ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  issmo GIF version

Theorem issmo 6291
Description: Conditions for which 𝐴 is a strictly monotone ordinal function. (Contributed by Andrew Salmon, 15-Nov-2011.)
Hypotheses
Ref Expression
issmo.1 𝐴:𝐡⟢On
issmo.2 Ord 𝐡
issmo.3 ((π‘₯ ∈ 𝐡 ∧ 𝑦 ∈ 𝐡) β†’ (π‘₯ ∈ 𝑦 β†’ (π΄β€˜π‘₯) ∈ (π΄β€˜π‘¦)))
issmo.4 dom 𝐴 = 𝐡
Assertion
Ref Expression
issmo Smo 𝐴
Distinct variable group:   π‘₯,𝑦,𝐴
Allowed substitution hints:   𝐡(π‘₯,𝑦)

Proof of Theorem issmo
StepHypRef Expression
1 issmo.1 . . 3 𝐴:𝐡⟢On
2 issmo.4 . . . 4 dom 𝐴 = 𝐡
32feq2i 5361 . . 3 (𝐴:dom 𝐴⟢On ↔ 𝐴:𝐡⟢On)
41, 3mpbir 146 . 2 𝐴:dom 𝐴⟢On
5 issmo.2 . . 3 Ord 𝐡
6 ordeq 4374 . . . 4 (dom 𝐴 = 𝐡 β†’ (Ord dom 𝐴 ↔ Ord 𝐡))
72, 6ax-mp 5 . . 3 (Ord dom 𝐴 ↔ Ord 𝐡)
85, 7mpbir 146 . 2 Ord dom 𝐴
92eleq2i 2244 . . . 4 (π‘₯ ∈ dom 𝐴 ↔ π‘₯ ∈ 𝐡)
102eleq2i 2244 . . . 4 (𝑦 ∈ dom 𝐴 ↔ 𝑦 ∈ 𝐡)
11 issmo.3 . . . 4 ((π‘₯ ∈ 𝐡 ∧ 𝑦 ∈ 𝐡) β†’ (π‘₯ ∈ 𝑦 β†’ (π΄β€˜π‘₯) ∈ (π΄β€˜π‘¦)))
129, 10, 11syl2anb 291 . . 3 ((π‘₯ ∈ dom 𝐴 ∧ 𝑦 ∈ dom 𝐴) β†’ (π‘₯ ∈ 𝑦 β†’ (π΄β€˜π‘₯) ∈ (π΄β€˜π‘¦)))
1312rgen2a 2531 . 2 βˆ€π‘₯ ∈ dom π΄βˆ€π‘¦ ∈ dom 𝐴(π‘₯ ∈ 𝑦 β†’ (π΄β€˜π‘₯) ∈ (π΄β€˜π‘¦))
14 df-smo 6289 . 2 (Smo 𝐴 ↔ (𝐴:dom 𝐴⟢On ∧ Ord dom 𝐴 ∧ βˆ€π‘₯ ∈ dom π΄βˆ€π‘¦ ∈ dom 𝐴(π‘₯ ∈ 𝑦 β†’ (π΄β€˜π‘₯) ∈ (π΄β€˜π‘¦))))
154, 8, 13, 14mpbir3an 1179 1 Smo 𝐴
Colors of variables: wff set class
Syntax hints:   β†’ wi 4   ∧ wa 104   ↔ wb 105   = wceq 1353   ∈ wcel 2148  βˆ€wral 2455  Ord word 4364  Oncon0 4365  dom cdm 4628  βŸΆwf 5214  β€˜cfv 5218  Smo wsmo 6288
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-in 3137  df-ss 3144  df-uni 3812  df-tr 4104  df-iord 4368  df-fn 5221  df-f 5222  df-smo 6289
This theorem is referenced by:  iordsmo  6300
  Copyright terms: Public domain W3C validator