Step | Hyp | Ref
| Expression |
1 | | isof1o 5775 |
. . . 4
⊢ (𝐹 Isom E , E (𝐴, 𝐵) → 𝐹:𝐴–1-1-onto→𝐵) |
2 | | f1of 5432 |
. . . 4
⊢ (𝐹:𝐴–1-1-onto→𝐵 → 𝐹:𝐴⟶𝐵) |
3 | 1, 2 | syl 14 |
. . 3
⊢ (𝐹 Isom E , E (𝐴, 𝐵) → 𝐹:𝐴⟶𝐵) |
4 | | ffdm 5358 |
. . . . . 6
⊢ (𝐹:𝐴⟶𝐵 → (𝐹:dom 𝐹⟶𝐵 ∧ dom 𝐹 ⊆ 𝐴)) |
5 | 4 | simpld 111 |
. . . . 5
⊢ (𝐹:𝐴⟶𝐵 → 𝐹:dom 𝐹⟶𝐵) |
6 | | fss 5349 |
. . . . 5
⊢ ((𝐹:dom 𝐹⟶𝐵 ∧ 𝐵 ⊆ On) → 𝐹:dom 𝐹⟶On) |
7 | 5, 6 | sylan 281 |
. . . 4
⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐵 ⊆ On) → 𝐹:dom 𝐹⟶On) |
8 | 7 | 3adant2 1006 |
. . 3
⊢ ((𝐹:𝐴⟶𝐵 ∧ Ord 𝐴 ∧ 𝐵 ⊆ On) → 𝐹:dom 𝐹⟶On) |
9 | 3, 8 | syl3an1 1261 |
. 2
⊢ ((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ 𝐵 ⊆ On) → 𝐹:dom 𝐹⟶On) |
10 | | fdm 5343 |
. . . . . 6
⊢ (𝐹:𝐴⟶𝐵 → dom 𝐹 = 𝐴) |
11 | 10 | eqcomd 2171 |
. . . . 5
⊢ (𝐹:𝐴⟶𝐵 → 𝐴 = dom 𝐹) |
12 | | ordeq 4350 |
. . . . 5
⊢ (𝐴 = dom 𝐹 → (Ord 𝐴 ↔ Ord dom 𝐹)) |
13 | 1, 2, 11, 12 | 4syl 18 |
. . . 4
⊢ (𝐹 Isom E , E (𝐴, 𝐵) → (Ord 𝐴 ↔ Ord dom 𝐹)) |
14 | 13 | biimpa 294 |
. . 3
⊢ ((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴) → Ord dom 𝐹) |
15 | 14 | 3adant3 1007 |
. 2
⊢ ((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ 𝐵 ⊆ On) → Ord dom 𝐹) |
16 | 10 | eleq2d 2236 |
. . . . . . 7
⊢ (𝐹:𝐴⟶𝐵 → (𝑥 ∈ dom 𝐹 ↔ 𝑥 ∈ 𝐴)) |
17 | 10 | eleq2d 2236 |
. . . . . . 7
⊢ (𝐹:𝐴⟶𝐵 → (𝑦 ∈ dom 𝐹 ↔ 𝑦 ∈ 𝐴)) |
18 | 16, 17 | anbi12d 465 |
. . . . . 6
⊢ (𝐹:𝐴⟶𝐵 → ((𝑥 ∈ dom 𝐹 ∧ 𝑦 ∈ dom 𝐹) ↔ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴))) |
19 | 1, 2, 18 | 3syl 17 |
. . . . 5
⊢ (𝐹 Isom E , E (𝐴, 𝐵) → ((𝑥 ∈ dom 𝐹 ∧ 𝑦 ∈ dom 𝐹) ↔ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴))) |
20 | | epel 4270 |
. . . . . . . . 9
⊢ (𝑥 E 𝑦 ↔ 𝑥 ∈ 𝑦) |
21 | | isorel 5776 |
. . . . . . . . 9
⊢ ((𝐹 Isom E , E (𝐴, 𝐵) ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → (𝑥 E 𝑦 ↔ (𝐹‘𝑥) E (𝐹‘𝑦))) |
22 | 20, 21 | bitr3id 193 |
. . . . . . . 8
⊢ ((𝐹 Isom E , E (𝐴, 𝐵) ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → (𝑥 ∈ 𝑦 ↔ (𝐹‘𝑥) E (𝐹‘𝑦))) |
23 | | ffn 5337 |
. . . . . . . . . . 11
⊢ (𝐹:𝐴⟶𝐵 → 𝐹 Fn 𝐴) |
24 | 3, 23 | syl 14 |
. . . . . . . . . 10
⊢ (𝐹 Isom E , E (𝐴, 𝐵) → 𝐹 Fn 𝐴) |
25 | 24 | adantr 274 |
. . . . . . . . 9
⊢ ((𝐹 Isom E , E (𝐴, 𝐵) ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → 𝐹 Fn 𝐴) |
26 | | simprr 522 |
. . . . . . . . 9
⊢ ((𝐹 Isom E , E (𝐴, 𝐵) ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → 𝑦 ∈ 𝐴) |
27 | | funfvex 5503 |
. . . . . . . . . . 11
⊢ ((Fun
𝐹 ∧ 𝑦 ∈ dom 𝐹) → (𝐹‘𝑦) ∈ V) |
28 | 27 | funfni 5288 |
. . . . . . . . . 10
⊢ ((𝐹 Fn 𝐴 ∧ 𝑦 ∈ 𝐴) → (𝐹‘𝑦) ∈ V) |
29 | | epelg 4268 |
. . . . . . . . . 10
⊢ ((𝐹‘𝑦) ∈ V → ((𝐹‘𝑥) E (𝐹‘𝑦) ↔ (𝐹‘𝑥) ∈ (𝐹‘𝑦))) |
30 | 28, 29 | syl 14 |
. . . . . . . . 9
⊢ ((𝐹 Fn 𝐴 ∧ 𝑦 ∈ 𝐴) → ((𝐹‘𝑥) E (𝐹‘𝑦) ↔ (𝐹‘𝑥) ∈ (𝐹‘𝑦))) |
31 | 25, 26, 30 | syl2anc 409 |
. . . . . . . 8
⊢ ((𝐹 Isom E , E (𝐴, 𝐵) ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → ((𝐹‘𝑥) E (𝐹‘𝑦) ↔ (𝐹‘𝑥) ∈ (𝐹‘𝑦))) |
32 | 22, 31 | bitrd 187 |
. . . . . . 7
⊢ ((𝐹 Isom E , E (𝐴, 𝐵) ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → (𝑥 ∈ 𝑦 ↔ (𝐹‘𝑥) ∈ (𝐹‘𝑦))) |
33 | 32 | biimpd 143 |
. . . . . 6
⊢ ((𝐹 Isom E , E (𝐴, 𝐵) ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → (𝑥 ∈ 𝑦 → (𝐹‘𝑥) ∈ (𝐹‘𝑦))) |
34 | 33 | ex 114 |
. . . . 5
⊢ (𝐹 Isom E , E (𝐴, 𝐵) → ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → (𝑥 ∈ 𝑦 → (𝐹‘𝑥) ∈ (𝐹‘𝑦)))) |
35 | 19, 34 | sylbid 149 |
. . . 4
⊢ (𝐹 Isom E , E (𝐴, 𝐵) → ((𝑥 ∈ dom 𝐹 ∧ 𝑦 ∈ dom 𝐹) → (𝑥 ∈ 𝑦 → (𝐹‘𝑥) ∈ (𝐹‘𝑦)))) |
36 | 35 | ralrimivv 2547 |
. . 3
⊢ (𝐹 Isom E , E (𝐴, 𝐵) → ∀𝑥 ∈ dom 𝐹∀𝑦 ∈ dom 𝐹(𝑥 ∈ 𝑦 → (𝐹‘𝑥) ∈ (𝐹‘𝑦))) |
37 | 36 | 3ad2ant1 1008 |
. 2
⊢ ((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ 𝐵 ⊆ On) → ∀𝑥 ∈ dom 𝐹∀𝑦 ∈ dom 𝐹(𝑥 ∈ 𝑦 → (𝐹‘𝑥) ∈ (𝐹‘𝑦))) |
38 | | df-smo 6254 |
. 2
⊢ (Smo
𝐹 ↔ (𝐹:dom 𝐹⟶On ∧ Ord dom 𝐹 ∧ ∀𝑥 ∈ dom 𝐹∀𝑦 ∈ dom 𝐹(𝑥 ∈ 𝑦 → (𝐹‘𝑥) ∈ (𝐹‘𝑦)))) |
39 | 9, 15, 37, 38 | syl3anbrc 1171 |
1
⊢ ((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ 𝐵 ⊆ On) → Smo 𝐹) |