Detailed syntax breakdown of Definition df-smo
Step | Hyp | Ref
| Expression |
1 | | cA |
. . 3
class 𝐴 |
2 | 1 | wsmo 6253 |
. 2
wff Smo 𝐴 |
3 | 1 | cdm 4604 |
. . . 4
class dom 𝐴 |
4 | | con0 4341 |
. . . 4
class
On |
5 | 3, 4, 1 | wf 5184 |
. . 3
wff 𝐴:dom 𝐴⟶On |
6 | 3 | word 4340 |
. . 3
wff Ord dom
𝐴 |
7 | | vx |
. . . . . . 7
setvar 𝑥 |
8 | | vy |
. . . . . . 7
setvar 𝑦 |
9 | 7, 8 | wel 2137 |
. . . . . 6
wff 𝑥 ∈ 𝑦 |
10 | 7 | cv 1342 |
. . . . . . . 8
class 𝑥 |
11 | 10, 1 | cfv 5188 |
. . . . . . 7
class (𝐴‘𝑥) |
12 | 8 | cv 1342 |
. . . . . . . 8
class 𝑦 |
13 | 12, 1 | cfv 5188 |
. . . . . . 7
class (𝐴‘𝑦) |
14 | 11, 13 | wcel 2136 |
. . . . . 6
wff (𝐴‘𝑥) ∈ (𝐴‘𝑦) |
15 | 9, 14 | wi 4 |
. . . . 5
wff (𝑥 ∈ 𝑦 → (𝐴‘𝑥) ∈ (𝐴‘𝑦)) |
16 | 15, 8, 3 | wral 2444 |
. . . 4
wff
∀𝑦 ∈ dom
𝐴(𝑥 ∈ 𝑦 → (𝐴‘𝑥) ∈ (𝐴‘𝑦)) |
17 | 16, 7, 3 | wral 2444 |
. . 3
wff
∀𝑥 ∈ dom
𝐴∀𝑦 ∈ dom 𝐴(𝑥 ∈ 𝑦 → (𝐴‘𝑥) ∈ (𝐴‘𝑦)) |
18 | 5, 6, 17 | w3a 968 |
. 2
wff (𝐴:dom 𝐴⟶On ∧ Ord dom 𝐴 ∧ ∀𝑥 ∈ dom 𝐴∀𝑦 ∈ dom 𝐴(𝑥 ∈ 𝑦 → (𝐴‘𝑥) ∈ (𝐴‘𝑦))) |
19 | 2, 18 | wb 104 |
1
wff (Smo 𝐴 ↔ (𝐴:dom 𝐴⟶On ∧ Ord dom 𝐴 ∧ ∀𝑥 ∈ dom 𝐴∀𝑦 ∈ dom 𝐴(𝑥 ∈ 𝑦 → (𝐴‘𝑥) ∈ (𝐴‘𝑦)))) |