ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfsmo2 GIF version

Theorem dfsmo2 6290
Description: Alternate definition of a strictly monotone ordinal function. (Contributed by Mario Carneiro, 4-Mar-2013.)
Assertion
Ref Expression
dfsmo2 (Smo 𝐹 ↔ (𝐹:dom 𝐹⟢On ∧ Ord dom 𝐹 ∧ βˆ€π‘₯ ∈ dom πΉβˆ€π‘¦ ∈ π‘₯ (πΉβ€˜π‘¦) ∈ (πΉβ€˜π‘₯)))
Distinct variable group:   π‘₯,𝐹,𝑦

Proof of Theorem dfsmo2
StepHypRef Expression
1 df-smo 6289 . 2 (Smo 𝐹 ↔ (𝐹:dom 𝐹⟢On ∧ Ord dom 𝐹 ∧ βˆ€π‘¦ ∈ dom πΉβˆ€π‘₯ ∈ dom 𝐹(𝑦 ∈ π‘₯ β†’ (πΉβ€˜π‘¦) ∈ (πΉβ€˜π‘₯))))
2 ralcom 2640 . . . . . 6 (βˆ€π‘¦ ∈ dom πΉβˆ€π‘₯ ∈ dom 𝐹(𝑦 ∈ π‘₯ β†’ (πΉβ€˜π‘¦) ∈ (πΉβ€˜π‘₯)) ↔ βˆ€π‘₯ ∈ dom πΉβˆ€π‘¦ ∈ dom 𝐹(𝑦 ∈ π‘₯ β†’ (πΉβ€˜π‘¦) ∈ (πΉβ€˜π‘₯)))
3 impexp 263 . . . . . . . . 9 (((𝑦 ∈ dom 𝐹 ∧ 𝑦 ∈ π‘₯) β†’ (πΉβ€˜π‘¦) ∈ (πΉβ€˜π‘₯)) ↔ (𝑦 ∈ dom 𝐹 β†’ (𝑦 ∈ π‘₯ β†’ (πΉβ€˜π‘¦) ∈ (πΉβ€˜π‘₯))))
4 simpr 110 . . . . . . . . . . 11 ((𝑦 ∈ dom 𝐹 ∧ 𝑦 ∈ π‘₯) β†’ 𝑦 ∈ π‘₯)
5 ordtr1 4390 . . . . . . . . . . . . . . 15 (Ord dom 𝐹 β†’ ((𝑦 ∈ π‘₯ ∧ π‘₯ ∈ dom 𝐹) β†’ 𝑦 ∈ dom 𝐹))
653impib 1201 . . . . . . . . . . . . . 14 ((Ord dom 𝐹 ∧ 𝑦 ∈ π‘₯ ∧ π‘₯ ∈ dom 𝐹) β†’ 𝑦 ∈ dom 𝐹)
763com23 1209 . . . . . . . . . . . . 13 ((Ord dom 𝐹 ∧ π‘₯ ∈ dom 𝐹 ∧ 𝑦 ∈ π‘₯) β†’ 𝑦 ∈ dom 𝐹)
8 simp3 999 . . . . . . . . . . . . 13 ((Ord dom 𝐹 ∧ π‘₯ ∈ dom 𝐹 ∧ 𝑦 ∈ π‘₯) β†’ 𝑦 ∈ π‘₯)
97, 8jca 306 . . . . . . . . . . . 12 ((Ord dom 𝐹 ∧ π‘₯ ∈ dom 𝐹 ∧ 𝑦 ∈ π‘₯) β†’ (𝑦 ∈ dom 𝐹 ∧ 𝑦 ∈ π‘₯))
1093expia 1205 . . . . . . . . . . 11 ((Ord dom 𝐹 ∧ π‘₯ ∈ dom 𝐹) β†’ (𝑦 ∈ π‘₯ β†’ (𝑦 ∈ dom 𝐹 ∧ 𝑦 ∈ π‘₯)))
114, 10impbid2 143 . . . . . . . . . 10 ((Ord dom 𝐹 ∧ π‘₯ ∈ dom 𝐹) β†’ ((𝑦 ∈ dom 𝐹 ∧ 𝑦 ∈ π‘₯) ↔ 𝑦 ∈ π‘₯))
1211imbi1d 231 . . . . . . . . 9 ((Ord dom 𝐹 ∧ π‘₯ ∈ dom 𝐹) β†’ (((𝑦 ∈ dom 𝐹 ∧ 𝑦 ∈ π‘₯) β†’ (πΉβ€˜π‘¦) ∈ (πΉβ€˜π‘₯)) ↔ (𝑦 ∈ π‘₯ β†’ (πΉβ€˜π‘¦) ∈ (πΉβ€˜π‘₯))))
133, 12bitr3id 194 . . . . . . . 8 ((Ord dom 𝐹 ∧ π‘₯ ∈ dom 𝐹) β†’ ((𝑦 ∈ dom 𝐹 β†’ (𝑦 ∈ π‘₯ β†’ (πΉβ€˜π‘¦) ∈ (πΉβ€˜π‘₯))) ↔ (𝑦 ∈ π‘₯ β†’ (πΉβ€˜π‘¦) ∈ (πΉβ€˜π‘₯))))
1413ralbidv2 2479 . . . . . . 7 ((Ord dom 𝐹 ∧ π‘₯ ∈ dom 𝐹) β†’ (βˆ€π‘¦ ∈ dom 𝐹(𝑦 ∈ π‘₯ β†’ (πΉβ€˜π‘¦) ∈ (πΉβ€˜π‘₯)) ↔ βˆ€π‘¦ ∈ π‘₯ (πΉβ€˜π‘¦) ∈ (πΉβ€˜π‘₯)))
1514ralbidva 2473 . . . . . 6 (Ord dom 𝐹 β†’ (βˆ€π‘₯ ∈ dom πΉβˆ€π‘¦ ∈ dom 𝐹(𝑦 ∈ π‘₯ β†’ (πΉβ€˜π‘¦) ∈ (πΉβ€˜π‘₯)) ↔ βˆ€π‘₯ ∈ dom πΉβˆ€π‘¦ ∈ π‘₯ (πΉβ€˜π‘¦) ∈ (πΉβ€˜π‘₯)))
162, 15bitrid 192 . . . . 5 (Ord dom 𝐹 β†’ (βˆ€π‘¦ ∈ dom πΉβˆ€π‘₯ ∈ dom 𝐹(𝑦 ∈ π‘₯ β†’ (πΉβ€˜π‘¦) ∈ (πΉβ€˜π‘₯)) ↔ βˆ€π‘₯ ∈ dom πΉβˆ€π‘¦ ∈ π‘₯ (πΉβ€˜π‘¦) ∈ (πΉβ€˜π‘₯)))
1716pm5.32i 454 . . . 4 ((Ord dom 𝐹 ∧ βˆ€π‘¦ ∈ dom πΉβˆ€π‘₯ ∈ dom 𝐹(𝑦 ∈ π‘₯ β†’ (πΉβ€˜π‘¦) ∈ (πΉβ€˜π‘₯))) ↔ (Ord dom 𝐹 ∧ βˆ€π‘₯ ∈ dom πΉβˆ€π‘¦ ∈ π‘₯ (πΉβ€˜π‘¦) ∈ (πΉβ€˜π‘₯)))
1817anbi2i 457 . . 3 ((𝐹:dom 𝐹⟢On ∧ (Ord dom 𝐹 ∧ βˆ€π‘¦ ∈ dom πΉβˆ€π‘₯ ∈ dom 𝐹(𝑦 ∈ π‘₯ β†’ (πΉβ€˜π‘¦) ∈ (πΉβ€˜π‘₯)))) ↔ (𝐹:dom 𝐹⟢On ∧ (Ord dom 𝐹 ∧ βˆ€π‘₯ ∈ dom πΉβˆ€π‘¦ ∈ π‘₯ (πΉβ€˜π‘¦) ∈ (πΉβ€˜π‘₯))))
19 3anass 982 . . 3 ((𝐹:dom 𝐹⟢On ∧ Ord dom 𝐹 ∧ βˆ€π‘¦ ∈ dom πΉβˆ€π‘₯ ∈ dom 𝐹(𝑦 ∈ π‘₯ β†’ (πΉβ€˜π‘¦) ∈ (πΉβ€˜π‘₯))) ↔ (𝐹:dom 𝐹⟢On ∧ (Ord dom 𝐹 ∧ βˆ€π‘¦ ∈ dom πΉβˆ€π‘₯ ∈ dom 𝐹(𝑦 ∈ π‘₯ β†’ (πΉβ€˜π‘¦) ∈ (πΉβ€˜π‘₯)))))
20 3anass 982 . . 3 ((𝐹:dom 𝐹⟢On ∧ Ord dom 𝐹 ∧ βˆ€π‘₯ ∈ dom πΉβˆ€π‘¦ ∈ π‘₯ (πΉβ€˜π‘¦) ∈ (πΉβ€˜π‘₯)) ↔ (𝐹:dom 𝐹⟢On ∧ (Ord dom 𝐹 ∧ βˆ€π‘₯ ∈ dom πΉβˆ€π‘¦ ∈ π‘₯ (πΉβ€˜π‘¦) ∈ (πΉβ€˜π‘₯))))
2118, 19, 203bitr4i 212 . 2 ((𝐹:dom 𝐹⟢On ∧ Ord dom 𝐹 ∧ βˆ€π‘¦ ∈ dom πΉβˆ€π‘₯ ∈ dom 𝐹(𝑦 ∈ π‘₯ β†’ (πΉβ€˜π‘¦) ∈ (πΉβ€˜π‘₯))) ↔ (𝐹:dom 𝐹⟢On ∧ Ord dom 𝐹 ∧ βˆ€π‘₯ ∈ dom πΉβˆ€π‘¦ ∈ π‘₯ (πΉβ€˜π‘¦) ∈ (πΉβ€˜π‘₯)))
221, 21bitri 184 1 (Smo 𝐹 ↔ (𝐹:dom 𝐹⟢On ∧ Ord dom 𝐹 ∧ βˆ€π‘₯ ∈ dom πΉβˆ€π‘¦ ∈ π‘₯ (πΉβ€˜π‘¦) ∈ (πΉβ€˜π‘₯)))
Colors of variables: wff set class
Syntax hints:   β†’ wi 4   ∧ wa 104   ↔ wb 105   ∧ w3a 978   ∈ wcel 2148  βˆ€wral 2455  Ord word 4364  Oncon0 4365  dom cdm 4628  βŸΆwf 5214  β€˜cfv 5218  Smo wsmo 6288
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-v 2741  df-in 3137  df-ss 3144  df-uni 3812  df-tr 4104  df-iord 4368  df-smo 6289
This theorem is referenced by:  issmo2  6292  smores2  6297  smofvon2dm  6299
  Copyright terms: Public domain W3C validator