![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > issmo | GIF version |
Description: Conditions for which 𝐴 is a strictly monotone ordinal function. (Contributed by Andrew Salmon, 15-Nov-2011.) |
Ref | Expression |
---|---|
issmo.1 | ⊢ 𝐴:𝐵⟶On |
issmo.2 | ⊢ Ord 𝐵 |
issmo.3 | ⊢ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥 ∈ 𝑦 → (𝐴‘𝑥) ∈ (𝐴‘𝑦))) |
issmo.4 | ⊢ dom 𝐴 = 𝐵 |
Ref | Expression |
---|---|
issmo | ⊢ Smo 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | issmo.1 | . . 3 ⊢ 𝐴:𝐵⟶On | |
2 | issmo.4 | . . . 4 ⊢ dom 𝐴 = 𝐵 | |
3 | 2 | feq2i 5397 | . . 3 ⊢ (𝐴:dom 𝐴⟶On ↔ 𝐴:𝐵⟶On) |
4 | 1, 3 | mpbir 146 | . 2 ⊢ 𝐴:dom 𝐴⟶On |
5 | issmo.2 | . . 3 ⊢ Ord 𝐵 | |
6 | ordeq 4403 | . . . 4 ⊢ (dom 𝐴 = 𝐵 → (Ord dom 𝐴 ↔ Ord 𝐵)) | |
7 | 2, 6 | ax-mp 5 | . . 3 ⊢ (Ord dom 𝐴 ↔ Ord 𝐵) |
8 | 5, 7 | mpbir 146 | . 2 ⊢ Ord dom 𝐴 |
9 | 2 | eleq2i 2260 | . . . 4 ⊢ (𝑥 ∈ dom 𝐴 ↔ 𝑥 ∈ 𝐵) |
10 | 2 | eleq2i 2260 | . . . 4 ⊢ (𝑦 ∈ dom 𝐴 ↔ 𝑦 ∈ 𝐵) |
11 | issmo.3 | . . . 4 ⊢ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥 ∈ 𝑦 → (𝐴‘𝑥) ∈ (𝐴‘𝑦))) | |
12 | 9, 10, 11 | syl2anb 291 | . . 3 ⊢ ((𝑥 ∈ dom 𝐴 ∧ 𝑦 ∈ dom 𝐴) → (𝑥 ∈ 𝑦 → (𝐴‘𝑥) ∈ (𝐴‘𝑦))) |
13 | 12 | rgen2a 2548 | . 2 ⊢ ∀𝑥 ∈ dom 𝐴∀𝑦 ∈ dom 𝐴(𝑥 ∈ 𝑦 → (𝐴‘𝑥) ∈ (𝐴‘𝑦)) |
14 | df-smo 6339 | . 2 ⊢ (Smo 𝐴 ↔ (𝐴:dom 𝐴⟶On ∧ Ord dom 𝐴 ∧ ∀𝑥 ∈ dom 𝐴∀𝑦 ∈ dom 𝐴(𝑥 ∈ 𝑦 → (𝐴‘𝑥) ∈ (𝐴‘𝑦)))) | |
15 | 4, 8, 13, 14 | mpbir3an 1181 | 1 ⊢ Smo 𝐴 |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1364 ∈ wcel 2164 ∀wral 2472 Ord word 4393 Oncon0 4394 dom cdm 4659 ⟶wf 5250 ‘cfv 5254 Smo wsmo 6338 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-in 3159 df-ss 3166 df-uni 3836 df-tr 4128 df-iord 4397 df-fn 5257 df-f 5258 df-smo 6339 |
This theorem is referenced by: iordsmo 6350 |
Copyright terms: Public domain | W3C validator |