ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ispsmet GIF version

Theorem ispsmet 13490
Description: Express the predicate "𝐷 is a pseudometric". (Contributed by Thierry Arnoux, 7-Feb-2018.)
Assertion
Ref Expression
ispsmet (𝑋𝑉 → (𝐷 ∈ (PsMet‘𝑋) ↔ (𝐷:(𝑋 × 𝑋)⟶ℝ* ∧ ∀𝑥𝑋 ((𝑥𝐷𝑥) = 0 ∧ ∀𝑦𝑋𝑧𝑋 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦))))))
Distinct variable groups:   𝑥,𝑦,𝑧,𝑋   𝑥,𝐷,𝑦,𝑧
Allowed substitution hints:   𝑉(𝑥,𝑦,𝑧)

Proof of Theorem ispsmet
Dummy variables 𝑢 𝑑 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-psmet 13154 . . . . 5 PsMet = (𝑢 ∈ V ↦ {𝑑 ∈ (ℝ*𝑚 (𝑢 × 𝑢)) ∣ ∀𝑥𝑢 ((𝑥𝑑𝑥) = 0 ∧ ∀𝑦𝑢𝑧𝑢 (𝑥𝑑𝑦) ≤ ((𝑧𝑑𝑥) +𝑒 (𝑧𝑑𝑦)))})
2 id 19 . . . . . . . 8 (𝑢 = 𝑋𝑢 = 𝑋)
32sqxpeqd 4649 . . . . . . 7 (𝑢 = 𝑋 → (𝑢 × 𝑢) = (𝑋 × 𝑋))
43oveq2d 5885 . . . . . 6 (𝑢 = 𝑋 → (ℝ*𝑚 (𝑢 × 𝑢)) = (ℝ*𝑚 (𝑋 × 𝑋)))
5 raleq 2672 . . . . . . . . 9 (𝑢 = 𝑋 → (∀𝑧𝑢 (𝑥𝑑𝑦) ≤ ((𝑧𝑑𝑥) +𝑒 (𝑧𝑑𝑦)) ↔ ∀𝑧𝑋 (𝑥𝑑𝑦) ≤ ((𝑧𝑑𝑥) +𝑒 (𝑧𝑑𝑦))))
65raleqbi1dv 2680 . . . . . . . 8 (𝑢 = 𝑋 → (∀𝑦𝑢𝑧𝑢 (𝑥𝑑𝑦) ≤ ((𝑧𝑑𝑥) +𝑒 (𝑧𝑑𝑦)) ↔ ∀𝑦𝑋𝑧𝑋 (𝑥𝑑𝑦) ≤ ((𝑧𝑑𝑥) +𝑒 (𝑧𝑑𝑦))))
76anbi2d 464 . . . . . . 7 (𝑢 = 𝑋 → (((𝑥𝑑𝑥) = 0 ∧ ∀𝑦𝑢𝑧𝑢 (𝑥𝑑𝑦) ≤ ((𝑧𝑑𝑥) +𝑒 (𝑧𝑑𝑦))) ↔ ((𝑥𝑑𝑥) = 0 ∧ ∀𝑦𝑋𝑧𝑋 (𝑥𝑑𝑦) ≤ ((𝑧𝑑𝑥) +𝑒 (𝑧𝑑𝑦)))))
87raleqbi1dv 2680 . . . . . 6 (𝑢 = 𝑋 → (∀𝑥𝑢 ((𝑥𝑑𝑥) = 0 ∧ ∀𝑦𝑢𝑧𝑢 (𝑥𝑑𝑦) ≤ ((𝑧𝑑𝑥) +𝑒 (𝑧𝑑𝑦))) ↔ ∀𝑥𝑋 ((𝑥𝑑𝑥) = 0 ∧ ∀𝑦𝑋𝑧𝑋 (𝑥𝑑𝑦) ≤ ((𝑧𝑑𝑥) +𝑒 (𝑧𝑑𝑦)))))
94, 8rabeqbidv 2732 . . . . 5 (𝑢 = 𝑋 → {𝑑 ∈ (ℝ*𝑚 (𝑢 × 𝑢)) ∣ ∀𝑥𝑢 ((𝑥𝑑𝑥) = 0 ∧ ∀𝑦𝑢𝑧𝑢 (𝑥𝑑𝑦) ≤ ((𝑧𝑑𝑥) +𝑒 (𝑧𝑑𝑦)))} = {𝑑 ∈ (ℝ*𝑚 (𝑋 × 𝑋)) ∣ ∀𝑥𝑋 ((𝑥𝑑𝑥) = 0 ∧ ∀𝑦𝑋𝑧𝑋 (𝑥𝑑𝑦) ≤ ((𝑧𝑑𝑥) +𝑒 (𝑧𝑑𝑦)))})
10 elex 2748 . . . . 5 (𝑋𝑉𝑋 ∈ V)
11 xrex 9843 . . . . . . . 8 * ∈ V
12 sqxpexg 4739 . . . . . . . 8 (𝑋𝑉 → (𝑋 × 𝑋) ∈ V)
13 mapvalg 6652 . . . . . . . 8 ((ℝ* ∈ V ∧ (𝑋 × 𝑋) ∈ V) → (ℝ*𝑚 (𝑋 × 𝑋)) = {𝑓𝑓:(𝑋 × 𝑋)⟶ℝ*})
1411, 12, 13sylancr 414 . . . . . . 7 (𝑋𝑉 → (ℝ*𝑚 (𝑋 × 𝑋)) = {𝑓𝑓:(𝑋 × 𝑋)⟶ℝ*})
15 mapex 6648 . . . . . . . 8 (((𝑋 × 𝑋) ∈ V ∧ ℝ* ∈ V) → {𝑓𝑓:(𝑋 × 𝑋)⟶ℝ*} ∈ V)
1612, 11, 15sylancl 413 . . . . . . 7 (𝑋𝑉 → {𝑓𝑓:(𝑋 × 𝑋)⟶ℝ*} ∈ V)
1714, 16eqeltrd 2254 . . . . . 6 (𝑋𝑉 → (ℝ*𝑚 (𝑋 × 𝑋)) ∈ V)
18 rabexg 4143 . . . . . 6 ((ℝ*𝑚 (𝑋 × 𝑋)) ∈ V → {𝑑 ∈ (ℝ*𝑚 (𝑋 × 𝑋)) ∣ ∀𝑥𝑋 ((𝑥𝑑𝑥) = 0 ∧ ∀𝑦𝑋𝑧𝑋 (𝑥𝑑𝑦) ≤ ((𝑧𝑑𝑥) +𝑒 (𝑧𝑑𝑦)))} ∈ V)
1917, 18syl 14 . . . . 5 (𝑋𝑉 → {𝑑 ∈ (ℝ*𝑚 (𝑋 × 𝑋)) ∣ ∀𝑥𝑋 ((𝑥𝑑𝑥) = 0 ∧ ∀𝑦𝑋𝑧𝑋 (𝑥𝑑𝑦) ≤ ((𝑧𝑑𝑥) +𝑒 (𝑧𝑑𝑦)))} ∈ V)
201, 9, 10, 19fvmptd3 5605 . . . 4 (𝑋𝑉 → (PsMet‘𝑋) = {𝑑 ∈ (ℝ*𝑚 (𝑋 × 𝑋)) ∣ ∀𝑥𝑋 ((𝑥𝑑𝑥) = 0 ∧ ∀𝑦𝑋𝑧𝑋 (𝑥𝑑𝑦) ≤ ((𝑧𝑑𝑥) +𝑒 (𝑧𝑑𝑦)))})
2120eleq2d 2247 . . 3 (𝑋𝑉 → (𝐷 ∈ (PsMet‘𝑋) ↔ 𝐷 ∈ {𝑑 ∈ (ℝ*𝑚 (𝑋 × 𝑋)) ∣ ∀𝑥𝑋 ((𝑥𝑑𝑥) = 0 ∧ ∀𝑦𝑋𝑧𝑋 (𝑥𝑑𝑦) ≤ ((𝑧𝑑𝑥) +𝑒 (𝑧𝑑𝑦)))}))
22 oveq 5875 . . . . . . 7 (𝑑 = 𝐷 → (𝑥𝑑𝑥) = (𝑥𝐷𝑥))
2322eqeq1d 2186 . . . . . 6 (𝑑 = 𝐷 → ((𝑥𝑑𝑥) = 0 ↔ (𝑥𝐷𝑥) = 0))
24 oveq 5875 . . . . . . . 8 (𝑑 = 𝐷 → (𝑥𝑑𝑦) = (𝑥𝐷𝑦))
25 oveq 5875 . . . . . . . . 9 (𝑑 = 𝐷 → (𝑧𝑑𝑥) = (𝑧𝐷𝑥))
26 oveq 5875 . . . . . . . . 9 (𝑑 = 𝐷 → (𝑧𝑑𝑦) = (𝑧𝐷𝑦))
2725, 26oveq12d 5887 . . . . . . . 8 (𝑑 = 𝐷 → ((𝑧𝑑𝑥) +𝑒 (𝑧𝑑𝑦)) = ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦)))
2824, 27breq12d 4013 . . . . . . 7 (𝑑 = 𝐷 → ((𝑥𝑑𝑦) ≤ ((𝑧𝑑𝑥) +𝑒 (𝑧𝑑𝑦)) ↔ (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦))))
29282ralbidv 2501 . . . . . 6 (𝑑 = 𝐷 → (∀𝑦𝑋𝑧𝑋 (𝑥𝑑𝑦) ≤ ((𝑧𝑑𝑥) +𝑒 (𝑧𝑑𝑦)) ↔ ∀𝑦𝑋𝑧𝑋 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦))))
3023, 29anbi12d 473 . . . . 5 (𝑑 = 𝐷 → (((𝑥𝑑𝑥) = 0 ∧ ∀𝑦𝑋𝑧𝑋 (𝑥𝑑𝑦) ≤ ((𝑧𝑑𝑥) +𝑒 (𝑧𝑑𝑦))) ↔ ((𝑥𝐷𝑥) = 0 ∧ ∀𝑦𝑋𝑧𝑋 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦)))))
3130ralbidv 2477 . . . 4 (𝑑 = 𝐷 → (∀𝑥𝑋 ((𝑥𝑑𝑥) = 0 ∧ ∀𝑦𝑋𝑧𝑋 (𝑥𝑑𝑦) ≤ ((𝑧𝑑𝑥) +𝑒 (𝑧𝑑𝑦))) ↔ ∀𝑥𝑋 ((𝑥𝐷𝑥) = 0 ∧ ∀𝑦𝑋𝑧𝑋 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦)))))
3231elrab 2893 . . 3 (𝐷 ∈ {𝑑 ∈ (ℝ*𝑚 (𝑋 × 𝑋)) ∣ ∀𝑥𝑋 ((𝑥𝑑𝑥) = 0 ∧ ∀𝑦𝑋𝑧𝑋 (𝑥𝑑𝑦) ≤ ((𝑧𝑑𝑥) +𝑒 (𝑧𝑑𝑦)))} ↔ (𝐷 ∈ (ℝ*𝑚 (𝑋 × 𝑋)) ∧ ∀𝑥𝑋 ((𝑥𝐷𝑥) = 0 ∧ ∀𝑦𝑋𝑧𝑋 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦)))))
3321, 32bitrdi 196 . 2 (𝑋𝑉 → (𝐷 ∈ (PsMet‘𝑋) ↔ (𝐷 ∈ (ℝ*𝑚 (𝑋 × 𝑋)) ∧ ∀𝑥𝑋 ((𝑥𝐷𝑥) = 0 ∧ ∀𝑦𝑋𝑧𝑋 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦))))))
34 elmapg 6655 . . . 4 ((ℝ* ∈ V ∧ (𝑋 × 𝑋) ∈ V) → (𝐷 ∈ (ℝ*𝑚 (𝑋 × 𝑋)) ↔ 𝐷:(𝑋 × 𝑋)⟶ℝ*))
3511, 12, 34sylancr 414 . . 3 (𝑋𝑉 → (𝐷 ∈ (ℝ*𝑚 (𝑋 × 𝑋)) ↔ 𝐷:(𝑋 × 𝑋)⟶ℝ*))
3635anbi1d 465 . 2 (𝑋𝑉 → ((𝐷 ∈ (ℝ*𝑚 (𝑋 × 𝑋)) ∧ ∀𝑥𝑋 ((𝑥𝐷𝑥) = 0 ∧ ∀𝑦𝑋𝑧𝑋 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦)))) ↔ (𝐷:(𝑋 × 𝑋)⟶ℝ* ∧ ∀𝑥𝑋 ((𝑥𝐷𝑥) = 0 ∧ ∀𝑦𝑋𝑧𝑋 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦))))))
3733, 36bitrd 188 1 (𝑋𝑉 → (𝐷 ∈ (PsMet‘𝑋) ↔ (𝐷:(𝑋 × 𝑋)⟶ℝ* ∧ ∀𝑥𝑋 ((𝑥𝐷𝑥) = 0 ∧ ∀𝑦𝑋𝑧𝑋 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦))))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1353  wcel 2148  {cab 2163  wral 2455  {crab 2459  Vcvv 2737   class class class wbr 4000   × cxp 4621  wf 5208  cfv 5212  (class class class)co 5869  𝑚 cmap 6642  0cc0 7802  *cxr 7981  cle 7983   +𝑒 cxad 9757  PsMetcpsmet 13146
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4118  ax-pow 4171  ax-pr 4206  ax-un 4430  ax-setind 4533  ax-cnex 7893  ax-resscn 7894
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-uni 3808  df-br 4001  df-opab 4062  df-mpt 4063  df-id 4290  df-xp 4629  df-rel 4630  df-cnv 4631  df-co 4632  df-dm 4633  df-rn 4634  df-iota 5174  df-fun 5214  df-fn 5215  df-f 5216  df-fv 5220  df-ov 5872  df-oprab 5873  df-mpo 5874  df-map 6644  df-pnf 7984  df-mnf 7985  df-xr 7986  df-psmet 13154
This theorem is referenced by:  psmetdmdm  13491  psmetf  13492  psmet0  13494  psmettri2  13495  psmetres2  13500  xmetpsmet  13536
  Copyright terms: Public domain W3C validator