ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  psmetrel GIF version

Theorem psmetrel 15004
Description: The class of pseudometrics is a relation. (Contributed by Jim Kingdon, 24-Apr-2023.)
Assertion
Ref Expression
psmetrel Rel PsMet

Proof of Theorem psmetrel
Dummy variables 𝑤 𝑑 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mptrel 4850 . 2 Rel (𝑥 ∈ V ↦ {𝑑 ∈ (ℝ*𝑚 (𝑥 × 𝑥)) ∣ ∀𝑦𝑥 ((𝑦𝑑𝑦) = 0 ∧ ∀𝑧𝑥𝑤𝑥 (𝑦𝑑𝑧) ≤ ((𝑤𝑑𝑦) +𝑒 (𝑤𝑑𝑧)))})
2 df-psmet 14515 . . 3 PsMet = (𝑥 ∈ V ↦ {𝑑 ∈ (ℝ*𝑚 (𝑥 × 𝑥)) ∣ ∀𝑦𝑥 ((𝑦𝑑𝑦) = 0 ∧ ∀𝑧𝑥𝑤𝑥 (𝑦𝑑𝑧) ≤ ((𝑤𝑑𝑦) +𝑒 (𝑤𝑑𝑧)))})
32releqi 4802 . 2 (Rel PsMet ↔ Rel (𝑥 ∈ V ↦ {𝑑 ∈ (ℝ*𝑚 (𝑥 × 𝑥)) ∣ ∀𝑦𝑥 ((𝑦𝑑𝑦) = 0 ∧ ∀𝑧𝑥𝑤𝑥 (𝑦𝑑𝑧) ≤ ((𝑤𝑑𝑦) +𝑒 (𝑤𝑑𝑧)))}))
41, 3mpbir 146 1 Rel PsMet
Colors of variables: wff set class
Syntax hints:  wa 104   = wceq 1395  wral 2508  {crab 2512  Vcvv 2799   class class class wbr 4083  cmpt 4145   × cxp 4717  Rel wrel 4724  (class class class)co 6007  𝑚 cmap 6803  0cc0 8007  *cxr 8188  cle 8190   +𝑒 cxad 9974  PsMetcpsmet 14507
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-opab 4146  df-mpt 4147  df-xp 4725  df-rel 4726  df-psmet 14515
This theorem is referenced by:  blfvalps  15067  blvalps  15070  blfps  15091
  Copyright terms: Public domain W3C validator