ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ispsmet GIF version

Theorem ispsmet 12973
Description: Express the predicate "𝐷 is a pseudometric". (Contributed by Thierry Arnoux, 7-Feb-2018.)
Assertion
Ref Expression
ispsmet (𝑋𝑉 → (𝐷 ∈ (PsMet‘𝑋) ↔ (𝐷:(𝑋 × 𝑋)⟶ℝ* ∧ ∀𝑥𝑋 ((𝑥𝐷𝑥) = 0 ∧ ∀𝑦𝑋𝑧𝑋 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦))))))
Distinct variable groups:   𝑥,𝑦,𝑧,𝑋   𝑥,𝐷,𝑦,𝑧
Allowed substitution hints:   𝑉(𝑥,𝑦,𝑧)

Proof of Theorem ispsmet
Dummy variables 𝑢 𝑑 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-psmet 12637 . . . . 5 PsMet = (𝑢 ∈ V ↦ {𝑑 ∈ (ℝ*𝑚 (𝑢 × 𝑢)) ∣ ∀𝑥𝑢 ((𝑥𝑑𝑥) = 0 ∧ ∀𝑦𝑢𝑧𝑢 (𝑥𝑑𝑦) ≤ ((𝑧𝑑𝑥) +𝑒 (𝑧𝑑𝑦)))})
2 id 19 . . . . . . . 8 (𝑢 = 𝑋𝑢 = 𝑋)
32sqxpeqd 4630 . . . . . . 7 (𝑢 = 𝑋 → (𝑢 × 𝑢) = (𝑋 × 𝑋))
43oveq2d 5858 . . . . . 6 (𝑢 = 𝑋 → (ℝ*𝑚 (𝑢 × 𝑢)) = (ℝ*𝑚 (𝑋 × 𝑋)))
5 raleq 2661 . . . . . . . . 9 (𝑢 = 𝑋 → (∀𝑧𝑢 (𝑥𝑑𝑦) ≤ ((𝑧𝑑𝑥) +𝑒 (𝑧𝑑𝑦)) ↔ ∀𝑧𝑋 (𝑥𝑑𝑦) ≤ ((𝑧𝑑𝑥) +𝑒 (𝑧𝑑𝑦))))
65raleqbi1dv 2669 . . . . . . . 8 (𝑢 = 𝑋 → (∀𝑦𝑢𝑧𝑢 (𝑥𝑑𝑦) ≤ ((𝑧𝑑𝑥) +𝑒 (𝑧𝑑𝑦)) ↔ ∀𝑦𝑋𝑧𝑋 (𝑥𝑑𝑦) ≤ ((𝑧𝑑𝑥) +𝑒 (𝑧𝑑𝑦))))
76anbi2d 460 . . . . . . 7 (𝑢 = 𝑋 → (((𝑥𝑑𝑥) = 0 ∧ ∀𝑦𝑢𝑧𝑢 (𝑥𝑑𝑦) ≤ ((𝑧𝑑𝑥) +𝑒 (𝑧𝑑𝑦))) ↔ ((𝑥𝑑𝑥) = 0 ∧ ∀𝑦𝑋𝑧𝑋 (𝑥𝑑𝑦) ≤ ((𝑧𝑑𝑥) +𝑒 (𝑧𝑑𝑦)))))
87raleqbi1dv 2669 . . . . . 6 (𝑢 = 𝑋 → (∀𝑥𝑢 ((𝑥𝑑𝑥) = 0 ∧ ∀𝑦𝑢𝑧𝑢 (𝑥𝑑𝑦) ≤ ((𝑧𝑑𝑥) +𝑒 (𝑧𝑑𝑦))) ↔ ∀𝑥𝑋 ((𝑥𝑑𝑥) = 0 ∧ ∀𝑦𝑋𝑧𝑋 (𝑥𝑑𝑦) ≤ ((𝑧𝑑𝑥) +𝑒 (𝑧𝑑𝑦)))))
94, 8rabeqbidv 2721 . . . . 5 (𝑢 = 𝑋 → {𝑑 ∈ (ℝ*𝑚 (𝑢 × 𝑢)) ∣ ∀𝑥𝑢 ((𝑥𝑑𝑥) = 0 ∧ ∀𝑦𝑢𝑧𝑢 (𝑥𝑑𝑦) ≤ ((𝑧𝑑𝑥) +𝑒 (𝑧𝑑𝑦)))} = {𝑑 ∈ (ℝ*𝑚 (𝑋 × 𝑋)) ∣ ∀𝑥𝑋 ((𝑥𝑑𝑥) = 0 ∧ ∀𝑦𝑋𝑧𝑋 (𝑥𝑑𝑦) ≤ ((𝑧𝑑𝑥) +𝑒 (𝑧𝑑𝑦)))})
10 elex 2737 . . . . 5 (𝑋𝑉𝑋 ∈ V)
11 xrex 9792 . . . . . . . 8 * ∈ V
12 sqxpexg 4720 . . . . . . . 8 (𝑋𝑉 → (𝑋 × 𝑋) ∈ V)
13 mapvalg 6624 . . . . . . . 8 ((ℝ* ∈ V ∧ (𝑋 × 𝑋) ∈ V) → (ℝ*𝑚 (𝑋 × 𝑋)) = {𝑓𝑓:(𝑋 × 𝑋)⟶ℝ*})
1411, 12, 13sylancr 411 . . . . . . 7 (𝑋𝑉 → (ℝ*𝑚 (𝑋 × 𝑋)) = {𝑓𝑓:(𝑋 × 𝑋)⟶ℝ*})
15 mapex 6620 . . . . . . . 8 (((𝑋 × 𝑋) ∈ V ∧ ℝ* ∈ V) → {𝑓𝑓:(𝑋 × 𝑋)⟶ℝ*} ∈ V)
1612, 11, 15sylancl 410 . . . . . . 7 (𝑋𝑉 → {𝑓𝑓:(𝑋 × 𝑋)⟶ℝ*} ∈ V)
1714, 16eqeltrd 2243 . . . . . 6 (𝑋𝑉 → (ℝ*𝑚 (𝑋 × 𝑋)) ∈ V)
18 rabexg 4125 . . . . . 6 ((ℝ*𝑚 (𝑋 × 𝑋)) ∈ V → {𝑑 ∈ (ℝ*𝑚 (𝑋 × 𝑋)) ∣ ∀𝑥𝑋 ((𝑥𝑑𝑥) = 0 ∧ ∀𝑦𝑋𝑧𝑋 (𝑥𝑑𝑦) ≤ ((𝑧𝑑𝑥) +𝑒 (𝑧𝑑𝑦)))} ∈ V)
1917, 18syl 14 . . . . 5 (𝑋𝑉 → {𝑑 ∈ (ℝ*𝑚 (𝑋 × 𝑋)) ∣ ∀𝑥𝑋 ((𝑥𝑑𝑥) = 0 ∧ ∀𝑦𝑋𝑧𝑋 (𝑥𝑑𝑦) ≤ ((𝑧𝑑𝑥) +𝑒 (𝑧𝑑𝑦)))} ∈ V)
201, 9, 10, 19fvmptd3 5579 . . . 4 (𝑋𝑉 → (PsMet‘𝑋) = {𝑑 ∈ (ℝ*𝑚 (𝑋 × 𝑋)) ∣ ∀𝑥𝑋 ((𝑥𝑑𝑥) = 0 ∧ ∀𝑦𝑋𝑧𝑋 (𝑥𝑑𝑦) ≤ ((𝑧𝑑𝑥) +𝑒 (𝑧𝑑𝑦)))})
2120eleq2d 2236 . . 3 (𝑋𝑉 → (𝐷 ∈ (PsMet‘𝑋) ↔ 𝐷 ∈ {𝑑 ∈ (ℝ*𝑚 (𝑋 × 𝑋)) ∣ ∀𝑥𝑋 ((𝑥𝑑𝑥) = 0 ∧ ∀𝑦𝑋𝑧𝑋 (𝑥𝑑𝑦) ≤ ((𝑧𝑑𝑥) +𝑒 (𝑧𝑑𝑦)))}))
22 oveq 5848 . . . . . . 7 (𝑑 = 𝐷 → (𝑥𝑑𝑥) = (𝑥𝐷𝑥))
2322eqeq1d 2174 . . . . . 6 (𝑑 = 𝐷 → ((𝑥𝑑𝑥) = 0 ↔ (𝑥𝐷𝑥) = 0))
24 oveq 5848 . . . . . . . 8 (𝑑 = 𝐷 → (𝑥𝑑𝑦) = (𝑥𝐷𝑦))
25 oveq 5848 . . . . . . . . 9 (𝑑 = 𝐷 → (𝑧𝑑𝑥) = (𝑧𝐷𝑥))
26 oveq 5848 . . . . . . . . 9 (𝑑 = 𝐷 → (𝑧𝑑𝑦) = (𝑧𝐷𝑦))
2725, 26oveq12d 5860 . . . . . . . 8 (𝑑 = 𝐷 → ((𝑧𝑑𝑥) +𝑒 (𝑧𝑑𝑦)) = ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦)))
2824, 27breq12d 3995 . . . . . . 7 (𝑑 = 𝐷 → ((𝑥𝑑𝑦) ≤ ((𝑧𝑑𝑥) +𝑒 (𝑧𝑑𝑦)) ↔ (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦))))
29282ralbidv 2490 . . . . . 6 (𝑑 = 𝐷 → (∀𝑦𝑋𝑧𝑋 (𝑥𝑑𝑦) ≤ ((𝑧𝑑𝑥) +𝑒 (𝑧𝑑𝑦)) ↔ ∀𝑦𝑋𝑧𝑋 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦))))
3023, 29anbi12d 465 . . . . 5 (𝑑 = 𝐷 → (((𝑥𝑑𝑥) = 0 ∧ ∀𝑦𝑋𝑧𝑋 (𝑥𝑑𝑦) ≤ ((𝑧𝑑𝑥) +𝑒 (𝑧𝑑𝑦))) ↔ ((𝑥𝐷𝑥) = 0 ∧ ∀𝑦𝑋𝑧𝑋 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦)))))
3130ralbidv 2466 . . . 4 (𝑑 = 𝐷 → (∀𝑥𝑋 ((𝑥𝑑𝑥) = 0 ∧ ∀𝑦𝑋𝑧𝑋 (𝑥𝑑𝑦) ≤ ((𝑧𝑑𝑥) +𝑒 (𝑧𝑑𝑦))) ↔ ∀𝑥𝑋 ((𝑥𝐷𝑥) = 0 ∧ ∀𝑦𝑋𝑧𝑋 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦)))))
3231elrab 2882 . . 3 (𝐷 ∈ {𝑑 ∈ (ℝ*𝑚 (𝑋 × 𝑋)) ∣ ∀𝑥𝑋 ((𝑥𝑑𝑥) = 0 ∧ ∀𝑦𝑋𝑧𝑋 (𝑥𝑑𝑦) ≤ ((𝑧𝑑𝑥) +𝑒 (𝑧𝑑𝑦)))} ↔ (𝐷 ∈ (ℝ*𝑚 (𝑋 × 𝑋)) ∧ ∀𝑥𝑋 ((𝑥𝐷𝑥) = 0 ∧ ∀𝑦𝑋𝑧𝑋 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦)))))
3321, 32bitrdi 195 . 2 (𝑋𝑉 → (𝐷 ∈ (PsMet‘𝑋) ↔ (𝐷 ∈ (ℝ*𝑚 (𝑋 × 𝑋)) ∧ ∀𝑥𝑋 ((𝑥𝐷𝑥) = 0 ∧ ∀𝑦𝑋𝑧𝑋 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦))))))
34 elmapg 6627 . . . 4 ((ℝ* ∈ V ∧ (𝑋 × 𝑋) ∈ V) → (𝐷 ∈ (ℝ*𝑚 (𝑋 × 𝑋)) ↔ 𝐷:(𝑋 × 𝑋)⟶ℝ*))
3511, 12, 34sylancr 411 . . 3 (𝑋𝑉 → (𝐷 ∈ (ℝ*𝑚 (𝑋 × 𝑋)) ↔ 𝐷:(𝑋 × 𝑋)⟶ℝ*))
3635anbi1d 461 . 2 (𝑋𝑉 → ((𝐷 ∈ (ℝ*𝑚 (𝑋 × 𝑋)) ∧ ∀𝑥𝑋 ((𝑥𝐷𝑥) = 0 ∧ ∀𝑦𝑋𝑧𝑋 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦)))) ↔ (𝐷:(𝑋 × 𝑋)⟶ℝ* ∧ ∀𝑥𝑋 ((𝑥𝐷𝑥) = 0 ∧ ∀𝑦𝑋𝑧𝑋 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦))))))
3733, 36bitrd 187 1 (𝑋𝑉 → (𝐷 ∈ (PsMet‘𝑋) ↔ (𝐷:(𝑋 × 𝑋)⟶ℝ* ∧ ∀𝑥𝑋 ((𝑥𝐷𝑥) = 0 ∧ ∀𝑦𝑋𝑧𝑋 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦))))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1343  wcel 2136  {cab 2151  wral 2444  {crab 2448  Vcvv 2726   class class class wbr 3982   × cxp 4602  wf 5184  cfv 5188  (class class class)co 5842  𝑚 cmap 6614  0cc0 7753  *cxr 7932  cle 7934   +𝑒 cxad 9706  PsMetcpsmet 12629
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-cnex 7844  ax-resscn 7845
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-ral 2449  df-rex 2450  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-fv 5196  df-ov 5845  df-oprab 5846  df-mpo 5847  df-map 6616  df-pnf 7935  df-mnf 7936  df-xr 7937  df-psmet 12637
This theorem is referenced by:  psmetdmdm  12974  psmetf  12975  psmet0  12977  psmettri2  12978  psmetres2  12983  xmetpsmet  13019
  Copyright terms: Public domain W3C validator