ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  smoeq GIF version

Theorem smoeq 6269
Description: Equality theorem for strictly monotone functions. (Contributed by Andrew Salmon, 16-Nov-2011.)
Assertion
Ref Expression
smoeq (𝐴 = 𝐵 → (Smo 𝐴 ↔ Smo 𝐵))

Proof of Theorem smoeq
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 id 19 . . . 4 (𝐴 = 𝐵𝐴 = 𝐵)
2 dmeq 4811 . . . 4 (𝐴 = 𝐵 → dom 𝐴 = dom 𝐵)
31, 2feq12d 5337 . . 3 (𝐴 = 𝐵 → (𝐴:dom 𝐴⟶On ↔ 𝐵:dom 𝐵⟶On))
4 ordeq 4357 . . . 4 (dom 𝐴 = dom 𝐵 → (Ord dom 𝐴 ↔ Ord dom 𝐵))
52, 4syl 14 . . 3 (𝐴 = 𝐵 → (Ord dom 𝐴 ↔ Ord dom 𝐵))
6 fveq1 5495 . . . . . . 7 (𝐴 = 𝐵 → (𝐴𝑥) = (𝐵𝑥))
7 fveq1 5495 . . . . . . 7 (𝐴 = 𝐵 → (𝐴𝑦) = (𝐵𝑦))
86, 7eleq12d 2241 . . . . . 6 (𝐴 = 𝐵 → ((𝐴𝑥) ∈ (𝐴𝑦) ↔ (𝐵𝑥) ∈ (𝐵𝑦)))
98imbi2d 229 . . . . 5 (𝐴 = 𝐵 → ((𝑥𝑦 → (𝐴𝑥) ∈ (𝐴𝑦)) ↔ (𝑥𝑦 → (𝐵𝑥) ∈ (𝐵𝑦))))
1092ralbidv 2494 . . . 4 (𝐴 = 𝐵 → (∀𝑥 ∈ dom 𝐴𝑦 ∈ dom 𝐴(𝑥𝑦 → (𝐴𝑥) ∈ (𝐴𝑦)) ↔ ∀𝑥 ∈ dom 𝐴𝑦 ∈ dom 𝐴(𝑥𝑦 → (𝐵𝑥) ∈ (𝐵𝑦))))
112raleqdv 2671 . . . . 5 (𝐴 = 𝐵 → (∀𝑦 ∈ dom 𝐴(𝑥𝑦 → (𝐵𝑥) ∈ (𝐵𝑦)) ↔ ∀𝑦 ∈ dom 𝐵(𝑥𝑦 → (𝐵𝑥) ∈ (𝐵𝑦))))
1211ralbidv 2470 . . . 4 (𝐴 = 𝐵 → (∀𝑥 ∈ dom 𝐴𝑦 ∈ dom 𝐴(𝑥𝑦 → (𝐵𝑥) ∈ (𝐵𝑦)) ↔ ∀𝑥 ∈ dom 𝐴𝑦 ∈ dom 𝐵(𝑥𝑦 → (𝐵𝑥) ∈ (𝐵𝑦))))
132raleqdv 2671 . . . 4 (𝐴 = 𝐵 → (∀𝑥 ∈ dom 𝐴𝑦 ∈ dom 𝐵(𝑥𝑦 → (𝐵𝑥) ∈ (𝐵𝑦)) ↔ ∀𝑥 ∈ dom 𝐵𝑦 ∈ dom 𝐵(𝑥𝑦 → (𝐵𝑥) ∈ (𝐵𝑦))))
1410, 12, 133bitrd 213 . . 3 (𝐴 = 𝐵 → (∀𝑥 ∈ dom 𝐴𝑦 ∈ dom 𝐴(𝑥𝑦 → (𝐴𝑥) ∈ (𝐴𝑦)) ↔ ∀𝑥 ∈ dom 𝐵𝑦 ∈ dom 𝐵(𝑥𝑦 → (𝐵𝑥) ∈ (𝐵𝑦))))
153, 5, 143anbi123d 1307 . 2 (𝐴 = 𝐵 → ((𝐴:dom 𝐴⟶On ∧ Ord dom 𝐴 ∧ ∀𝑥 ∈ dom 𝐴𝑦 ∈ dom 𝐴(𝑥𝑦 → (𝐴𝑥) ∈ (𝐴𝑦))) ↔ (𝐵:dom 𝐵⟶On ∧ Ord dom 𝐵 ∧ ∀𝑥 ∈ dom 𝐵𝑦 ∈ dom 𝐵(𝑥𝑦 → (𝐵𝑥) ∈ (𝐵𝑦)))))
16 df-smo 6265 . 2 (Smo 𝐴 ↔ (𝐴:dom 𝐴⟶On ∧ Ord dom 𝐴 ∧ ∀𝑥 ∈ dom 𝐴𝑦 ∈ dom 𝐴(𝑥𝑦 → (𝐴𝑥) ∈ (𝐴𝑦))))
17 df-smo 6265 . 2 (Smo 𝐵 ↔ (𝐵:dom 𝐵⟶On ∧ Ord dom 𝐵 ∧ ∀𝑥 ∈ dom 𝐵𝑦 ∈ dom 𝐵(𝑥𝑦 → (𝐵𝑥) ∈ (𝐵𝑦))))
1815, 16, 173bitr4g 222 1 (𝐴 = 𝐵 → (Smo 𝐴 ↔ Smo 𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 104  w3a 973   = wceq 1348  wcel 2141  wral 2448  Ord word 4347  Oncon0 4348  dom cdm 4611  wf 5194  cfv 5198  Smo wsmo 6264
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-un 3125  df-in 3127  df-ss 3134  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-br 3990  df-opab 4051  df-tr 4088  df-iord 4351  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-fv 5206  df-smo 6265
This theorem is referenced by:  smores3  6272  smo0  6277
  Copyright terms: Public domain W3C validator