![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > smofvon | GIF version |
Description: If π΅ is a strictly monotone ordinal function, and π΄ is in the domain of π΅, then the value of the function at π΄ is an ordinal. (Contributed by Andrew Salmon, 20-Nov-2011.) |
Ref | Expression |
---|---|
smofvon | β’ ((Smo π΅ β§ π΄ β dom π΅) β (π΅βπ΄) β On) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-smo 6289 | . . 3 β’ (Smo π΅ β (π΅:dom π΅βΆOn β§ Ord dom π΅ β§ βπ₯ β dom π΅βπ¦ β dom π΅(π₯ β π¦ β (π΅βπ₯) β (π΅βπ¦)))) | |
2 | 1 | simp1bi 1012 | . 2 β’ (Smo π΅ β π΅:dom π΅βΆOn) |
3 | 2 | ffvelcdmda 5653 | 1 β’ ((Smo π΅ β§ π΄ β dom π΅) β (π΅βπ΄) β On) |
Colors of variables: wff set class |
Syntax hints: β wi 4 β§ wa 104 β wcel 2148 βwral 2455 Ord word 4364 Oncon0 4365 dom cdm 4628 βΆwf 5214 βcfv 5218 Smo wsmo 6288 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-14 2151 ax-ext 2159 ax-sep 4123 ax-pow 4176 ax-pr 4211 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ral 2460 df-rex 2461 df-v 2741 df-sbc 2965 df-un 3135 df-in 3137 df-ss 3144 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-br 4006 df-opab 4067 df-id 4295 df-xp 4634 df-rel 4635 df-cnv 4636 df-co 4637 df-dm 4638 df-rn 4639 df-iota 5180 df-fun 5220 df-fn 5221 df-f 5222 df-fv 5226 df-smo 6289 |
This theorem is referenced by: smoiun 6304 |
Copyright terms: Public domain | W3C validator |