ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  smoiso GIF version

Theorem smoiso 6302
Description: If 𝐹 is an isomorphism from an ordinal 𝐴 onto 𝐡, which is a subset of the ordinals, then 𝐹 is a strictly monotonic function. Exercise 3 in [TakeutiZaring] p. 50. (Contributed by Andrew Salmon, 24-Nov-2011.)
Assertion
Ref Expression
smoiso ((𝐹 Isom E , E (𝐴, 𝐡) ∧ Ord 𝐴 ∧ 𝐡 βŠ† On) β†’ Smo 𝐹)

Proof of Theorem smoiso
Dummy variables π‘₯ 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isof1o 5807 . . . 4 (𝐹 Isom E , E (𝐴, 𝐡) β†’ 𝐹:𝐴–1-1-onto→𝐡)
2 f1of 5461 . . . 4 (𝐹:𝐴–1-1-onto→𝐡 β†’ 𝐹:𝐴⟢𝐡)
31, 2syl 14 . . 3 (𝐹 Isom E , E (𝐴, 𝐡) β†’ 𝐹:𝐴⟢𝐡)
4 ffdm 5386 . . . . . 6 (𝐹:𝐴⟢𝐡 β†’ (𝐹:dom 𝐹⟢𝐡 ∧ dom 𝐹 βŠ† 𝐴))
54simpld 112 . . . . 5 (𝐹:𝐴⟢𝐡 β†’ 𝐹:dom 𝐹⟢𝐡)
6 fss 5377 . . . . 5 ((𝐹:dom 𝐹⟢𝐡 ∧ 𝐡 βŠ† On) β†’ 𝐹:dom 𝐹⟢On)
75, 6sylan 283 . . . 4 ((𝐹:𝐴⟢𝐡 ∧ 𝐡 βŠ† On) β†’ 𝐹:dom 𝐹⟢On)
873adant2 1016 . . 3 ((𝐹:𝐴⟢𝐡 ∧ Ord 𝐴 ∧ 𝐡 βŠ† On) β†’ 𝐹:dom 𝐹⟢On)
93, 8syl3an1 1271 . 2 ((𝐹 Isom E , E (𝐴, 𝐡) ∧ Ord 𝐴 ∧ 𝐡 βŠ† On) β†’ 𝐹:dom 𝐹⟢On)
10 fdm 5371 . . . . . 6 (𝐹:𝐴⟢𝐡 β†’ dom 𝐹 = 𝐴)
1110eqcomd 2183 . . . . 5 (𝐹:𝐴⟢𝐡 β†’ 𝐴 = dom 𝐹)
12 ordeq 4372 . . . . 5 (𝐴 = dom 𝐹 β†’ (Ord 𝐴 ↔ Ord dom 𝐹))
131, 2, 11, 124syl 18 . . . 4 (𝐹 Isom E , E (𝐴, 𝐡) β†’ (Ord 𝐴 ↔ Ord dom 𝐹))
1413biimpa 296 . . 3 ((𝐹 Isom E , E (𝐴, 𝐡) ∧ Ord 𝐴) β†’ Ord dom 𝐹)
15143adant3 1017 . 2 ((𝐹 Isom E , E (𝐴, 𝐡) ∧ Ord 𝐴 ∧ 𝐡 βŠ† On) β†’ Ord dom 𝐹)
1610eleq2d 2247 . . . . . . 7 (𝐹:𝐴⟢𝐡 β†’ (π‘₯ ∈ dom 𝐹 ↔ π‘₯ ∈ 𝐴))
1710eleq2d 2247 . . . . . . 7 (𝐹:𝐴⟢𝐡 β†’ (𝑦 ∈ dom 𝐹 ↔ 𝑦 ∈ 𝐴))
1816, 17anbi12d 473 . . . . . 6 (𝐹:𝐴⟢𝐡 β†’ ((π‘₯ ∈ dom 𝐹 ∧ 𝑦 ∈ dom 𝐹) ↔ (π‘₯ ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)))
191, 2, 183syl 17 . . . . 5 (𝐹 Isom E , E (𝐴, 𝐡) β†’ ((π‘₯ ∈ dom 𝐹 ∧ 𝑦 ∈ dom 𝐹) ↔ (π‘₯ ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)))
20 epel 4292 . . . . . . . . 9 (π‘₯ E 𝑦 ↔ π‘₯ ∈ 𝑦)
21 isorel 5808 . . . . . . . . 9 ((𝐹 Isom E , E (𝐴, 𝐡) ∧ (π‘₯ ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) β†’ (π‘₯ E 𝑦 ↔ (πΉβ€˜π‘₯) E (πΉβ€˜π‘¦)))
2220, 21bitr3id 194 . . . . . . . 8 ((𝐹 Isom E , E (𝐴, 𝐡) ∧ (π‘₯ ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) β†’ (π‘₯ ∈ 𝑦 ↔ (πΉβ€˜π‘₯) E (πΉβ€˜π‘¦)))
23 ffn 5365 . . . . . . . . . . 11 (𝐹:𝐴⟢𝐡 β†’ 𝐹 Fn 𝐴)
243, 23syl 14 . . . . . . . . . 10 (𝐹 Isom E , E (𝐴, 𝐡) β†’ 𝐹 Fn 𝐴)
2524adantr 276 . . . . . . . . 9 ((𝐹 Isom E , E (𝐴, 𝐡) ∧ (π‘₯ ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) β†’ 𝐹 Fn 𝐴)
26 simprr 531 . . . . . . . . 9 ((𝐹 Isom E , E (𝐴, 𝐡) ∧ (π‘₯ ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) β†’ 𝑦 ∈ 𝐴)
27 funfvex 5532 . . . . . . . . . . 11 ((Fun 𝐹 ∧ 𝑦 ∈ dom 𝐹) β†’ (πΉβ€˜π‘¦) ∈ V)
2827funfni 5316 . . . . . . . . . 10 ((𝐹 Fn 𝐴 ∧ 𝑦 ∈ 𝐴) β†’ (πΉβ€˜π‘¦) ∈ V)
29 epelg 4290 . . . . . . . . . 10 ((πΉβ€˜π‘¦) ∈ V β†’ ((πΉβ€˜π‘₯) E (πΉβ€˜π‘¦) ↔ (πΉβ€˜π‘₯) ∈ (πΉβ€˜π‘¦)))
3028, 29syl 14 . . . . . . . . 9 ((𝐹 Fn 𝐴 ∧ 𝑦 ∈ 𝐴) β†’ ((πΉβ€˜π‘₯) E (πΉβ€˜π‘¦) ↔ (πΉβ€˜π‘₯) ∈ (πΉβ€˜π‘¦)))
3125, 26, 30syl2anc 411 . . . . . . . 8 ((𝐹 Isom E , E (𝐴, 𝐡) ∧ (π‘₯ ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) β†’ ((πΉβ€˜π‘₯) E (πΉβ€˜π‘¦) ↔ (πΉβ€˜π‘₯) ∈ (πΉβ€˜π‘¦)))
3222, 31bitrd 188 . . . . . . 7 ((𝐹 Isom E , E (𝐴, 𝐡) ∧ (π‘₯ ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) β†’ (π‘₯ ∈ 𝑦 ↔ (πΉβ€˜π‘₯) ∈ (πΉβ€˜π‘¦)))
3332biimpd 144 . . . . . 6 ((𝐹 Isom E , E (𝐴, 𝐡) ∧ (π‘₯ ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) β†’ (π‘₯ ∈ 𝑦 β†’ (πΉβ€˜π‘₯) ∈ (πΉβ€˜π‘¦)))
3433ex 115 . . . . 5 (𝐹 Isom E , E (𝐴, 𝐡) β†’ ((π‘₯ ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) β†’ (π‘₯ ∈ 𝑦 β†’ (πΉβ€˜π‘₯) ∈ (πΉβ€˜π‘¦))))
3519, 34sylbid 150 . . . 4 (𝐹 Isom E , E (𝐴, 𝐡) β†’ ((π‘₯ ∈ dom 𝐹 ∧ 𝑦 ∈ dom 𝐹) β†’ (π‘₯ ∈ 𝑦 β†’ (πΉβ€˜π‘₯) ∈ (πΉβ€˜π‘¦))))
3635ralrimivv 2558 . . 3 (𝐹 Isom E , E (𝐴, 𝐡) β†’ βˆ€π‘₯ ∈ dom πΉβˆ€π‘¦ ∈ dom 𝐹(π‘₯ ∈ 𝑦 β†’ (πΉβ€˜π‘₯) ∈ (πΉβ€˜π‘¦)))
37363ad2ant1 1018 . 2 ((𝐹 Isom E , E (𝐴, 𝐡) ∧ Ord 𝐴 ∧ 𝐡 βŠ† On) β†’ βˆ€π‘₯ ∈ dom πΉβˆ€π‘¦ ∈ dom 𝐹(π‘₯ ∈ 𝑦 β†’ (πΉβ€˜π‘₯) ∈ (πΉβ€˜π‘¦)))
38 df-smo 6286 . 2 (Smo 𝐹 ↔ (𝐹:dom 𝐹⟢On ∧ Ord dom 𝐹 ∧ βˆ€π‘₯ ∈ dom πΉβˆ€π‘¦ ∈ dom 𝐹(π‘₯ ∈ 𝑦 β†’ (πΉβ€˜π‘₯) ∈ (πΉβ€˜π‘¦))))
399, 15, 37, 38syl3anbrc 1181 1 ((𝐹 Isom E , E (𝐴, 𝐡) ∧ Ord 𝐴 ∧ 𝐡 βŠ† On) β†’ Smo 𝐹)
Colors of variables: wff set class
Syntax hints:   β†’ wi 4   ∧ wa 104   ↔ wb 105   ∧ w3a 978   = wceq 1353   ∈ wcel 2148  βˆ€wral 2455  Vcvv 2737   βŠ† wss 3129   class class class wbr 4003   E cep 4287  Ord word 4362  Oncon0 4363  dom cdm 4626   Fn wfn 5211  βŸΆwf 5212  β€“1-1-ontoβ†’wf1o 5215  β€˜cfv 5216   Isom wiso 5217  Smo wsmo 6285
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4121  ax-pow 4174  ax-pr 4209
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2739  df-sbc 2963  df-un 3133  df-in 3135  df-ss 3142  df-pw 3577  df-sn 3598  df-pr 3599  df-op 3601  df-uni 3810  df-br 4004  df-opab 4065  df-tr 4102  df-eprel 4289  df-id 4293  df-iord 4366  df-cnv 4634  df-co 4635  df-dm 4636  df-iota 5178  df-fun 5218  df-fn 5219  df-f 5220  df-f1 5221  df-f1o 5223  df-fv 5224  df-isom 5225  df-smo 6286
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator