| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > psmetrel | GIF version | ||
| Description: The class of pseudometrics is a relation. (Contributed by Jim Kingdon, 24-Apr-2023.) |
| Ref | Expression |
|---|---|
| psmetrel | ⊢ Rel PsMet |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mptrel 4810 | . 2 ⊢ Rel (𝑥 ∈ V ↦ {𝑑 ∈ (ℝ* ↑𝑚 (𝑥 × 𝑥)) ∣ ∀𝑦 ∈ 𝑥 ((𝑦𝑑𝑦) = 0 ∧ ∀𝑧 ∈ 𝑥 ∀𝑤 ∈ 𝑥 (𝑦𝑑𝑧) ≤ ((𝑤𝑑𝑦) +𝑒 (𝑤𝑑𝑧)))}) | |
| 2 | df-psmet 14349 | . . 3 ⊢ PsMet = (𝑥 ∈ V ↦ {𝑑 ∈ (ℝ* ↑𝑚 (𝑥 × 𝑥)) ∣ ∀𝑦 ∈ 𝑥 ((𝑦𝑑𝑦) = 0 ∧ ∀𝑧 ∈ 𝑥 ∀𝑤 ∈ 𝑥 (𝑦𝑑𝑧) ≤ ((𝑤𝑑𝑦) +𝑒 (𝑤𝑑𝑧)))}) | |
| 3 | 2 | releqi 4762 | . 2 ⊢ (Rel PsMet ↔ Rel (𝑥 ∈ V ↦ {𝑑 ∈ (ℝ* ↑𝑚 (𝑥 × 𝑥)) ∣ ∀𝑦 ∈ 𝑥 ((𝑦𝑑𝑦) = 0 ∧ ∀𝑧 ∈ 𝑥 ∀𝑤 ∈ 𝑥 (𝑦𝑑𝑧) ≤ ((𝑤𝑑𝑦) +𝑒 (𝑤𝑑𝑧)))})) |
| 4 | 1, 3 | mpbir 146 | 1 ⊢ Rel PsMet |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 = wceq 1373 ∀wral 2485 {crab 2489 Vcvv 2773 class class class wbr 4047 ↦ cmpt 4109 × cxp 4677 Rel wrel 4684 (class class class)co 5951 ↑𝑚 cmap 6742 0cc0 7932 ℝ*cxr 8113 ≤ cle 8115 +𝑒 cxad 9899 PsMetcpsmet 14341 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2180 ax-ext 2188 ax-sep 4166 ax-pow 4222 ax-pr 4257 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-v 2775 df-un 3171 df-in 3173 df-ss 3180 df-pw 3619 df-sn 3640 df-pr 3641 df-op 3643 df-opab 4110 df-mpt 4111 df-xp 4685 df-rel 4686 df-psmet 14349 |
| This theorem is referenced by: blfvalps 14901 blvalps 14904 blfps 14925 |
| Copyright terms: Public domain | W3C validator |