ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  smoiso GIF version

Theorem smoiso 6411
Description: If 𝐹 is an isomorphism from an ordinal 𝐴 onto 𝐵, which is a subset of the ordinals, then 𝐹 is a strictly monotonic function. Exercise 3 in [TakeutiZaring] p. 50. (Contributed by Andrew Salmon, 24-Nov-2011.)
Assertion
Ref Expression
smoiso ((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴𝐵 ⊆ On) → Smo 𝐹)

Proof of Theorem smoiso
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isof1o 5899 . . . 4 (𝐹 Isom E , E (𝐴, 𝐵) → 𝐹:𝐴1-1-onto𝐵)
2 f1of 5544 . . . 4 (𝐹:𝐴1-1-onto𝐵𝐹:𝐴𝐵)
31, 2syl 14 . . 3 (𝐹 Isom E , E (𝐴, 𝐵) → 𝐹:𝐴𝐵)
4 ffdm 5466 . . . . . 6 (𝐹:𝐴𝐵 → (𝐹:dom 𝐹𝐵 ∧ dom 𝐹𝐴))
54simpld 112 . . . . 5 (𝐹:𝐴𝐵𝐹:dom 𝐹𝐵)
6 fss 5457 . . . . 5 ((𝐹:dom 𝐹𝐵𝐵 ⊆ On) → 𝐹:dom 𝐹⟶On)
75, 6sylan 283 . . . 4 ((𝐹:𝐴𝐵𝐵 ⊆ On) → 𝐹:dom 𝐹⟶On)
873adant2 1019 . . 3 ((𝐹:𝐴𝐵 ∧ Ord 𝐴𝐵 ⊆ On) → 𝐹:dom 𝐹⟶On)
93, 8syl3an1 1283 . 2 ((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴𝐵 ⊆ On) → 𝐹:dom 𝐹⟶On)
10 fdm 5451 . . . . . 6 (𝐹:𝐴𝐵 → dom 𝐹 = 𝐴)
1110eqcomd 2213 . . . . 5 (𝐹:𝐴𝐵𝐴 = dom 𝐹)
12 ordeq 4437 . . . . 5 (𝐴 = dom 𝐹 → (Ord 𝐴 ↔ Ord dom 𝐹))
131, 2, 11, 124syl 18 . . . 4 (𝐹 Isom E , E (𝐴, 𝐵) → (Ord 𝐴 ↔ Ord dom 𝐹))
1413biimpa 296 . . 3 ((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴) → Ord dom 𝐹)
15143adant3 1020 . 2 ((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴𝐵 ⊆ On) → Ord dom 𝐹)
1610eleq2d 2277 . . . . . . 7 (𝐹:𝐴𝐵 → (𝑥 ∈ dom 𝐹𝑥𝐴))
1710eleq2d 2277 . . . . . . 7 (𝐹:𝐴𝐵 → (𝑦 ∈ dom 𝐹𝑦𝐴))
1816, 17anbi12d 473 . . . . . 6 (𝐹:𝐴𝐵 → ((𝑥 ∈ dom 𝐹𝑦 ∈ dom 𝐹) ↔ (𝑥𝐴𝑦𝐴)))
191, 2, 183syl 17 . . . . 5 (𝐹 Isom E , E (𝐴, 𝐵) → ((𝑥 ∈ dom 𝐹𝑦 ∈ dom 𝐹) ↔ (𝑥𝐴𝑦𝐴)))
20 epel 4357 . . . . . . . . 9 (𝑥 E 𝑦𝑥𝑦)
21 isorel 5900 . . . . . . . . 9 ((𝐹 Isom E , E (𝐴, 𝐵) ∧ (𝑥𝐴𝑦𝐴)) → (𝑥 E 𝑦 ↔ (𝐹𝑥) E (𝐹𝑦)))
2220, 21bitr3id 194 . . . . . . . 8 ((𝐹 Isom E , E (𝐴, 𝐵) ∧ (𝑥𝐴𝑦𝐴)) → (𝑥𝑦 ↔ (𝐹𝑥) E (𝐹𝑦)))
23 ffn 5445 . . . . . . . . . . 11 (𝐹:𝐴𝐵𝐹 Fn 𝐴)
243, 23syl 14 . . . . . . . . . 10 (𝐹 Isom E , E (𝐴, 𝐵) → 𝐹 Fn 𝐴)
2524adantr 276 . . . . . . . . 9 ((𝐹 Isom E , E (𝐴, 𝐵) ∧ (𝑥𝐴𝑦𝐴)) → 𝐹 Fn 𝐴)
26 simprr 531 . . . . . . . . 9 ((𝐹 Isom E , E (𝐴, 𝐵) ∧ (𝑥𝐴𝑦𝐴)) → 𝑦𝐴)
27 funfvex 5616 . . . . . . . . . . 11 ((Fun 𝐹𝑦 ∈ dom 𝐹) → (𝐹𝑦) ∈ V)
2827funfni 5395 . . . . . . . . . 10 ((𝐹 Fn 𝐴𝑦𝐴) → (𝐹𝑦) ∈ V)
29 epelg 4355 . . . . . . . . . 10 ((𝐹𝑦) ∈ V → ((𝐹𝑥) E (𝐹𝑦) ↔ (𝐹𝑥) ∈ (𝐹𝑦)))
3028, 29syl 14 . . . . . . . . 9 ((𝐹 Fn 𝐴𝑦𝐴) → ((𝐹𝑥) E (𝐹𝑦) ↔ (𝐹𝑥) ∈ (𝐹𝑦)))
3125, 26, 30syl2anc 411 . . . . . . . 8 ((𝐹 Isom E , E (𝐴, 𝐵) ∧ (𝑥𝐴𝑦𝐴)) → ((𝐹𝑥) E (𝐹𝑦) ↔ (𝐹𝑥) ∈ (𝐹𝑦)))
3222, 31bitrd 188 . . . . . . 7 ((𝐹 Isom E , E (𝐴, 𝐵) ∧ (𝑥𝐴𝑦𝐴)) → (𝑥𝑦 ↔ (𝐹𝑥) ∈ (𝐹𝑦)))
3332biimpd 144 . . . . . 6 ((𝐹 Isom E , E (𝐴, 𝐵) ∧ (𝑥𝐴𝑦𝐴)) → (𝑥𝑦 → (𝐹𝑥) ∈ (𝐹𝑦)))
3433ex 115 . . . . 5 (𝐹 Isom E , E (𝐴, 𝐵) → ((𝑥𝐴𝑦𝐴) → (𝑥𝑦 → (𝐹𝑥) ∈ (𝐹𝑦))))
3519, 34sylbid 150 . . . 4 (𝐹 Isom E , E (𝐴, 𝐵) → ((𝑥 ∈ dom 𝐹𝑦 ∈ dom 𝐹) → (𝑥𝑦 → (𝐹𝑥) ∈ (𝐹𝑦))))
3635ralrimivv 2589 . . 3 (𝐹 Isom E , E (𝐴, 𝐵) → ∀𝑥 ∈ dom 𝐹𝑦 ∈ dom 𝐹(𝑥𝑦 → (𝐹𝑥) ∈ (𝐹𝑦)))
37363ad2ant1 1021 . 2 ((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴𝐵 ⊆ On) → ∀𝑥 ∈ dom 𝐹𝑦 ∈ dom 𝐹(𝑥𝑦 → (𝐹𝑥) ∈ (𝐹𝑦)))
38 df-smo 6395 . 2 (Smo 𝐹 ↔ (𝐹:dom 𝐹⟶On ∧ Ord dom 𝐹 ∧ ∀𝑥 ∈ dom 𝐹𝑦 ∈ dom 𝐹(𝑥𝑦 → (𝐹𝑥) ∈ (𝐹𝑦))))
399, 15, 37, 38syl3anbrc 1184 1 ((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴𝐵 ⊆ On) → Smo 𝐹)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 981   = wceq 1373  wcel 2178  wral 2486  Vcvv 2776  wss 3174   class class class wbr 4059   E cep 4352  Ord word 4427  Oncon0 4428  dom cdm 4693   Fn wfn 5285  wf 5286  1-1-ontowf1o 5289  cfv 5290   Isom wiso 5291  Smo wsmo 6394
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-v 2778  df-sbc 3006  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-br 4060  df-opab 4122  df-tr 4159  df-eprel 4354  df-id 4358  df-iord 4431  df-cnv 4701  df-co 4702  df-dm 4703  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-f1o 5297  df-fv 5298  df-isom 5299  df-smo 6395
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator