ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  smoiso GIF version

Theorem smoiso 6153
Description: If 𝐹 is an isomorphism from an ordinal 𝐴 onto 𝐵, which is a subset of the ordinals, then 𝐹 is a strictly monotonic function. Exercise 3 in [TakeutiZaring] p. 50. (Contributed by Andrew Salmon, 24-Nov-2011.)
Assertion
Ref Expression
smoiso ((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴𝐵 ⊆ On) → Smo 𝐹)

Proof of Theorem smoiso
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isof1o 5662 . . . 4 (𝐹 Isom E , E (𝐴, 𝐵) → 𝐹:𝐴1-1-onto𝐵)
2 f1of 5323 . . . 4 (𝐹:𝐴1-1-onto𝐵𝐹:𝐴𝐵)
31, 2syl 14 . . 3 (𝐹 Isom E , E (𝐴, 𝐵) → 𝐹:𝐴𝐵)
4 ffdm 5251 . . . . . 6 (𝐹:𝐴𝐵 → (𝐹:dom 𝐹𝐵 ∧ dom 𝐹𝐴))
54simpld 111 . . . . 5 (𝐹:𝐴𝐵𝐹:dom 𝐹𝐵)
6 fss 5242 . . . . 5 ((𝐹:dom 𝐹𝐵𝐵 ⊆ On) → 𝐹:dom 𝐹⟶On)
75, 6sylan 279 . . . 4 ((𝐹:𝐴𝐵𝐵 ⊆ On) → 𝐹:dom 𝐹⟶On)
873adant2 983 . . 3 ((𝐹:𝐴𝐵 ∧ Ord 𝐴𝐵 ⊆ On) → 𝐹:dom 𝐹⟶On)
93, 8syl3an1 1232 . 2 ((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴𝐵 ⊆ On) → 𝐹:dom 𝐹⟶On)
10 fdm 5236 . . . . . 6 (𝐹:𝐴𝐵 → dom 𝐹 = 𝐴)
1110eqcomd 2120 . . . . 5 (𝐹:𝐴𝐵𝐴 = dom 𝐹)
12 ordeq 4254 . . . . 5 (𝐴 = dom 𝐹 → (Ord 𝐴 ↔ Ord dom 𝐹))
131, 2, 11, 124syl 18 . . . 4 (𝐹 Isom E , E (𝐴, 𝐵) → (Ord 𝐴 ↔ Ord dom 𝐹))
1413biimpa 292 . . 3 ((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴) → Ord dom 𝐹)
15143adant3 984 . 2 ((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴𝐵 ⊆ On) → Ord dom 𝐹)
1610eleq2d 2184 . . . . . . 7 (𝐹:𝐴𝐵 → (𝑥 ∈ dom 𝐹𝑥𝐴))
1710eleq2d 2184 . . . . . . 7 (𝐹:𝐴𝐵 → (𝑦 ∈ dom 𝐹𝑦𝐴))
1816, 17anbi12d 462 . . . . . 6 (𝐹:𝐴𝐵 → ((𝑥 ∈ dom 𝐹𝑦 ∈ dom 𝐹) ↔ (𝑥𝐴𝑦𝐴)))
191, 2, 183syl 17 . . . . 5 (𝐹 Isom E , E (𝐴, 𝐵) → ((𝑥 ∈ dom 𝐹𝑦 ∈ dom 𝐹) ↔ (𝑥𝐴𝑦𝐴)))
20 epel 4174 . . . . . . . . 9 (𝑥 E 𝑦𝑥𝑦)
21 isorel 5663 . . . . . . . . 9 ((𝐹 Isom E , E (𝐴, 𝐵) ∧ (𝑥𝐴𝑦𝐴)) → (𝑥 E 𝑦 ↔ (𝐹𝑥) E (𝐹𝑦)))
2220, 21syl5bbr 193 . . . . . . . 8 ((𝐹 Isom E , E (𝐴, 𝐵) ∧ (𝑥𝐴𝑦𝐴)) → (𝑥𝑦 ↔ (𝐹𝑥) E (𝐹𝑦)))
23 ffn 5230 . . . . . . . . . . 11 (𝐹:𝐴𝐵𝐹 Fn 𝐴)
243, 23syl 14 . . . . . . . . . 10 (𝐹 Isom E , E (𝐴, 𝐵) → 𝐹 Fn 𝐴)
2524adantr 272 . . . . . . . . 9 ((𝐹 Isom E , E (𝐴, 𝐵) ∧ (𝑥𝐴𝑦𝐴)) → 𝐹 Fn 𝐴)
26 simprr 504 . . . . . . . . 9 ((𝐹 Isom E , E (𝐴, 𝐵) ∧ (𝑥𝐴𝑦𝐴)) → 𝑦𝐴)
27 funfvex 5392 . . . . . . . . . . 11 ((Fun 𝐹𝑦 ∈ dom 𝐹) → (𝐹𝑦) ∈ V)
2827funfni 5181 . . . . . . . . . 10 ((𝐹 Fn 𝐴𝑦𝐴) → (𝐹𝑦) ∈ V)
29 epelg 4172 . . . . . . . . . 10 ((𝐹𝑦) ∈ V → ((𝐹𝑥) E (𝐹𝑦) ↔ (𝐹𝑥) ∈ (𝐹𝑦)))
3028, 29syl 14 . . . . . . . . 9 ((𝐹 Fn 𝐴𝑦𝐴) → ((𝐹𝑥) E (𝐹𝑦) ↔ (𝐹𝑥) ∈ (𝐹𝑦)))
3125, 26, 30syl2anc 406 . . . . . . . 8 ((𝐹 Isom E , E (𝐴, 𝐵) ∧ (𝑥𝐴𝑦𝐴)) → ((𝐹𝑥) E (𝐹𝑦) ↔ (𝐹𝑥) ∈ (𝐹𝑦)))
3222, 31bitrd 187 . . . . . . 7 ((𝐹 Isom E , E (𝐴, 𝐵) ∧ (𝑥𝐴𝑦𝐴)) → (𝑥𝑦 ↔ (𝐹𝑥) ∈ (𝐹𝑦)))
3332biimpd 143 . . . . . 6 ((𝐹 Isom E , E (𝐴, 𝐵) ∧ (𝑥𝐴𝑦𝐴)) → (𝑥𝑦 → (𝐹𝑥) ∈ (𝐹𝑦)))
3433ex 114 . . . . 5 (𝐹 Isom E , E (𝐴, 𝐵) → ((𝑥𝐴𝑦𝐴) → (𝑥𝑦 → (𝐹𝑥) ∈ (𝐹𝑦))))
3519, 34sylbid 149 . . . 4 (𝐹 Isom E , E (𝐴, 𝐵) → ((𝑥 ∈ dom 𝐹𝑦 ∈ dom 𝐹) → (𝑥𝑦 → (𝐹𝑥) ∈ (𝐹𝑦))))
3635ralrimivv 2487 . . 3 (𝐹 Isom E , E (𝐴, 𝐵) → ∀𝑥 ∈ dom 𝐹𝑦 ∈ dom 𝐹(𝑥𝑦 → (𝐹𝑥) ∈ (𝐹𝑦)))
37363ad2ant1 985 . 2 ((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴𝐵 ⊆ On) → ∀𝑥 ∈ dom 𝐹𝑦 ∈ dom 𝐹(𝑥𝑦 → (𝐹𝑥) ∈ (𝐹𝑦)))
38 df-smo 6137 . 2 (Smo 𝐹 ↔ (𝐹:dom 𝐹⟶On ∧ Ord dom 𝐹 ∧ ∀𝑥 ∈ dom 𝐹𝑦 ∈ dom 𝐹(𝑥𝑦 → (𝐹𝑥) ∈ (𝐹𝑦))))
399, 15, 37, 38syl3anbrc 1148 1 ((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴𝐵 ⊆ On) → Smo 𝐹)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  w3a 945   = wceq 1314  wcel 1463  wral 2390  Vcvv 2657  wss 3037   class class class wbr 3895   E cep 4169  Ord word 4244  Oncon0 4245  dom cdm 4499   Fn wfn 5076  wf 5077  1-1-ontowf1o 5080  cfv 5081   Isom wiso 5082  Smo wsmo 6136
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-14 1475  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097  ax-sep 4006  ax-pow 4058  ax-pr 4091
This theorem depends on definitions:  df-bi 116  df-3an 947  df-tru 1317  df-nf 1420  df-sb 1719  df-eu 1978  df-mo 1979  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2244  df-ral 2395  df-rex 2396  df-v 2659  df-sbc 2879  df-un 3041  df-in 3043  df-ss 3050  df-pw 3478  df-sn 3499  df-pr 3500  df-op 3502  df-uni 3703  df-br 3896  df-opab 3950  df-tr 3987  df-eprel 4171  df-id 4175  df-iord 4248  df-cnv 4507  df-co 4508  df-dm 4509  df-iota 5046  df-fun 5083  df-fn 5084  df-f 5085  df-f1 5086  df-f1o 5088  df-fv 5089  df-isom 5090  df-smo 6137
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator