetβπ) β (π· β (β*
βπ (π Γ π)) β§ βπ₯ β π ((π₯π·π₯) = 0 β§ βπ¦ β π βπ§ β π (π₯π·π¦) β€ ((π§π·π₯) +π (π§π·π¦)))))) |
34 | | elmapg 6663 |
. . . 4
β’
((β* β V β§ (π Γ π) β V) β (π· β (β*
βπ (π Γ π)) β π·:(π Γ π)βΆβ*)) |
35 | 11, 12, 34 | sylancr 414 |
. . 3
β’ (π β π β (π· β (β*
βπ (π Γ π)) β π·:(π Γ π)βΆβ*)) |
36 | 35 | anbi1d 465 |
. 2
β’ (π β π β ((π· β (β*
βπ (π Γ π)) β§ βπ₯ β π ((π₯π·π₯) = 0 β§ βπ¦ β π βπ§ β π (π₯π·π¦) β€ ((π§π·π₯) +π (π§π·π¦)))) β (π·:(π Γ π)βΆβ* β§
βπ₯ β π ((π₯π·π₯) = 0 β§ βπ¦ β π βπ§ β π (π₯π·π¦) β€ ((π§π·π₯) +π (π§π·π¦)))))) |
37 | 33, 36 | bitrd 188 |
1
β’ (π β π β (π· β (PsMetβπ) β (π·:(π Γ π)βΆβ* β§
βπ₯ β π ((π₯π·π₯) = 0 β§ βπ¦ β π βπ§ β π (π₯π·π¦) β€ ((π§π·π₯) +π (π§π·π¦)))))) |