| Step | Hyp | Ref
 | Expression | 
| 1 |   | isof1o 5854 | 
. . . 4
⊢ (𝐹 Isom E , E (𝐴, 𝐵) → 𝐹:𝐴–1-1-onto→𝐵) | 
| 2 |   | f1of 5504 | 
. . . 4
⊢ (𝐹:𝐴–1-1-onto→𝐵 → 𝐹:𝐴⟶𝐵) | 
| 3 | 1, 2 | syl 14 | 
. . 3
⊢ (𝐹 Isom E , E (𝐴, 𝐵) → 𝐹:𝐴⟶𝐵) | 
| 4 |   | ffdm 5428 | 
. . . . . 6
⊢ (𝐹:𝐴⟶𝐵 → (𝐹:dom 𝐹⟶𝐵 ∧ dom 𝐹 ⊆ 𝐴)) | 
| 5 | 4 | simpld 112 | 
. . . . 5
⊢ (𝐹:𝐴⟶𝐵 → 𝐹:dom 𝐹⟶𝐵) | 
| 6 |   | fss 5419 | 
. . . . 5
⊢ ((𝐹:dom 𝐹⟶𝐵 ∧ 𝐵 ⊆ On) → 𝐹:dom 𝐹⟶On) | 
| 7 | 5, 6 | sylan 283 | 
. . . 4
⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐵 ⊆ On) → 𝐹:dom 𝐹⟶On) | 
| 8 | 7 | 3adant2 1018 | 
. . 3
⊢ ((𝐹:𝐴⟶𝐵 ∧ Ord 𝐴 ∧ 𝐵 ⊆ On) → 𝐹:dom 𝐹⟶On) | 
| 9 | 3, 8 | syl3an1 1282 | 
. 2
⊢ ((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ 𝐵 ⊆ On) → 𝐹:dom 𝐹⟶On) | 
| 10 |   | fdm 5413 | 
. . . . . 6
⊢ (𝐹:𝐴⟶𝐵 → dom 𝐹 = 𝐴) | 
| 11 | 10 | eqcomd 2202 | 
. . . . 5
⊢ (𝐹:𝐴⟶𝐵 → 𝐴 = dom 𝐹) | 
| 12 |   | ordeq 4407 | 
. . . . 5
⊢ (𝐴 = dom 𝐹 → (Ord 𝐴 ↔ Ord dom 𝐹)) | 
| 13 | 1, 2, 11, 12 | 4syl 18 | 
. . . 4
⊢ (𝐹 Isom E , E (𝐴, 𝐵) → (Ord 𝐴 ↔ Ord dom 𝐹)) | 
| 14 | 13 | biimpa 296 | 
. . 3
⊢ ((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴) → Ord dom 𝐹) | 
| 15 | 14 | 3adant3 1019 | 
. 2
⊢ ((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ 𝐵 ⊆ On) → Ord dom 𝐹) | 
| 16 | 10 | eleq2d 2266 | 
. . . . . . 7
⊢ (𝐹:𝐴⟶𝐵 → (𝑥 ∈ dom 𝐹 ↔ 𝑥 ∈ 𝐴)) | 
| 17 | 10 | eleq2d 2266 | 
. . . . . . 7
⊢ (𝐹:𝐴⟶𝐵 → (𝑦 ∈ dom 𝐹 ↔ 𝑦 ∈ 𝐴)) | 
| 18 | 16, 17 | anbi12d 473 | 
. . . . . 6
⊢ (𝐹:𝐴⟶𝐵 → ((𝑥 ∈ dom 𝐹 ∧ 𝑦 ∈ dom 𝐹) ↔ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴))) | 
| 19 | 1, 2, 18 | 3syl 17 | 
. . . . 5
⊢ (𝐹 Isom E , E (𝐴, 𝐵) → ((𝑥 ∈ dom 𝐹 ∧ 𝑦 ∈ dom 𝐹) ↔ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴))) | 
| 20 |   | epel 4327 | 
. . . . . . . . 9
⊢ (𝑥 E 𝑦 ↔ 𝑥 ∈ 𝑦) | 
| 21 |   | isorel 5855 | 
. . . . . . . . 9
⊢ ((𝐹 Isom E , E (𝐴, 𝐵) ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → (𝑥 E 𝑦 ↔ (𝐹‘𝑥) E (𝐹‘𝑦))) | 
| 22 | 20, 21 | bitr3id 194 | 
. . . . . . . 8
⊢ ((𝐹 Isom E , E (𝐴, 𝐵) ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → (𝑥 ∈ 𝑦 ↔ (𝐹‘𝑥) E (𝐹‘𝑦))) | 
| 23 |   | ffn 5407 | 
. . . . . . . . . . 11
⊢ (𝐹:𝐴⟶𝐵 → 𝐹 Fn 𝐴) | 
| 24 | 3, 23 | syl 14 | 
. . . . . . . . . 10
⊢ (𝐹 Isom E , E (𝐴, 𝐵) → 𝐹 Fn 𝐴) | 
| 25 | 24 | adantr 276 | 
. . . . . . . . 9
⊢ ((𝐹 Isom E , E (𝐴, 𝐵) ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → 𝐹 Fn 𝐴) | 
| 26 |   | simprr 531 | 
. . . . . . . . 9
⊢ ((𝐹 Isom E , E (𝐴, 𝐵) ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → 𝑦 ∈ 𝐴) | 
| 27 |   | funfvex 5575 | 
. . . . . . . . . . 11
⊢ ((Fun
𝐹 ∧ 𝑦 ∈ dom 𝐹) → (𝐹‘𝑦) ∈ V) | 
| 28 | 27 | funfni 5358 | 
. . . . . . . . . 10
⊢ ((𝐹 Fn 𝐴 ∧ 𝑦 ∈ 𝐴) → (𝐹‘𝑦) ∈ V) | 
| 29 |   | epelg 4325 | 
. . . . . . . . . 10
⊢ ((𝐹‘𝑦) ∈ V → ((𝐹‘𝑥) E (𝐹‘𝑦) ↔ (𝐹‘𝑥) ∈ (𝐹‘𝑦))) | 
| 30 | 28, 29 | syl 14 | 
. . . . . . . . 9
⊢ ((𝐹 Fn 𝐴 ∧ 𝑦 ∈ 𝐴) → ((𝐹‘𝑥) E (𝐹‘𝑦) ↔ (𝐹‘𝑥) ∈ (𝐹‘𝑦))) | 
| 31 | 25, 26, 30 | syl2anc 411 | 
. . . . . . . 8
⊢ ((𝐹 Isom E , E (𝐴, 𝐵) ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → ((𝐹‘𝑥) E (𝐹‘𝑦) ↔ (𝐹‘𝑥) ∈ (𝐹‘𝑦))) | 
| 32 | 22, 31 | bitrd 188 | 
. . . . . . 7
⊢ ((𝐹 Isom E , E (𝐴, 𝐵) ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → (𝑥 ∈ 𝑦 ↔ (𝐹‘𝑥) ∈ (𝐹‘𝑦))) | 
| 33 | 32 | biimpd 144 | 
. . . . . 6
⊢ ((𝐹 Isom E , E (𝐴, 𝐵) ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → (𝑥 ∈ 𝑦 → (𝐹‘𝑥) ∈ (𝐹‘𝑦))) | 
| 34 | 33 | ex 115 | 
. . . . 5
⊢ (𝐹 Isom E , E (𝐴, 𝐵) → ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → (𝑥 ∈ 𝑦 → (𝐹‘𝑥) ∈ (𝐹‘𝑦)))) | 
| 35 | 19, 34 | sylbid 150 | 
. . . 4
⊢ (𝐹 Isom E , E (𝐴, 𝐵) → ((𝑥 ∈ dom 𝐹 ∧ 𝑦 ∈ dom 𝐹) → (𝑥 ∈ 𝑦 → (𝐹‘𝑥) ∈ (𝐹‘𝑦)))) | 
| 36 | 35 | ralrimivv 2578 | 
. . 3
⊢ (𝐹 Isom E , E (𝐴, 𝐵) → ∀𝑥 ∈ dom 𝐹∀𝑦 ∈ dom 𝐹(𝑥 ∈ 𝑦 → (𝐹‘𝑥) ∈ (𝐹‘𝑦))) | 
| 37 | 36 | 3ad2ant1 1020 | 
. 2
⊢ ((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ 𝐵 ⊆ On) → ∀𝑥 ∈ dom 𝐹∀𝑦 ∈ dom 𝐹(𝑥 ∈ 𝑦 → (𝐹‘𝑥) ∈ (𝐹‘𝑦))) | 
| 38 |   | df-smo 6344 | 
. 2
⊢ (Smo
𝐹 ↔ (𝐹:dom 𝐹⟶On ∧ Ord dom 𝐹 ∧ ∀𝑥 ∈ dom 𝐹∀𝑦 ∈ dom 𝐹(𝑥 ∈ 𝑦 → (𝐹‘𝑥) ∈ (𝐹‘𝑦)))) | 
| 39 | 9, 15, 37, 38 | syl3anbrc 1183 | 
1
⊢ ((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ 𝐵 ⊆ On) → Smo 𝐹) |