| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > psmetrel | GIF version | ||
| Description: The class of pseudometrics is a relation. (Contributed by Jim Kingdon, 24-Apr-2023.) |
| Ref | Expression |
|---|---|
| psmetrel | ⊢ Rel PsMet |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mptrel 4850 | . 2 ⊢ Rel (𝑥 ∈ V ↦ {𝑑 ∈ (ℝ* ↑𝑚 (𝑥 × 𝑥)) ∣ ∀𝑦 ∈ 𝑥 ((𝑦𝑑𝑦) = 0 ∧ ∀𝑧 ∈ 𝑥 ∀𝑤 ∈ 𝑥 (𝑦𝑑𝑧) ≤ ((𝑤𝑑𝑦) +𝑒 (𝑤𝑑𝑧)))}) | |
| 2 | df-psmet 14515 | . . 3 ⊢ PsMet = (𝑥 ∈ V ↦ {𝑑 ∈ (ℝ* ↑𝑚 (𝑥 × 𝑥)) ∣ ∀𝑦 ∈ 𝑥 ((𝑦𝑑𝑦) = 0 ∧ ∀𝑧 ∈ 𝑥 ∀𝑤 ∈ 𝑥 (𝑦𝑑𝑧) ≤ ((𝑤𝑑𝑦) +𝑒 (𝑤𝑑𝑧)))}) | |
| 3 | 2 | releqi 4802 | . 2 ⊢ (Rel PsMet ↔ Rel (𝑥 ∈ V ↦ {𝑑 ∈ (ℝ* ↑𝑚 (𝑥 × 𝑥)) ∣ ∀𝑦 ∈ 𝑥 ((𝑦𝑑𝑦) = 0 ∧ ∀𝑧 ∈ 𝑥 ∀𝑤 ∈ 𝑥 (𝑦𝑑𝑧) ≤ ((𝑤𝑑𝑦) +𝑒 (𝑤𝑑𝑧)))})) |
| 4 | 1, 3 | mpbir 146 | 1 ⊢ Rel PsMet |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 = wceq 1395 ∀wral 2508 {crab 2512 Vcvv 2799 class class class wbr 4083 ↦ cmpt 4145 × cxp 4717 Rel wrel 4724 (class class class)co 6007 ↑𝑚 cmap 6803 0cc0 8007 ℝ*cxr 8188 ≤ cle 8190 +𝑒 cxad 9974 PsMetcpsmet 14507 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-opab 4146 df-mpt 4147 df-xp 4725 df-rel 4726 df-psmet 14515 |
| This theorem is referenced by: blfvalps 15067 blvalps 15070 blfps 15091 |
| Copyright terms: Public domain | W3C validator |