| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > issmo | GIF version | ||
| Description: Conditions for which 𝐴 is a strictly monotone ordinal function. (Contributed by Andrew Salmon, 15-Nov-2011.) |
| Ref | Expression |
|---|---|
| issmo.1 | ⊢ 𝐴:𝐵⟶On |
| issmo.2 | ⊢ Ord 𝐵 |
| issmo.3 | ⊢ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥 ∈ 𝑦 → (𝐴‘𝑥) ∈ (𝐴‘𝑦))) |
| issmo.4 | ⊢ dom 𝐴 = 𝐵 |
| Ref | Expression |
|---|---|
| issmo | ⊢ Smo 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | issmo.1 | . . 3 ⊢ 𝐴:𝐵⟶On | |
| 2 | issmo.4 | . . . 4 ⊢ dom 𝐴 = 𝐵 | |
| 3 | 2 | feq2i 5418 | . . 3 ⊢ (𝐴:dom 𝐴⟶On ↔ 𝐴:𝐵⟶On) |
| 4 | 1, 3 | mpbir 146 | . 2 ⊢ 𝐴:dom 𝐴⟶On |
| 5 | issmo.2 | . . 3 ⊢ Ord 𝐵 | |
| 6 | ordeq 4418 | . . . 4 ⊢ (dom 𝐴 = 𝐵 → (Ord dom 𝐴 ↔ Ord 𝐵)) | |
| 7 | 2, 6 | ax-mp 5 | . . 3 ⊢ (Ord dom 𝐴 ↔ Ord 𝐵) |
| 8 | 5, 7 | mpbir 146 | . 2 ⊢ Ord dom 𝐴 |
| 9 | 2 | eleq2i 2271 | . . . 4 ⊢ (𝑥 ∈ dom 𝐴 ↔ 𝑥 ∈ 𝐵) |
| 10 | 2 | eleq2i 2271 | . . . 4 ⊢ (𝑦 ∈ dom 𝐴 ↔ 𝑦 ∈ 𝐵) |
| 11 | issmo.3 | . . . 4 ⊢ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥 ∈ 𝑦 → (𝐴‘𝑥) ∈ (𝐴‘𝑦))) | |
| 12 | 9, 10, 11 | syl2anb 291 | . . 3 ⊢ ((𝑥 ∈ dom 𝐴 ∧ 𝑦 ∈ dom 𝐴) → (𝑥 ∈ 𝑦 → (𝐴‘𝑥) ∈ (𝐴‘𝑦))) |
| 13 | 12 | rgen2a 2559 | . 2 ⊢ ∀𝑥 ∈ dom 𝐴∀𝑦 ∈ dom 𝐴(𝑥 ∈ 𝑦 → (𝐴‘𝑥) ∈ (𝐴‘𝑦)) |
| 14 | df-smo 6371 | . 2 ⊢ (Smo 𝐴 ↔ (𝐴:dom 𝐴⟶On ∧ Ord dom 𝐴 ∧ ∀𝑥 ∈ dom 𝐴∀𝑦 ∈ dom 𝐴(𝑥 ∈ 𝑦 → (𝐴‘𝑥) ∈ (𝐴‘𝑦)))) | |
| 15 | 4, 8, 13, 14 | mpbir3an 1181 | 1 ⊢ Smo 𝐴 |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1372 ∈ wcel 2175 ∀wral 2483 Ord word 4408 Oncon0 4409 dom cdm 4674 ⟶wf 5266 ‘cfv 5270 Smo wsmo 6370 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ral 2488 df-rex 2489 df-in 3171 df-ss 3178 df-uni 3850 df-tr 4142 df-iord 4412 df-fn 5273 df-f 5274 df-smo 6371 |
| This theorem is referenced by: iordsmo 6382 |
| Copyright terms: Public domain | W3C validator |