| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > psmetrel | GIF version | ||
| Description: The class of pseudometrics is a relation. (Contributed by Jim Kingdon, 24-Apr-2023.) |
| Ref | Expression |
|---|---|
| psmetrel | ⊢ Rel PsMet |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mptrel 4795 | . 2 ⊢ Rel (𝑥 ∈ V ↦ {𝑑 ∈ (ℝ* ↑𝑚 (𝑥 × 𝑥)) ∣ ∀𝑦 ∈ 𝑥 ((𝑦𝑑𝑦) = 0 ∧ ∀𝑧 ∈ 𝑥 ∀𝑤 ∈ 𝑥 (𝑦𝑑𝑧) ≤ ((𝑤𝑑𝑦) +𝑒 (𝑤𝑑𝑧)))}) | |
| 2 | df-psmet 14175 | . . 3 ⊢ PsMet = (𝑥 ∈ V ↦ {𝑑 ∈ (ℝ* ↑𝑚 (𝑥 × 𝑥)) ∣ ∀𝑦 ∈ 𝑥 ((𝑦𝑑𝑦) = 0 ∧ ∀𝑧 ∈ 𝑥 ∀𝑤 ∈ 𝑥 (𝑦𝑑𝑧) ≤ ((𝑤𝑑𝑦) +𝑒 (𝑤𝑑𝑧)))}) | |
| 3 | 2 | releqi 4747 | . 2 ⊢ (Rel PsMet ↔ Rel (𝑥 ∈ V ↦ {𝑑 ∈ (ℝ* ↑𝑚 (𝑥 × 𝑥)) ∣ ∀𝑦 ∈ 𝑥 ((𝑦𝑑𝑦) = 0 ∧ ∀𝑧 ∈ 𝑥 ∀𝑤 ∈ 𝑥 (𝑦𝑑𝑧) ≤ ((𝑤𝑑𝑦) +𝑒 (𝑤𝑑𝑧)))})) |
| 4 | 1, 3 | mpbir 146 | 1 ⊢ Rel PsMet |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 = wceq 1364 ∀wral 2475 {crab 2479 Vcvv 2763 class class class wbr 4034 ↦ cmpt 4095 × cxp 4662 Rel wrel 4669 (class class class)co 5925 ↑𝑚 cmap 6716 0cc0 7896 ℝ*cxr 8077 ≤ cle 8079 +𝑒 cxad 9862 PsMetcpsmet 14167 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-opab 4096 df-mpt 4097 df-xp 4670 df-rel 4671 df-psmet 14175 |
| This theorem is referenced by: blfvalps 14705 blvalps 14708 blfps 14729 |
| Copyright terms: Public domain | W3C validator |