Proof of Theorem dfsmo2
| Step | Hyp | Ref
 | Expression | 
| 1 |   | df-smo 6344 | 
. 2
⊢ (Smo
𝐹 ↔ (𝐹:dom 𝐹⟶On ∧ Ord dom 𝐹 ∧ ∀𝑦 ∈ dom 𝐹∀𝑥 ∈ dom 𝐹(𝑦 ∈ 𝑥 → (𝐹‘𝑦) ∈ (𝐹‘𝑥)))) | 
| 2 |   | ralcom 2660 | 
. . . . . 6
⊢
(∀𝑦 ∈
dom 𝐹∀𝑥 ∈ dom 𝐹(𝑦 ∈ 𝑥 → (𝐹‘𝑦) ∈ (𝐹‘𝑥)) ↔ ∀𝑥 ∈ dom 𝐹∀𝑦 ∈ dom 𝐹(𝑦 ∈ 𝑥 → (𝐹‘𝑦) ∈ (𝐹‘𝑥))) | 
| 3 |   | impexp 263 | 
. . . . . . . . 9
⊢ (((𝑦 ∈ dom 𝐹 ∧ 𝑦 ∈ 𝑥) → (𝐹‘𝑦) ∈ (𝐹‘𝑥)) ↔ (𝑦 ∈ dom 𝐹 → (𝑦 ∈ 𝑥 → (𝐹‘𝑦) ∈ (𝐹‘𝑥)))) | 
| 4 |   | simpr 110 | 
. . . . . . . . . . 11
⊢ ((𝑦 ∈ dom 𝐹 ∧ 𝑦 ∈ 𝑥) → 𝑦 ∈ 𝑥) | 
| 5 |   | ordtr1 4423 | 
. . . . . . . . . . . . . . 15
⊢ (Ord dom
𝐹 → ((𝑦 ∈ 𝑥 ∧ 𝑥 ∈ dom 𝐹) → 𝑦 ∈ dom 𝐹)) | 
| 6 | 5 | 3impib 1203 | 
. . . . . . . . . . . . . 14
⊢ ((Ord dom
𝐹 ∧ 𝑦 ∈ 𝑥 ∧ 𝑥 ∈ dom 𝐹) → 𝑦 ∈ dom 𝐹) | 
| 7 | 6 | 3com23 1211 | 
. . . . . . . . . . . . 13
⊢ ((Ord dom
𝐹 ∧ 𝑥 ∈ dom 𝐹 ∧ 𝑦 ∈ 𝑥) → 𝑦 ∈ dom 𝐹) | 
| 8 |   | simp3 1001 | 
. . . . . . . . . . . . 13
⊢ ((Ord dom
𝐹 ∧ 𝑥 ∈ dom 𝐹 ∧ 𝑦 ∈ 𝑥) → 𝑦 ∈ 𝑥) | 
| 9 | 7, 8 | jca 306 | 
. . . . . . . . . . . 12
⊢ ((Ord dom
𝐹 ∧ 𝑥 ∈ dom 𝐹 ∧ 𝑦 ∈ 𝑥) → (𝑦 ∈ dom 𝐹 ∧ 𝑦 ∈ 𝑥)) | 
| 10 | 9 | 3expia 1207 | 
. . . . . . . . . . 11
⊢ ((Ord dom
𝐹 ∧ 𝑥 ∈ dom 𝐹) → (𝑦 ∈ 𝑥 → (𝑦 ∈ dom 𝐹 ∧ 𝑦 ∈ 𝑥))) | 
| 11 | 4, 10 | impbid2 143 | 
. . . . . . . . . 10
⊢ ((Ord dom
𝐹 ∧ 𝑥 ∈ dom 𝐹) → ((𝑦 ∈ dom 𝐹 ∧ 𝑦 ∈ 𝑥) ↔ 𝑦 ∈ 𝑥)) | 
| 12 | 11 | imbi1d 231 | 
. . . . . . . . 9
⊢ ((Ord dom
𝐹 ∧ 𝑥 ∈ dom 𝐹) → (((𝑦 ∈ dom 𝐹 ∧ 𝑦 ∈ 𝑥) → (𝐹‘𝑦) ∈ (𝐹‘𝑥)) ↔ (𝑦 ∈ 𝑥 → (𝐹‘𝑦) ∈ (𝐹‘𝑥)))) | 
| 13 | 3, 12 | bitr3id 194 | 
. . . . . . . 8
⊢ ((Ord dom
𝐹 ∧ 𝑥 ∈ dom 𝐹) → ((𝑦 ∈ dom 𝐹 → (𝑦 ∈ 𝑥 → (𝐹‘𝑦) ∈ (𝐹‘𝑥))) ↔ (𝑦 ∈ 𝑥 → (𝐹‘𝑦) ∈ (𝐹‘𝑥)))) | 
| 14 | 13 | ralbidv2 2499 | 
. . . . . . 7
⊢ ((Ord dom
𝐹 ∧ 𝑥 ∈ dom 𝐹) → (∀𝑦 ∈ dom 𝐹(𝑦 ∈ 𝑥 → (𝐹‘𝑦) ∈ (𝐹‘𝑥)) ↔ ∀𝑦 ∈ 𝑥 (𝐹‘𝑦) ∈ (𝐹‘𝑥))) | 
| 15 | 14 | ralbidva 2493 | 
. . . . . 6
⊢ (Ord dom
𝐹 → (∀𝑥 ∈ dom 𝐹∀𝑦 ∈ dom 𝐹(𝑦 ∈ 𝑥 → (𝐹‘𝑦) ∈ (𝐹‘𝑥)) ↔ ∀𝑥 ∈ dom 𝐹∀𝑦 ∈ 𝑥 (𝐹‘𝑦) ∈ (𝐹‘𝑥))) | 
| 16 | 2, 15 | bitrid 192 | 
. . . . 5
⊢ (Ord dom
𝐹 → (∀𝑦 ∈ dom 𝐹∀𝑥 ∈ dom 𝐹(𝑦 ∈ 𝑥 → (𝐹‘𝑦) ∈ (𝐹‘𝑥)) ↔ ∀𝑥 ∈ dom 𝐹∀𝑦 ∈ 𝑥 (𝐹‘𝑦) ∈ (𝐹‘𝑥))) | 
| 17 | 16 | pm5.32i 454 | 
. . . 4
⊢ ((Ord dom
𝐹 ∧ ∀𝑦 ∈ dom 𝐹∀𝑥 ∈ dom 𝐹(𝑦 ∈ 𝑥 → (𝐹‘𝑦) ∈ (𝐹‘𝑥))) ↔ (Ord dom 𝐹 ∧ ∀𝑥 ∈ dom 𝐹∀𝑦 ∈ 𝑥 (𝐹‘𝑦) ∈ (𝐹‘𝑥))) | 
| 18 | 17 | anbi2i 457 | 
. . 3
⊢ ((𝐹:dom 𝐹⟶On ∧ (Ord dom 𝐹 ∧ ∀𝑦 ∈ dom 𝐹∀𝑥 ∈ dom 𝐹(𝑦 ∈ 𝑥 → (𝐹‘𝑦) ∈ (𝐹‘𝑥)))) ↔ (𝐹:dom 𝐹⟶On ∧ (Ord dom 𝐹 ∧ ∀𝑥 ∈ dom 𝐹∀𝑦 ∈ 𝑥 (𝐹‘𝑦) ∈ (𝐹‘𝑥)))) | 
| 19 |   | 3anass 984 | 
. . 3
⊢ ((𝐹:dom 𝐹⟶On ∧ Ord dom 𝐹 ∧ ∀𝑦 ∈ dom 𝐹∀𝑥 ∈ dom 𝐹(𝑦 ∈ 𝑥 → (𝐹‘𝑦) ∈ (𝐹‘𝑥))) ↔ (𝐹:dom 𝐹⟶On ∧ (Ord dom 𝐹 ∧ ∀𝑦 ∈ dom 𝐹∀𝑥 ∈ dom 𝐹(𝑦 ∈ 𝑥 → (𝐹‘𝑦) ∈ (𝐹‘𝑥))))) | 
| 20 |   | 3anass 984 | 
. . 3
⊢ ((𝐹:dom 𝐹⟶On ∧ Ord dom 𝐹 ∧ ∀𝑥 ∈ dom 𝐹∀𝑦 ∈ 𝑥 (𝐹‘𝑦) ∈ (𝐹‘𝑥)) ↔ (𝐹:dom 𝐹⟶On ∧ (Ord dom 𝐹 ∧ ∀𝑥 ∈ dom 𝐹∀𝑦 ∈ 𝑥 (𝐹‘𝑦) ∈ (𝐹‘𝑥)))) | 
| 21 | 18, 19, 20 | 3bitr4i 212 | 
. 2
⊢ ((𝐹:dom 𝐹⟶On ∧ Ord dom 𝐹 ∧ ∀𝑦 ∈ dom 𝐹∀𝑥 ∈ dom 𝐹(𝑦 ∈ 𝑥 → (𝐹‘𝑦) ∈ (𝐹‘𝑥))) ↔ (𝐹:dom 𝐹⟶On ∧ Ord dom 𝐹 ∧ ∀𝑥 ∈ dom 𝐹∀𝑦 ∈ 𝑥 (𝐹‘𝑦) ∈ (𝐹‘𝑥))) | 
| 22 | 1, 21 | bitri 184 | 
1
⊢ (Smo
𝐹 ↔ (𝐹:dom 𝐹⟶On ∧ Ord dom 𝐹 ∧ ∀𝑥 ∈ dom 𝐹∀𝑦 ∈ 𝑥 (𝐹‘𝑦) ∈ (𝐹‘𝑥))) |