ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  smoel GIF version

Theorem smoel 6303
Description: If π‘₯ is less than 𝑦 then a strictly monotone function's value will be strictly less at π‘₯ than at 𝑦. (Contributed by Andrew Salmon, 22-Nov-2011.)
Assertion
Ref Expression
smoel ((Smo 𝐡 ∧ 𝐴 ∈ dom 𝐡 ∧ 𝐢 ∈ 𝐴) β†’ (π΅β€˜πΆ) ∈ (π΅β€˜π΄))

Proof of Theorem smoel
Dummy variables π‘₯ 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 smodm 6294 . . . . 5 (Smo 𝐡 β†’ Ord dom 𝐡)
2 ordtr1 4390 . . . . . . 7 (Ord dom 𝐡 β†’ ((𝐢 ∈ 𝐴 ∧ 𝐴 ∈ dom 𝐡) β†’ 𝐢 ∈ dom 𝐡))
32ancomsd 269 . . . . . 6 (Ord dom 𝐡 β†’ ((𝐴 ∈ dom 𝐡 ∧ 𝐢 ∈ 𝐴) β†’ 𝐢 ∈ dom 𝐡))
43expdimp 259 . . . . 5 ((Ord dom 𝐡 ∧ 𝐴 ∈ dom 𝐡) β†’ (𝐢 ∈ 𝐴 β†’ 𝐢 ∈ dom 𝐡))
51, 4sylan 283 . . . 4 ((Smo 𝐡 ∧ 𝐴 ∈ dom 𝐡) β†’ (𝐢 ∈ 𝐴 β†’ 𝐢 ∈ dom 𝐡))
6 df-smo 6289 . . . . . 6 (Smo 𝐡 ↔ (𝐡:dom 𝐡⟢On ∧ Ord dom 𝐡 ∧ βˆ€π‘₯ ∈ dom π΅βˆ€π‘¦ ∈ dom 𝐡(π‘₯ ∈ 𝑦 β†’ (π΅β€˜π‘₯) ∈ (π΅β€˜π‘¦))))
7 eleq1 2240 . . . . . . . . . . 11 (π‘₯ = 𝐢 β†’ (π‘₯ ∈ 𝑦 ↔ 𝐢 ∈ 𝑦))
8 fveq2 5517 . . . . . . . . . . . 12 (π‘₯ = 𝐢 β†’ (π΅β€˜π‘₯) = (π΅β€˜πΆ))
98eleq1d 2246 . . . . . . . . . . 11 (π‘₯ = 𝐢 β†’ ((π΅β€˜π‘₯) ∈ (π΅β€˜π‘¦) ↔ (π΅β€˜πΆ) ∈ (π΅β€˜π‘¦)))
107, 9imbi12d 234 . . . . . . . . . 10 (π‘₯ = 𝐢 β†’ ((π‘₯ ∈ 𝑦 β†’ (π΅β€˜π‘₯) ∈ (π΅β€˜π‘¦)) ↔ (𝐢 ∈ 𝑦 β†’ (π΅β€˜πΆ) ∈ (π΅β€˜π‘¦))))
11 eleq2 2241 . . . . . . . . . . 11 (𝑦 = 𝐴 β†’ (𝐢 ∈ 𝑦 ↔ 𝐢 ∈ 𝐴))
12 fveq2 5517 . . . . . . . . . . . 12 (𝑦 = 𝐴 β†’ (π΅β€˜π‘¦) = (π΅β€˜π΄))
1312eleq2d 2247 . . . . . . . . . . 11 (𝑦 = 𝐴 β†’ ((π΅β€˜πΆ) ∈ (π΅β€˜π‘¦) ↔ (π΅β€˜πΆ) ∈ (π΅β€˜π΄)))
1411, 13imbi12d 234 . . . . . . . . . 10 (𝑦 = 𝐴 β†’ ((𝐢 ∈ 𝑦 β†’ (π΅β€˜πΆ) ∈ (π΅β€˜π‘¦)) ↔ (𝐢 ∈ 𝐴 β†’ (π΅β€˜πΆ) ∈ (π΅β€˜π΄))))
1510, 14rspc2v 2856 . . . . . . . . 9 ((𝐢 ∈ dom 𝐡 ∧ 𝐴 ∈ dom 𝐡) β†’ (βˆ€π‘₯ ∈ dom π΅βˆ€π‘¦ ∈ dom 𝐡(π‘₯ ∈ 𝑦 β†’ (π΅β€˜π‘₯) ∈ (π΅β€˜π‘¦)) β†’ (𝐢 ∈ 𝐴 β†’ (π΅β€˜πΆ) ∈ (π΅β€˜π΄))))
1615ancoms 268 . . . . . . . 8 ((𝐴 ∈ dom 𝐡 ∧ 𝐢 ∈ dom 𝐡) β†’ (βˆ€π‘₯ ∈ dom π΅βˆ€π‘¦ ∈ dom 𝐡(π‘₯ ∈ 𝑦 β†’ (π΅β€˜π‘₯) ∈ (π΅β€˜π‘¦)) β†’ (𝐢 ∈ 𝐴 β†’ (π΅β€˜πΆ) ∈ (π΅β€˜π΄))))
1716com12 30 . . . . . . 7 (βˆ€π‘₯ ∈ dom π΅βˆ€π‘¦ ∈ dom 𝐡(π‘₯ ∈ 𝑦 β†’ (π΅β€˜π‘₯) ∈ (π΅β€˜π‘¦)) β†’ ((𝐴 ∈ dom 𝐡 ∧ 𝐢 ∈ dom 𝐡) β†’ (𝐢 ∈ 𝐴 β†’ (π΅β€˜πΆ) ∈ (π΅β€˜π΄))))
18173ad2ant3 1020 . . . . . 6 ((𝐡:dom 𝐡⟢On ∧ Ord dom 𝐡 ∧ βˆ€π‘₯ ∈ dom π΅βˆ€π‘¦ ∈ dom 𝐡(π‘₯ ∈ 𝑦 β†’ (π΅β€˜π‘₯) ∈ (π΅β€˜π‘¦))) β†’ ((𝐴 ∈ dom 𝐡 ∧ 𝐢 ∈ dom 𝐡) β†’ (𝐢 ∈ 𝐴 β†’ (π΅β€˜πΆ) ∈ (π΅β€˜π΄))))
196, 18sylbi 121 . . . . 5 (Smo 𝐡 β†’ ((𝐴 ∈ dom 𝐡 ∧ 𝐢 ∈ dom 𝐡) β†’ (𝐢 ∈ 𝐴 β†’ (π΅β€˜πΆ) ∈ (π΅β€˜π΄))))
2019expdimp 259 . . . 4 ((Smo 𝐡 ∧ 𝐴 ∈ dom 𝐡) β†’ (𝐢 ∈ dom 𝐡 β†’ (𝐢 ∈ 𝐴 β†’ (π΅β€˜πΆ) ∈ (π΅β€˜π΄))))
215, 20syld 45 . . 3 ((Smo 𝐡 ∧ 𝐴 ∈ dom 𝐡) β†’ (𝐢 ∈ 𝐴 β†’ (𝐢 ∈ 𝐴 β†’ (π΅β€˜πΆ) ∈ (π΅β€˜π΄))))
2221pm2.43d 50 . 2 ((Smo 𝐡 ∧ 𝐴 ∈ dom 𝐡) β†’ (𝐢 ∈ 𝐴 β†’ (π΅β€˜πΆ) ∈ (π΅β€˜π΄)))
23223impia 1200 1 ((Smo 𝐡 ∧ 𝐴 ∈ dom 𝐡 ∧ 𝐢 ∈ 𝐴) β†’ (π΅β€˜πΆ) ∈ (π΅β€˜π΄))
Colors of variables: wff set class
Syntax hints:   β†’ wi 4   ∧ wa 104   ∧ w3a 978   = wceq 1353   ∈ wcel 2148  βˆ€wral 2455  Ord word 4364  Oncon0 4365  dom cdm 4628  βŸΆwf 5214  β€˜cfv 5218  Smo wsmo 6288
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2741  df-un 3135  df-in 3137  df-ss 3144  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-br 4006  df-tr 4104  df-iord 4368  df-iota 5180  df-fv 5226  df-smo 6289
This theorem is referenced by:  smoiun  6304  smoel2  6306
  Copyright terms: Public domain W3C validator