Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > smodm | GIF version |
Description: The domain of a strictly monotone function is an ordinal. (Contributed by Andrew Salmon, 16-Nov-2011.) |
Ref | Expression |
---|---|
smodm | ⊢ (Smo 𝐴 → Ord dom 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-smo 6265 | . 2 ⊢ (Smo 𝐴 ↔ (𝐴:dom 𝐴⟶On ∧ Ord dom 𝐴 ∧ ∀𝑥 ∈ dom 𝐴∀𝑦 ∈ dom 𝐴(𝑥 ∈ 𝑦 → (𝐴‘𝑥) ∈ (𝐴‘𝑦)))) | |
2 | 1 | simp2bi 1008 | 1 ⊢ (Smo 𝐴 → Ord dom 𝐴) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2141 ∀wral 2448 Ord word 4347 Oncon0 4348 dom cdm 4611 ⟶wf 5194 ‘cfv 5198 Smo wsmo 6264 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-smo 6265 |
This theorem is referenced by: smores2 6273 smodm2 6274 smoel 6279 |
Copyright terms: Public domain | W3C validator |