ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  smodm GIF version

Theorem smodm 6294
Description: The domain of a strictly monotone function is an ordinal. (Contributed by Andrew Salmon, 16-Nov-2011.)
Assertion
Ref Expression
smodm (Smo 𝐴 β†’ Ord dom 𝐴)

Proof of Theorem smodm
Dummy variables π‘₯ 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-smo 6289 . 2 (Smo 𝐴 ↔ (𝐴:dom 𝐴⟢On ∧ Ord dom 𝐴 ∧ βˆ€π‘₯ ∈ dom π΄βˆ€π‘¦ ∈ dom 𝐴(π‘₯ ∈ 𝑦 β†’ (π΄β€˜π‘₯) ∈ (π΄β€˜π‘¦))))
21simp2bi 1013 1 (Smo 𝐴 β†’ Ord dom 𝐴)
Colors of variables: wff set class
Syntax hints:   β†’ wi 4   ∈ wcel 2148  βˆ€wral 2455  Ord word 4364  Oncon0 4365  dom cdm 4628  βŸΆwf 5214  β€˜cfv 5218  Smo wsmo 6288
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107
This theorem depends on definitions:  df-bi 117  df-3an 980  df-smo 6289
This theorem is referenced by:  smores2  6297  smodm2  6298  smoel  6303
  Copyright terms: Public domain W3C validator