ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  smodm GIF version

Theorem smodm 6270
Description: The domain of a strictly monotone function is an ordinal. (Contributed by Andrew Salmon, 16-Nov-2011.)
Assertion
Ref Expression
smodm (Smo 𝐴 → Ord dom 𝐴)

Proof of Theorem smodm
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-smo 6265 . 2 (Smo 𝐴 ↔ (𝐴:dom 𝐴⟶On ∧ Ord dom 𝐴 ∧ ∀𝑥 ∈ dom 𝐴𝑦 ∈ dom 𝐴(𝑥𝑦 → (𝐴𝑥) ∈ (𝐴𝑦))))
21simp2bi 1008 1 (Smo 𝐴 → Ord dom 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2141  wral 2448  Ord word 4347  Oncon0 4348  dom cdm 4611  wf 5194  cfv 5198  Smo wsmo 6264
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106
This theorem depends on definitions:  df-bi 116  df-3an 975  df-smo 6265
This theorem is referenced by:  smores2  6273  smodm2  6274  smoel  6279
  Copyright terms: Public domain W3C validator