Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  ispsmet GIF version

Theorem ispsmet 12251
 Description: Express the predicate "𝐷 is a pseudometric." (Contributed by Thierry Arnoux, 7-Feb-2018.)
Assertion
Ref Expression
ispsmet (𝑋𝑉 → (𝐷 ∈ (PsMet‘𝑋) ↔ (𝐷:(𝑋 × 𝑋)⟶ℝ* ∧ ∀𝑥𝑋 ((𝑥𝐷𝑥) = 0 ∧ ∀𝑦𝑋𝑧𝑋 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦))))))
Distinct variable groups:   𝑥,𝑦,𝑧,𝑋   𝑥,𝐷,𝑦,𝑧
Allowed substitution hints:   𝑉(𝑥,𝑦,𝑧)

Proof of Theorem ispsmet
Dummy variables 𝑢 𝑑 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-psmet 11938 . . . . 5 PsMet = (𝑢 ∈ V ↦ {𝑑 ∈ (ℝ*𝑚 (𝑢 × 𝑢)) ∣ ∀𝑥𝑢 ((𝑥𝑑𝑥) = 0 ∧ ∀𝑦𝑢𝑧𝑢 (𝑥𝑑𝑦) ≤ ((𝑧𝑑𝑥) +𝑒 (𝑧𝑑𝑦)))})
2 id 19 . . . . . . . 8 (𝑢 = 𝑋𝑢 = 𝑋)
32sqxpeqd 4503 . . . . . . 7 (𝑢 = 𝑋 → (𝑢 × 𝑢) = (𝑋 × 𝑋))
43oveq2d 5722 . . . . . 6 (𝑢 = 𝑋 → (ℝ*𝑚 (𝑢 × 𝑢)) = (ℝ*𝑚 (𝑋 × 𝑋)))
5 raleq 2584 . . . . . . . . 9 (𝑢 = 𝑋 → (∀𝑧𝑢 (𝑥𝑑𝑦) ≤ ((𝑧𝑑𝑥) +𝑒 (𝑧𝑑𝑦)) ↔ ∀𝑧𝑋 (𝑥𝑑𝑦) ≤ ((𝑧𝑑𝑥) +𝑒 (𝑧𝑑𝑦))))
65raleqbi1dv 2592 . . . . . . . 8 (𝑢 = 𝑋 → (∀𝑦𝑢𝑧𝑢 (𝑥𝑑𝑦) ≤ ((𝑧𝑑𝑥) +𝑒 (𝑧𝑑𝑦)) ↔ ∀𝑦𝑋𝑧𝑋 (𝑥𝑑𝑦) ≤ ((𝑧𝑑𝑥) +𝑒 (𝑧𝑑𝑦))))
76anbi2d 455 . . . . . . 7 (𝑢 = 𝑋 → (((𝑥𝑑𝑥) = 0 ∧ ∀𝑦𝑢𝑧𝑢 (𝑥𝑑𝑦) ≤ ((𝑧𝑑𝑥) +𝑒 (𝑧𝑑𝑦))) ↔ ((𝑥𝑑𝑥) = 0 ∧ ∀𝑦𝑋𝑧𝑋 (𝑥𝑑𝑦) ≤ ((𝑧𝑑𝑥) +𝑒 (𝑧𝑑𝑦)))))
87raleqbi1dv 2592 . . . . . 6 (𝑢 = 𝑋 → (∀𝑥𝑢 ((𝑥𝑑𝑥) = 0 ∧ ∀𝑦𝑢𝑧𝑢 (𝑥𝑑𝑦) ≤ ((𝑧𝑑𝑥) +𝑒 (𝑧𝑑𝑦))) ↔ ∀𝑥𝑋 ((𝑥𝑑𝑥) = 0 ∧ ∀𝑦𝑋𝑧𝑋 (𝑥𝑑𝑦) ≤ ((𝑧𝑑𝑥) +𝑒 (𝑧𝑑𝑦)))))
94, 8rabeqbidv 2636 . . . . 5 (𝑢 = 𝑋 → {𝑑 ∈ (ℝ*𝑚 (𝑢 × 𝑢)) ∣ ∀𝑥𝑢 ((𝑥𝑑𝑥) = 0 ∧ ∀𝑦𝑢𝑧𝑢 (𝑥𝑑𝑦) ≤ ((𝑧𝑑𝑥) +𝑒 (𝑧𝑑𝑦)))} = {𝑑 ∈ (ℝ*𝑚 (𝑋 × 𝑋)) ∣ ∀𝑥𝑋 ((𝑥𝑑𝑥) = 0 ∧ ∀𝑦𝑋𝑧𝑋 (𝑥𝑑𝑦) ≤ ((𝑧𝑑𝑥) +𝑒 (𝑧𝑑𝑦)))})
10 elex 2652 . . . . 5 (𝑋𝑉𝑋 ∈ V)
11 xrex 9480 . . . . . . . 8 * ∈ V
12 sqxpexg 4593 . . . . . . . 8 (𝑋𝑉 → (𝑋 × 𝑋) ∈ V)
13 mapvalg 6482 . . . . . . . 8 ((ℝ* ∈ V ∧ (𝑋 × 𝑋) ∈ V) → (ℝ*𝑚 (𝑋 × 𝑋)) = {𝑓𝑓:(𝑋 × 𝑋)⟶ℝ*})
1411, 12, 13sylancr 408 . . . . . . 7 (𝑋𝑉 → (ℝ*𝑚 (𝑋 × 𝑋)) = {𝑓𝑓:(𝑋 × 𝑋)⟶ℝ*})
15 mapex 6478 . . . . . . . 8 (((𝑋 × 𝑋) ∈ V ∧ ℝ* ∈ V) → {𝑓𝑓:(𝑋 × 𝑋)⟶ℝ*} ∈ V)
1612, 11, 15sylancl 407 . . . . . . 7 (𝑋𝑉 → {𝑓𝑓:(𝑋 × 𝑋)⟶ℝ*} ∈ V)
1714, 16eqeltrd 2176 . . . . . 6 (𝑋𝑉 → (ℝ*𝑚 (𝑋 × 𝑋)) ∈ V)
18 rabexg 4011 . . . . . 6 ((ℝ*𝑚 (𝑋 × 𝑋)) ∈ V → {𝑑 ∈ (ℝ*𝑚 (𝑋 × 𝑋)) ∣ ∀𝑥𝑋 ((𝑥𝑑𝑥) = 0 ∧ ∀𝑦𝑋𝑧𝑋 (𝑥𝑑𝑦) ≤ ((𝑧𝑑𝑥) +𝑒 (𝑧𝑑𝑦)))} ∈ V)
1917, 18syl 14 . . . . 5 (𝑋𝑉 → {𝑑 ∈ (ℝ*𝑚 (𝑋 × 𝑋)) ∣ ∀𝑥𝑋 ((𝑥𝑑𝑥) = 0 ∧ ∀𝑦𝑋𝑧𝑋 (𝑥𝑑𝑦) ≤ ((𝑧𝑑𝑥) +𝑒 (𝑧𝑑𝑦)))} ∈ V)
201, 9, 10, 19fvmptd3 5446 . . . 4 (𝑋𝑉 → (PsMet‘𝑋) = {𝑑 ∈ (ℝ*𝑚 (𝑋 × 𝑋)) ∣ ∀𝑥𝑋 ((𝑥𝑑𝑥) = 0 ∧ ∀𝑦𝑋𝑧𝑋 (𝑥𝑑𝑦) ≤ ((𝑧𝑑𝑥) +𝑒 (𝑧𝑑𝑦)))})
2120eleq2d 2169 . . 3 (𝑋𝑉 → (𝐷 ∈ (PsMet‘𝑋) ↔ 𝐷 ∈ {𝑑 ∈ (ℝ*𝑚 (𝑋 × 𝑋)) ∣ ∀𝑥𝑋 ((𝑥𝑑𝑥) = 0 ∧ ∀𝑦𝑋𝑧𝑋 (𝑥𝑑𝑦) ≤ ((𝑧𝑑𝑥) +𝑒 (𝑧𝑑𝑦)))}))
22 oveq 5712 . . . . . . 7 (𝑑 = 𝐷 → (𝑥𝑑𝑥) = (𝑥𝐷𝑥))
2322eqeq1d 2108 . . . . . 6 (𝑑 = 𝐷 → ((𝑥𝑑𝑥) = 0 ↔ (𝑥𝐷𝑥) = 0))
24 oveq 5712 . . . . . . . 8 (𝑑 = 𝐷 → (𝑥𝑑𝑦) = (𝑥𝐷𝑦))
25 oveq 5712 . . . . . . . . 9 (𝑑 = 𝐷 → (𝑧𝑑𝑥) = (𝑧𝐷𝑥))
26 oveq 5712 . . . . . . . . 9 (𝑑 = 𝐷 → (𝑧𝑑𝑦) = (𝑧𝐷𝑦))
2725, 26oveq12d 5724 . . . . . . . 8 (𝑑 = 𝐷 → ((𝑧𝑑𝑥) +𝑒 (𝑧𝑑𝑦)) = ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦)))
2824, 27breq12d 3888 . . . . . . 7 (𝑑 = 𝐷 → ((𝑥𝑑𝑦) ≤ ((𝑧𝑑𝑥) +𝑒 (𝑧𝑑𝑦)) ↔ (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦))))
29282ralbidv 2418 . . . . . 6 (𝑑 = 𝐷 → (∀𝑦𝑋𝑧𝑋 (𝑥𝑑𝑦) ≤ ((𝑧𝑑𝑥) +𝑒 (𝑧𝑑𝑦)) ↔ ∀𝑦𝑋𝑧𝑋 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦))))
3023, 29anbi12d 460 . . . . 5 (𝑑 = 𝐷 → (((𝑥𝑑𝑥) = 0 ∧ ∀𝑦𝑋𝑧𝑋 (𝑥𝑑𝑦) ≤ ((𝑧𝑑𝑥) +𝑒 (𝑧𝑑𝑦))) ↔ ((𝑥𝐷𝑥) = 0 ∧ ∀𝑦𝑋𝑧𝑋 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦)))))
3130ralbidv 2396 . . . 4 (𝑑 = 𝐷 → (∀𝑥𝑋 ((𝑥𝑑𝑥) = 0 ∧ ∀𝑦𝑋𝑧𝑋 (𝑥𝑑𝑦) ≤ ((𝑧𝑑𝑥) +𝑒 (𝑧𝑑𝑦))) ↔ ∀𝑥𝑋 ((𝑥𝐷𝑥) = 0 ∧ ∀𝑦𝑋𝑧𝑋 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦)))))
3231elrab 2793 . . 3 (𝐷 ∈ {𝑑 ∈ (ℝ*𝑚 (𝑋 × 𝑋)) ∣ ∀𝑥𝑋 ((𝑥𝑑𝑥) = 0 ∧ ∀𝑦𝑋𝑧𝑋 (𝑥𝑑𝑦) ≤ ((𝑧𝑑𝑥) +𝑒 (𝑧𝑑𝑦)))} ↔ (𝐷 ∈ (ℝ*𝑚 (𝑋 × 𝑋)) ∧ ∀𝑥𝑋 ((𝑥𝐷𝑥) = 0 ∧ ∀𝑦𝑋𝑧𝑋 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦)))))
3321, 32syl6bb 195 . 2 (𝑋𝑉 → (𝐷 ∈ (PsMet‘𝑋) ↔ (𝐷 ∈ (ℝ*𝑚 (𝑋 × 𝑋)) ∧ ∀𝑥𝑋 ((𝑥𝐷𝑥) = 0 ∧ ∀𝑦𝑋𝑧𝑋 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦))))))
34 elmapg 6485 . . . 4 ((ℝ* ∈ V ∧ (𝑋 × 𝑋) ∈ V) → (𝐷 ∈ (ℝ*𝑚 (𝑋 × 𝑋)) ↔ 𝐷:(𝑋 × 𝑋)⟶ℝ*))
3511, 12, 34sylancr 408 . . 3 (𝑋𝑉 → (𝐷 ∈ (ℝ*𝑚 (𝑋 × 𝑋)) ↔ 𝐷:(𝑋 × 𝑋)⟶ℝ*))
3635anbi1d 456 . 2 (𝑋𝑉 → ((𝐷 ∈ (ℝ*𝑚 (𝑋 × 𝑋)) ∧ ∀𝑥𝑋 ((𝑥𝐷𝑥) = 0 ∧ ∀𝑦𝑋𝑧𝑋 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦)))) ↔ (𝐷:(𝑋 × 𝑋)⟶ℝ* ∧ ∀𝑥𝑋 ((𝑥𝐷𝑥) = 0 ∧ ∀𝑦𝑋𝑧𝑋 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦))))))
3733, 36bitrd 187 1 (𝑋𝑉 → (𝐷 ∈ (PsMet‘𝑋) ↔ (𝐷:(𝑋 × 𝑋)⟶ℝ* ∧ ∀𝑥𝑋 ((𝑥𝐷𝑥) = 0 ∧ ∀𝑦𝑋𝑧𝑋 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦))))))
 Colors of variables: wff set class Syntax hints:   → wi 4   ∧ wa 103   ↔ wb 104   = wceq 1299   ∈ wcel 1448  {cab 2086  ∀wral 2375  {crab 2379  Vcvv 2641   class class class wbr 3875   × cxp 4475  ⟶wf 5055  ‘cfv 5059  (class class class)co 5706   ↑𝑚 cmap 6472  0cc0 7500  ℝ*cxr 7671   ≤ cle 7673   +𝑒 cxad 9398  PsMetcpsmet 11930 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 584  ax-in2 585  ax-io 671  ax-5 1391  ax-7 1392  ax-gen 1393  ax-ie1 1437  ax-ie2 1438  ax-8 1450  ax-10 1451  ax-11 1452  ax-i12 1453  ax-bndl 1454  ax-4 1455  ax-13 1459  ax-14 1460  ax-17 1474  ax-i9 1478  ax-ial 1482  ax-i5r 1483  ax-ext 2082  ax-sep 3986  ax-pow 4038  ax-pr 4069  ax-un 4293  ax-setind 4390  ax-cnex 7586  ax-resscn 7587 This theorem depends on definitions:  df-bi 116  df-3an 932  df-tru 1302  df-fal 1305  df-nf 1405  df-sb 1704  df-eu 1963  df-mo 1964  df-clab 2087  df-cleq 2093  df-clel 2096  df-nfc 2229  df-ne 2268  df-ral 2380  df-rex 2381  df-rab 2384  df-v 2643  df-sbc 2863  df-csb 2956  df-dif 3023  df-un 3025  df-in 3027  df-ss 3034  df-pw 3459  df-sn 3480  df-pr 3481  df-op 3483  df-uni 3684  df-br 3876  df-opab 3930  df-mpt 3931  df-id 4153  df-xp 4483  df-rel 4484  df-cnv 4485  df-co 4486  df-dm 4487  df-rn 4488  df-iota 5024  df-fun 5061  df-fn 5062  df-f 5063  df-fv 5067  df-ov 5709  df-oprab 5710  df-mpo 5711  df-map 6474  df-pnf 7674  df-mnf 7675  df-xr 7676  df-psmet 11938 This theorem is referenced by:  psmetdmdm  12252  psmetf  12253  psmet0  12255  psmettri2  12256  psmetres2  12261  xmetpsmet  12297
 Copyright terms: Public domain W3C validator