Step | Hyp | Ref
| Expression |
1 | | df-psmet 12781 |
. . . . 5
⊢ PsMet =
(𝑢 ∈ V ↦ {𝑑 ∈ (ℝ*
↑𝑚 (𝑢 × 𝑢)) ∣ ∀𝑥 ∈ 𝑢 ((𝑥𝑑𝑥) = 0 ∧ ∀𝑦 ∈ 𝑢 ∀𝑧 ∈ 𝑢 (𝑥𝑑𝑦) ≤ ((𝑧𝑑𝑥) +𝑒 (𝑧𝑑𝑦)))}) |
2 | | id 19 |
. . . . . . . 8
⊢ (𝑢 = 𝑋 → 𝑢 = 𝑋) |
3 | 2 | sqxpeqd 4637 |
. . . . . . 7
⊢ (𝑢 = 𝑋 → (𝑢 × 𝑢) = (𝑋 × 𝑋)) |
4 | 3 | oveq2d 5869 |
. . . . . 6
⊢ (𝑢 = 𝑋 → (ℝ*
↑𝑚 (𝑢 × 𝑢)) = (ℝ*
↑𝑚 (𝑋 × 𝑋))) |
5 | | raleq 2665 |
. . . . . . . . 9
⊢ (𝑢 = 𝑋 → (∀𝑧 ∈ 𝑢 (𝑥𝑑𝑦) ≤ ((𝑧𝑑𝑥) +𝑒 (𝑧𝑑𝑦)) ↔ ∀𝑧 ∈ 𝑋 (𝑥𝑑𝑦) ≤ ((𝑧𝑑𝑥) +𝑒 (𝑧𝑑𝑦)))) |
6 | 5 | raleqbi1dv 2673 |
. . . . . . . 8
⊢ (𝑢 = 𝑋 → (∀𝑦 ∈ 𝑢 ∀𝑧 ∈ 𝑢 (𝑥𝑑𝑦) ≤ ((𝑧𝑑𝑥) +𝑒 (𝑧𝑑𝑦)) ↔ ∀𝑦 ∈ 𝑋 ∀𝑧 ∈ 𝑋 (𝑥𝑑𝑦) ≤ ((𝑧𝑑𝑥) +𝑒 (𝑧𝑑𝑦)))) |
7 | 6 | anbi2d 461 |
. . . . . . 7
⊢ (𝑢 = 𝑋 → (((𝑥𝑑𝑥) = 0 ∧ ∀𝑦 ∈ 𝑢 ∀𝑧 ∈ 𝑢 (𝑥𝑑𝑦) ≤ ((𝑧𝑑𝑥) +𝑒 (𝑧𝑑𝑦))) ↔ ((𝑥𝑑𝑥) = 0 ∧ ∀𝑦 ∈ 𝑋 ∀𝑧 ∈ 𝑋 (𝑥𝑑𝑦) ≤ ((𝑧𝑑𝑥) +𝑒 (𝑧𝑑𝑦))))) |
8 | 7 | raleqbi1dv 2673 |
. . . . . 6
⊢ (𝑢 = 𝑋 → (∀𝑥 ∈ 𝑢 ((𝑥𝑑𝑥) = 0 ∧ ∀𝑦 ∈ 𝑢 ∀𝑧 ∈ 𝑢 (𝑥𝑑𝑦) ≤ ((𝑧𝑑𝑥) +𝑒 (𝑧𝑑𝑦))) ↔ ∀𝑥 ∈ 𝑋 ((𝑥𝑑𝑥) = 0 ∧ ∀𝑦 ∈ 𝑋 ∀𝑧 ∈ 𝑋 (𝑥𝑑𝑦) ≤ ((𝑧𝑑𝑥) +𝑒 (𝑧𝑑𝑦))))) |
9 | 4, 8 | rabeqbidv 2725 |
. . . . 5
⊢ (𝑢 = 𝑋 → {𝑑 ∈ (ℝ*
↑𝑚 (𝑢 × 𝑢)) ∣ ∀𝑥 ∈ 𝑢 ((𝑥𝑑𝑥) = 0 ∧ ∀𝑦 ∈ 𝑢 ∀𝑧 ∈ 𝑢 (𝑥𝑑𝑦) ≤ ((𝑧𝑑𝑥) +𝑒 (𝑧𝑑𝑦)))} = {𝑑 ∈ (ℝ*
↑𝑚 (𝑋 × 𝑋)) ∣ ∀𝑥 ∈ 𝑋 ((𝑥𝑑𝑥) = 0 ∧ ∀𝑦 ∈ 𝑋 ∀𝑧 ∈ 𝑋 (𝑥𝑑𝑦) ≤ ((𝑧𝑑𝑥) +𝑒 (𝑧𝑑𝑦)))}) |
10 | | elex 2741 |
. . . . 5
⊢ (𝑋 ∈ 𝑉 → 𝑋 ∈ V) |
11 | | xrex 9813 |
. . . . . . . 8
⊢
ℝ* ∈ V |
12 | | sqxpexg 4727 |
. . . . . . . 8
⊢ (𝑋 ∈ 𝑉 → (𝑋 × 𝑋) ∈ V) |
13 | | mapvalg 6636 |
. . . . . . . 8
⊢
((ℝ* ∈ V ∧ (𝑋 × 𝑋) ∈ V) → (ℝ*
↑𝑚 (𝑋 × 𝑋)) = {𝑓 ∣ 𝑓:(𝑋 × 𝑋)⟶ℝ*}) |
14 | 11, 12, 13 | sylancr 412 |
. . . . . . 7
⊢ (𝑋 ∈ 𝑉 → (ℝ*
↑𝑚 (𝑋 × 𝑋)) = {𝑓 ∣ 𝑓:(𝑋 × 𝑋)⟶ℝ*}) |
15 | | mapex 6632 |
. . . . . . . 8
⊢ (((𝑋 × 𝑋) ∈ V ∧ ℝ* ∈
V) → {𝑓 ∣ 𝑓:(𝑋 × 𝑋)⟶ℝ*} ∈
V) |
16 | 12, 11, 15 | sylancl 411 |
. . . . . . 7
⊢ (𝑋 ∈ 𝑉 → {𝑓 ∣ 𝑓:(𝑋 × 𝑋)⟶ℝ*} ∈
V) |
17 | 14, 16 | eqeltrd 2247 |
. . . . . 6
⊢ (𝑋 ∈ 𝑉 → (ℝ*
↑𝑚 (𝑋 × 𝑋)) ∈ V) |
18 | | rabexg 4132 |
. . . . . 6
⊢
((ℝ* ↑𝑚 (𝑋 × 𝑋)) ∈ V → {𝑑 ∈ (ℝ*
↑𝑚 (𝑋 × 𝑋)) ∣ ∀𝑥 ∈ 𝑋 ((𝑥𝑑𝑥) = 0 ∧ ∀𝑦 ∈ 𝑋 ∀𝑧 ∈ 𝑋 (𝑥𝑑𝑦) ≤ ((𝑧𝑑𝑥) +𝑒 (𝑧𝑑𝑦)))} ∈ V) |
19 | 17, 18 | syl 14 |
. . . . 5
⊢ (𝑋 ∈ 𝑉 → {𝑑 ∈ (ℝ*
↑𝑚 (𝑋 × 𝑋)) ∣ ∀𝑥 ∈ 𝑋 ((𝑥𝑑𝑥) = 0 ∧ ∀𝑦 ∈ 𝑋 ∀𝑧 ∈ 𝑋 (𝑥𝑑𝑦) ≤ ((𝑧𝑑𝑥) +𝑒 (𝑧𝑑𝑦)))} ∈ V) |
20 | 1, 9, 10, 19 | fvmptd3 5589 |
. . . 4
⊢ (𝑋 ∈ 𝑉 → (PsMet‘𝑋) = {𝑑 ∈ (ℝ*
↑𝑚 (𝑋 × 𝑋)) ∣ ∀𝑥 ∈ 𝑋 ((𝑥𝑑𝑥) = 0 ∧ ∀𝑦 ∈ 𝑋 ∀𝑧 ∈ 𝑋 (𝑥𝑑𝑦) ≤ ((𝑧𝑑𝑥) +𝑒 (𝑧𝑑𝑦)))}) |
21 | 20 | eleq2d 2240 |
. . 3
⊢ (𝑋 ∈ 𝑉 → (𝐷 ∈ (PsMet‘𝑋) ↔ 𝐷 ∈ {𝑑 ∈ (ℝ*
↑𝑚 (𝑋 × 𝑋)) ∣ ∀𝑥 ∈ 𝑋 ((𝑥𝑑𝑥) = 0 ∧ ∀𝑦 ∈ 𝑋 ∀𝑧 ∈ 𝑋 (𝑥𝑑𝑦) ≤ ((𝑧𝑑𝑥) +𝑒 (𝑧𝑑𝑦)))})) |
22 | | oveq 5859 |
. . . . . . 7
⊢ (𝑑 = 𝐷 → (𝑥𝑑𝑥) = (𝑥𝐷𝑥)) |
23 | 22 | eqeq1d 2179 |
. . . . . 6
⊢ (𝑑 = 𝐷 → ((𝑥𝑑𝑥) = 0 ↔ (𝑥𝐷𝑥) = 0)) |
24 | | oveq 5859 |
. . . . . . . 8
⊢ (𝑑 = 𝐷 → (𝑥𝑑𝑦) = (𝑥𝐷𝑦)) |
25 | | oveq 5859 |
. . . . . . . . 9
⊢ (𝑑 = 𝐷 → (𝑧𝑑𝑥) = (𝑧𝐷𝑥)) |
26 | | oveq 5859 |
. . . . . . . . 9
⊢ (𝑑 = 𝐷 → (𝑧𝑑𝑦) = (𝑧𝐷𝑦)) |
27 | 25, 26 | oveq12d 5871 |
. . . . . . . 8
⊢ (𝑑 = 𝐷 → ((𝑧𝑑𝑥) +𝑒 (𝑧𝑑𝑦)) = ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦))) |
28 | 24, 27 | breq12d 4002 |
. . . . . . 7
⊢ (𝑑 = 𝐷 → ((𝑥𝑑𝑦) ≤ ((𝑧𝑑𝑥) +𝑒 (𝑧𝑑𝑦)) ↔ (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦)))) |
29 | 28 | 2ralbidv 2494 |
. . . . . 6
⊢ (𝑑 = 𝐷 → (∀𝑦 ∈ 𝑋 ∀𝑧 ∈ 𝑋 (𝑥𝑑𝑦) ≤ ((𝑧𝑑𝑥) +𝑒 (𝑧𝑑𝑦)) ↔ ∀𝑦 ∈ 𝑋 ∀𝑧 ∈ 𝑋 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦)))) |
30 | 23, 29 | anbi12d 470 |
. . . . 5
⊢ (𝑑 = 𝐷 → (((𝑥𝑑𝑥) = 0 ∧ ∀𝑦 ∈ 𝑋 ∀𝑧 ∈ 𝑋 (𝑥𝑑𝑦) ≤ ((𝑧𝑑𝑥) +𝑒 (𝑧𝑑𝑦))) ↔ ((𝑥𝐷𝑥) = 0 ∧ ∀𝑦 ∈ 𝑋 ∀𝑧 ∈ 𝑋 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦))))) |
31 | 30 | ralbidv 2470 |
. . . 4
⊢ (𝑑 = 𝐷 → (∀𝑥 ∈ 𝑋 ((𝑥𝑑𝑥) = 0 ∧ ∀𝑦 ∈ 𝑋 ∀𝑧 ∈ 𝑋 (𝑥𝑑𝑦) ≤ ((𝑧𝑑𝑥) +𝑒 (𝑧𝑑𝑦))) ↔ ∀𝑥 ∈ 𝑋 ((𝑥𝐷𝑥) = 0 ∧ ∀𝑦 ∈ 𝑋 ∀𝑧 ∈ 𝑋 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦))))) |
32 | 31 | elrab 2886 |
. . 3
⊢ (𝐷 ∈ {𝑑 ∈ (ℝ*
↑𝑚 (𝑋 × 𝑋)) ∣ ∀𝑥 ∈ 𝑋 ((𝑥𝑑𝑥) = 0 ∧ ∀𝑦 ∈ 𝑋 ∀𝑧 ∈ 𝑋 (𝑥𝑑𝑦) ≤ ((𝑧𝑑𝑥) +𝑒 (𝑧𝑑𝑦)))} ↔ (𝐷 ∈ (ℝ*
↑𝑚 (𝑋 × 𝑋)) ∧ ∀𝑥 ∈ 𝑋 ((𝑥𝐷𝑥) = 0 ∧ ∀𝑦 ∈ 𝑋 ∀𝑧 ∈ 𝑋 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦))))) |
33 | 21, 32 | bitrdi 195 |
. 2
⊢ (𝑋 ∈ 𝑉 → (𝐷 ∈ (PsMet‘𝑋) ↔ (𝐷 ∈ (ℝ*
↑𝑚 (𝑋 × 𝑋)) ∧ ∀𝑥 ∈ 𝑋 ((𝑥𝐷𝑥) = 0 ∧ ∀𝑦 ∈ 𝑋 ∀𝑧 ∈ 𝑋 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦)))))) |
34 | | elmapg 6639 |
. . . 4
⊢
((ℝ* ∈ V ∧ (𝑋 × 𝑋) ∈ V) → (𝐷 ∈ (ℝ*
↑𝑚 (𝑋 × 𝑋)) ↔ 𝐷:(𝑋 × 𝑋)⟶ℝ*)) |
35 | 11, 12, 34 | sylancr 412 |
. . 3
⊢ (𝑋 ∈ 𝑉 → (𝐷 ∈ (ℝ*
↑𝑚 (𝑋 × 𝑋)) ↔ 𝐷:(𝑋 × 𝑋)⟶ℝ*)) |
36 | 35 | anbi1d 462 |
. 2
⊢ (𝑋 ∈ 𝑉 → ((𝐷 ∈ (ℝ*
↑𝑚 (𝑋 × 𝑋)) ∧ ∀𝑥 ∈ 𝑋 ((𝑥𝐷𝑥) = 0 ∧ ∀𝑦 ∈ 𝑋 ∀𝑧 ∈ 𝑋 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦)))) ↔ (𝐷:(𝑋 × 𝑋)⟶ℝ* ∧
∀𝑥 ∈ 𝑋 ((𝑥𝐷𝑥) = 0 ∧ ∀𝑦 ∈ 𝑋 ∀𝑧 ∈ 𝑋 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦)))))) |
37 | 33, 36 | bitrd 187 |
1
⊢ (𝑋 ∈ 𝑉 → (𝐷 ∈ (PsMet‘𝑋) ↔ (𝐷:(𝑋 × 𝑋)⟶ℝ* ∧
∀𝑥 ∈ 𝑋 ((𝑥𝐷𝑥) = 0 ∧ ∀𝑦 ∈ 𝑋 ∀𝑧 ∈ 𝑋 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦)))))) |