Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > psmetrel | GIF version |
Description: The class of pseudometrics is a relation. (Contributed by Jim Kingdon, 24-Apr-2023.) |
Ref | Expression |
---|---|
psmetrel | ⊢ Rel PsMet |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mptrel 4748 | . 2 ⊢ Rel (𝑥 ∈ V ↦ {𝑑 ∈ (ℝ* ↑𝑚 (𝑥 × 𝑥)) ∣ ∀𝑦 ∈ 𝑥 ((𝑦𝑑𝑦) = 0 ∧ ∀𝑧 ∈ 𝑥 ∀𝑤 ∈ 𝑥 (𝑦𝑑𝑧) ≤ ((𝑤𝑑𝑦) +𝑒 (𝑤𝑑𝑧)))}) | |
2 | df-psmet 13067 | . . 3 ⊢ PsMet = (𝑥 ∈ V ↦ {𝑑 ∈ (ℝ* ↑𝑚 (𝑥 × 𝑥)) ∣ ∀𝑦 ∈ 𝑥 ((𝑦𝑑𝑦) = 0 ∧ ∀𝑧 ∈ 𝑥 ∀𝑤 ∈ 𝑥 (𝑦𝑑𝑧) ≤ ((𝑤𝑑𝑦) +𝑒 (𝑤𝑑𝑧)))}) | |
3 | 2 | releqi 4703 | . 2 ⊢ (Rel PsMet ↔ Rel (𝑥 ∈ V ↦ {𝑑 ∈ (ℝ* ↑𝑚 (𝑥 × 𝑥)) ∣ ∀𝑦 ∈ 𝑥 ((𝑦𝑑𝑦) = 0 ∧ ∀𝑧 ∈ 𝑥 ∀𝑤 ∈ 𝑥 (𝑦𝑑𝑧) ≤ ((𝑤𝑑𝑦) +𝑒 (𝑤𝑑𝑧)))})) |
4 | 1, 3 | mpbir 146 | 1 ⊢ Rel PsMet |
Colors of variables: wff set class |
Syntax hints: ∧ wa 104 = wceq 1353 ∀wral 2453 {crab 2457 Vcvv 2735 class class class wbr 3998 ↦ cmpt 4059 × cxp 4618 Rel wrel 4625 (class class class)co 5865 ↑𝑚 cmap 6638 0cc0 7786 ℝ*cxr 7965 ≤ cle 7967 +𝑒 cxad 9741 PsMetcpsmet 13059 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-14 2149 ax-ext 2157 ax-sep 4116 ax-pow 4169 ax-pr 4203 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1459 df-sb 1761 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ral 2458 df-rex 2459 df-v 2737 df-un 3131 df-in 3133 df-ss 3140 df-pw 3574 df-sn 3595 df-pr 3596 df-op 3598 df-opab 4060 df-mpt 4061 df-xp 4626 df-rel 4627 df-psmet 13067 |
This theorem is referenced by: blfvalps 13465 blvalps 13468 blfps 13489 |
Copyright terms: Public domain | W3C validator |