| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > smodm | GIF version | ||
| Description: The domain of a strictly monotone function is an ordinal. (Contributed by Andrew Salmon, 16-Nov-2011.) |
| Ref | Expression |
|---|---|
| smodm | ⊢ (Smo 𝐴 → Ord dom 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-smo 6430 | . 2 ⊢ (Smo 𝐴 ↔ (𝐴:dom 𝐴⟶On ∧ Ord dom 𝐴 ∧ ∀𝑥 ∈ dom 𝐴∀𝑦 ∈ dom 𝐴(𝑥 ∈ 𝑦 → (𝐴‘𝑥) ∈ (𝐴‘𝑦)))) | |
| 2 | 1 | simp2bi 1037 | 1 ⊢ (Smo 𝐴 → Ord dom 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2200 ∀wral 2508 Ord word 4452 Oncon0 4453 dom cdm 4718 ⟶wf 5313 ‘cfv 5317 Smo wsmo 6429 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-smo 6430 |
| This theorem is referenced by: smores2 6438 smodm2 6439 smoel 6444 |
| Copyright terms: Public domain | W3C validator |