![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > smofvon | GIF version |
Description: If 𝐵 is a strictly monotone ordinal function, and 𝐴 is in the domain of 𝐵, then the value of the function at 𝐴 is an ordinal. (Contributed by Andrew Salmon, 20-Nov-2011.) |
Ref | Expression |
---|---|
smofvon | ⊢ ((Smo 𝐵 ∧ 𝐴 ∈ dom 𝐵) → (𝐵‘𝐴) ∈ On) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-smo 5981 | . . 3 ⊢ (Smo 𝐵 ↔ (𝐵:dom 𝐵⟶On ∧ Ord dom 𝐵 ∧ ∀𝑥 ∈ dom 𝐵∀𝑦 ∈ dom 𝐵(𝑥 ∈ 𝑦 → (𝐵‘𝑥) ∈ (𝐵‘𝑦)))) | |
2 | 1 | simp1bi 954 | . 2 ⊢ (Smo 𝐵 → 𝐵:dom 𝐵⟶On) |
3 | 2 | ffvelrnda 5377 | 1 ⊢ ((Smo 𝐵 ∧ 𝐴 ∈ dom 𝐵) → (𝐵‘𝐴) ∈ On) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 102 ∈ wcel 1434 ∀wral 2353 Ord word 4152 Oncon0 4153 dom cdm 4399 ⟶wf 4963 ‘cfv 4967 Smo wsmo 5980 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 663 ax-5 1377 ax-7 1378 ax-gen 1379 ax-ie1 1423 ax-ie2 1424 ax-8 1436 ax-10 1437 ax-11 1438 ax-i12 1439 ax-bndl 1440 ax-4 1441 ax-14 1446 ax-17 1460 ax-i9 1464 ax-ial 1468 ax-i5r 1469 ax-ext 2065 ax-sep 3922 ax-pow 3974 ax-pr 3999 |
This theorem depends on definitions: df-bi 115 df-3an 922 df-tru 1288 df-nf 1391 df-sb 1688 df-eu 1946 df-mo 1947 df-clab 2070 df-cleq 2076 df-clel 2079 df-nfc 2212 df-ral 2358 df-rex 2359 df-v 2614 df-sbc 2827 df-un 2988 df-in 2990 df-ss 2997 df-pw 3408 df-sn 3428 df-pr 3429 df-op 3431 df-uni 3628 df-br 3812 df-opab 3866 df-id 4083 df-xp 4405 df-rel 4406 df-cnv 4407 df-co 4408 df-dm 4409 df-rn 4410 df-iota 4932 df-fun 4969 df-fn 4970 df-f 4971 df-fv 4975 df-smo 5981 |
This theorem is referenced by: smoiun 5996 |
Copyright terms: Public domain | W3C validator |