![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > psmetrel | GIF version |
Description: The class of pseudometrics is a relation. (Contributed by Jim Kingdon, 24-Apr-2023.) |
Ref | Expression |
---|---|
psmetrel | ⊢ Rel PsMet |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mptrel 4790 | . 2 ⊢ Rel (𝑥 ∈ V ↦ {𝑑 ∈ (ℝ* ↑𝑚 (𝑥 × 𝑥)) ∣ ∀𝑦 ∈ 𝑥 ((𝑦𝑑𝑦) = 0 ∧ ∀𝑧 ∈ 𝑥 ∀𝑤 ∈ 𝑥 (𝑦𝑑𝑧) ≤ ((𝑤𝑑𝑦) +𝑒 (𝑤𝑑𝑧)))}) | |
2 | df-psmet 14039 | . . 3 ⊢ PsMet = (𝑥 ∈ V ↦ {𝑑 ∈ (ℝ* ↑𝑚 (𝑥 × 𝑥)) ∣ ∀𝑦 ∈ 𝑥 ((𝑦𝑑𝑦) = 0 ∧ ∀𝑧 ∈ 𝑥 ∀𝑤 ∈ 𝑥 (𝑦𝑑𝑧) ≤ ((𝑤𝑑𝑦) +𝑒 (𝑤𝑑𝑧)))}) | |
3 | 2 | releqi 4742 | . 2 ⊢ (Rel PsMet ↔ Rel (𝑥 ∈ V ↦ {𝑑 ∈ (ℝ* ↑𝑚 (𝑥 × 𝑥)) ∣ ∀𝑦 ∈ 𝑥 ((𝑦𝑑𝑦) = 0 ∧ ∀𝑧 ∈ 𝑥 ∀𝑤 ∈ 𝑥 (𝑦𝑑𝑧) ≤ ((𝑤𝑑𝑦) +𝑒 (𝑤𝑑𝑧)))})) |
4 | 1, 3 | mpbir 146 | 1 ⊢ Rel PsMet |
Colors of variables: wff set class |
Syntax hints: ∧ wa 104 = wceq 1364 ∀wral 2472 {crab 2476 Vcvv 2760 class class class wbr 4029 ↦ cmpt 4090 × cxp 4657 Rel wrel 4664 (class class class)co 5918 ↑𝑚 cmap 6702 0cc0 7872 ℝ*cxr 8053 ≤ cle 8055 +𝑒 cxad 9836 PsMetcpsmet 14031 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-pow 4203 ax-pr 4238 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-v 2762 df-un 3157 df-in 3159 df-ss 3166 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-opab 4091 df-mpt 4092 df-xp 4665 df-rel 4666 df-psmet 14039 |
This theorem is referenced by: blfvalps 14553 blvalps 14556 blfps 14577 |
Copyright terms: Public domain | W3C validator |