ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  smoeq GIF version

Theorem smoeq 6290
Description: Equality theorem for strictly monotone functions. (Contributed by Andrew Salmon, 16-Nov-2011.)
Assertion
Ref Expression
smoeq (𝐴 = 𝐡 β†’ (Smo 𝐴 ↔ Smo 𝐡))

Proof of Theorem smoeq
Dummy variables π‘₯ 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 id 19 . . . 4 (𝐴 = 𝐡 β†’ 𝐴 = 𝐡)
2 dmeq 4827 . . . 4 (𝐴 = 𝐡 β†’ dom 𝐴 = dom 𝐡)
31, 2feq12d 5355 . . 3 (𝐴 = 𝐡 β†’ (𝐴:dom 𝐴⟢On ↔ 𝐡:dom 𝐡⟢On))
4 ordeq 4372 . . . 4 (dom 𝐴 = dom 𝐡 β†’ (Ord dom 𝐴 ↔ Ord dom 𝐡))
52, 4syl 14 . . 3 (𝐴 = 𝐡 β†’ (Ord dom 𝐴 ↔ Ord dom 𝐡))
6 fveq1 5514 . . . . . . 7 (𝐴 = 𝐡 β†’ (π΄β€˜π‘₯) = (π΅β€˜π‘₯))
7 fveq1 5514 . . . . . . 7 (𝐴 = 𝐡 β†’ (π΄β€˜π‘¦) = (π΅β€˜π‘¦))
86, 7eleq12d 2248 . . . . . 6 (𝐴 = 𝐡 β†’ ((π΄β€˜π‘₯) ∈ (π΄β€˜π‘¦) ↔ (π΅β€˜π‘₯) ∈ (π΅β€˜π‘¦)))
98imbi2d 230 . . . . 5 (𝐴 = 𝐡 β†’ ((π‘₯ ∈ 𝑦 β†’ (π΄β€˜π‘₯) ∈ (π΄β€˜π‘¦)) ↔ (π‘₯ ∈ 𝑦 β†’ (π΅β€˜π‘₯) ∈ (π΅β€˜π‘¦))))
1092ralbidv 2501 . . . 4 (𝐴 = 𝐡 β†’ (βˆ€π‘₯ ∈ dom π΄βˆ€π‘¦ ∈ dom 𝐴(π‘₯ ∈ 𝑦 β†’ (π΄β€˜π‘₯) ∈ (π΄β€˜π‘¦)) ↔ βˆ€π‘₯ ∈ dom π΄βˆ€π‘¦ ∈ dom 𝐴(π‘₯ ∈ 𝑦 β†’ (π΅β€˜π‘₯) ∈ (π΅β€˜π‘¦))))
112raleqdv 2678 . . . . 5 (𝐴 = 𝐡 β†’ (βˆ€π‘¦ ∈ dom 𝐴(π‘₯ ∈ 𝑦 β†’ (π΅β€˜π‘₯) ∈ (π΅β€˜π‘¦)) ↔ βˆ€π‘¦ ∈ dom 𝐡(π‘₯ ∈ 𝑦 β†’ (π΅β€˜π‘₯) ∈ (π΅β€˜π‘¦))))
1211ralbidv 2477 . . . 4 (𝐴 = 𝐡 β†’ (βˆ€π‘₯ ∈ dom π΄βˆ€π‘¦ ∈ dom 𝐴(π‘₯ ∈ 𝑦 β†’ (π΅β€˜π‘₯) ∈ (π΅β€˜π‘¦)) ↔ βˆ€π‘₯ ∈ dom π΄βˆ€π‘¦ ∈ dom 𝐡(π‘₯ ∈ 𝑦 β†’ (π΅β€˜π‘₯) ∈ (π΅β€˜π‘¦))))
132raleqdv 2678 . . . 4 (𝐴 = 𝐡 β†’ (βˆ€π‘₯ ∈ dom π΄βˆ€π‘¦ ∈ dom 𝐡(π‘₯ ∈ 𝑦 β†’ (π΅β€˜π‘₯) ∈ (π΅β€˜π‘¦)) ↔ βˆ€π‘₯ ∈ dom π΅βˆ€π‘¦ ∈ dom 𝐡(π‘₯ ∈ 𝑦 β†’ (π΅β€˜π‘₯) ∈ (π΅β€˜π‘¦))))
1410, 12, 133bitrd 214 . . 3 (𝐴 = 𝐡 β†’ (βˆ€π‘₯ ∈ dom π΄βˆ€π‘¦ ∈ dom 𝐴(π‘₯ ∈ 𝑦 β†’ (π΄β€˜π‘₯) ∈ (π΄β€˜π‘¦)) ↔ βˆ€π‘₯ ∈ dom π΅βˆ€π‘¦ ∈ dom 𝐡(π‘₯ ∈ 𝑦 β†’ (π΅β€˜π‘₯) ∈ (π΅β€˜π‘¦))))
153, 5, 143anbi123d 1312 . 2 (𝐴 = 𝐡 β†’ ((𝐴:dom 𝐴⟢On ∧ Ord dom 𝐴 ∧ βˆ€π‘₯ ∈ dom π΄βˆ€π‘¦ ∈ dom 𝐴(π‘₯ ∈ 𝑦 β†’ (π΄β€˜π‘₯) ∈ (π΄β€˜π‘¦))) ↔ (𝐡:dom 𝐡⟢On ∧ Ord dom 𝐡 ∧ βˆ€π‘₯ ∈ dom π΅βˆ€π‘¦ ∈ dom 𝐡(π‘₯ ∈ 𝑦 β†’ (π΅β€˜π‘₯) ∈ (π΅β€˜π‘¦)))))
16 df-smo 6286 . 2 (Smo 𝐴 ↔ (𝐴:dom 𝐴⟢On ∧ Ord dom 𝐴 ∧ βˆ€π‘₯ ∈ dom π΄βˆ€π‘¦ ∈ dom 𝐴(π‘₯ ∈ 𝑦 β†’ (π΄β€˜π‘₯) ∈ (π΄β€˜π‘¦))))
17 df-smo 6286 . 2 (Smo 𝐡 ↔ (𝐡:dom 𝐡⟢On ∧ Ord dom 𝐡 ∧ βˆ€π‘₯ ∈ dom π΅βˆ€π‘¦ ∈ dom 𝐡(π‘₯ ∈ 𝑦 β†’ (π΅β€˜π‘₯) ∈ (π΅β€˜π‘¦))))
1815, 16, 173bitr4g 223 1 (𝐴 = 𝐡 β†’ (Smo 𝐴 ↔ Smo 𝐡))
Colors of variables: wff set class
Syntax hints:   β†’ wi 4   ↔ wb 105   ∧ w3a 978   = wceq 1353   ∈ wcel 2148  βˆ€wral 2455  Ord word 4362  Oncon0 4363  dom cdm 4626  βŸΆwf 5212  β€˜cfv 5216  Smo wsmo 6285
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2739  df-un 3133  df-in 3135  df-ss 3142  df-sn 3598  df-pr 3599  df-op 3601  df-uni 3810  df-br 4004  df-opab 4065  df-tr 4102  df-iord 4366  df-rel 4633  df-cnv 4634  df-co 4635  df-dm 4636  df-rn 4637  df-iota 5178  df-fun 5218  df-fn 5219  df-f 5220  df-fv 5224  df-smo 6286
This theorem is referenced by:  smores3  6293  smo0  6298
  Copyright terms: Public domain W3C validator