![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > issmo | GIF version |
Description: Conditions for which π΄ is a strictly monotone ordinal function. (Contributed by Andrew Salmon, 15-Nov-2011.) |
Ref | Expression |
---|---|
issmo.1 | β’ π΄:π΅βΆOn |
issmo.2 | β’ Ord π΅ |
issmo.3 | β’ ((π₯ β π΅ β§ π¦ β π΅) β (π₯ β π¦ β (π΄βπ₯) β (π΄βπ¦))) |
issmo.4 | β’ dom π΄ = π΅ |
Ref | Expression |
---|---|
issmo | β’ Smo π΄ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | issmo.1 | . . 3 β’ π΄:π΅βΆOn | |
2 | issmo.4 | . . . 4 β’ dom π΄ = π΅ | |
3 | 2 | feq2i 5361 | . . 3 β’ (π΄:dom π΄βΆOn β π΄:π΅βΆOn) |
4 | 1, 3 | mpbir 146 | . 2 β’ π΄:dom π΄βΆOn |
5 | issmo.2 | . . 3 β’ Ord π΅ | |
6 | ordeq 4374 | . . . 4 β’ (dom π΄ = π΅ β (Ord dom π΄ β Ord π΅)) | |
7 | 2, 6 | ax-mp 5 | . . 3 β’ (Ord dom π΄ β Ord π΅) |
8 | 5, 7 | mpbir 146 | . 2 β’ Ord dom π΄ |
9 | 2 | eleq2i 2244 | . . . 4 β’ (π₯ β dom π΄ β π₯ β π΅) |
10 | 2 | eleq2i 2244 | . . . 4 β’ (π¦ β dom π΄ β π¦ β π΅) |
11 | issmo.3 | . . . 4 β’ ((π₯ β π΅ β§ π¦ β π΅) β (π₯ β π¦ β (π΄βπ₯) β (π΄βπ¦))) | |
12 | 9, 10, 11 | syl2anb 291 | . . 3 β’ ((π₯ β dom π΄ β§ π¦ β dom π΄) β (π₯ β π¦ β (π΄βπ₯) β (π΄βπ¦))) |
13 | 12 | rgen2a 2531 | . 2 β’ βπ₯ β dom π΄βπ¦ β dom π΄(π₯ β π¦ β (π΄βπ₯) β (π΄βπ¦)) |
14 | df-smo 6289 | . 2 β’ (Smo π΄ β (π΄:dom π΄βΆOn β§ Ord dom π΄ β§ βπ₯ β dom π΄βπ¦ β dom π΄(π₯ β π¦ β (π΄βπ₯) β (π΄βπ¦)))) | |
15 | 4, 8, 13, 14 | mpbir3an 1179 | 1 β’ Smo π΄ |
Colors of variables: wff set class |
Syntax hints: β wi 4 β§ wa 104 β wb 105 = wceq 1353 β wcel 2148 βwral 2455 Ord word 4364 Oncon0 4365 dom cdm 4628 βΆwf 5214 βcfv 5218 Smo wsmo 6288 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-ext 2159 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ral 2460 df-rex 2461 df-in 3137 df-ss 3144 df-uni 3812 df-tr 4104 df-iord 4368 df-fn 5221 df-f 5222 df-smo 6289 |
This theorem is referenced by: iordsmo 6300 |
Copyright terms: Public domain | W3C validator |