| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ifpprsnssdc | GIF version | ||
| Description: An unordered pair is a singleton or a subset of itself. This theorem is helpful to convert theorems about walks in arbitrary graphs into theorems about walks in pseudographs. (Contributed by AV, 27-Feb-2021.) |
| Ref | Expression |
|---|---|
| ifpprsnssdc | ⊢ ((𝑃 = {𝐴, 𝐵} ∧ DECID 𝐴 = 𝐵) → if-(𝐴 = 𝐵, 𝑃 = {𝐴}, {𝐴, 𝐵} ⊆ 𝑃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | preq2 3744 | . . . . . . 7 ⊢ (𝐵 = 𝐴 → {𝐴, 𝐵} = {𝐴, 𝐴}) | |
| 2 | dfsn2 3680 | . . . . . . 7 ⊢ {𝐴} = {𝐴, 𝐴} | |
| 3 | 1, 2 | eqtr4di 2280 | . . . . . 6 ⊢ (𝐵 = 𝐴 → {𝐴, 𝐵} = {𝐴}) |
| 4 | 3 | eqcoms 2232 | . . . . 5 ⊢ (𝐴 = 𝐵 → {𝐴, 𝐵} = {𝐴}) |
| 5 | 4 | eqeq2d 2241 | . . . 4 ⊢ (𝐴 = 𝐵 → (𝑃 = {𝐴, 𝐵} ↔ 𝑃 = {𝐴})) |
| 6 | 5 | biimpcd 159 | . . 3 ⊢ (𝑃 = {𝐴, 𝐵} → (𝐴 = 𝐵 → 𝑃 = {𝐴})) |
| 7 | 6 | adantr 276 | . 2 ⊢ ((𝑃 = {𝐴, 𝐵} ∧ DECID 𝐴 = 𝐵) → (𝐴 = 𝐵 → 𝑃 = {𝐴})) |
| 8 | eqimss2 3279 | . . . 4 ⊢ (𝑃 = {𝐴, 𝐵} → {𝐴, 𝐵} ⊆ 𝑃) | |
| 9 | 8 | a1d 22 | . . 3 ⊢ (𝑃 = {𝐴, 𝐵} → (¬ 𝐴 = 𝐵 → {𝐴, 𝐵} ⊆ 𝑃)) |
| 10 | 9 | adantr 276 | . 2 ⊢ ((𝑃 = {𝐴, 𝐵} ∧ DECID 𝐴 = 𝐵) → (¬ 𝐴 = 𝐵 → {𝐴, 𝐵} ⊆ 𝑃)) |
| 11 | dfifp2dc 987 | . . 3 ⊢ (DECID 𝐴 = 𝐵 → (if-(𝐴 = 𝐵, 𝑃 = {𝐴}, {𝐴, 𝐵} ⊆ 𝑃) ↔ ((𝐴 = 𝐵 → 𝑃 = {𝐴}) ∧ (¬ 𝐴 = 𝐵 → {𝐴, 𝐵} ⊆ 𝑃)))) | |
| 12 | 11 | adantl 277 | . 2 ⊢ ((𝑃 = {𝐴, 𝐵} ∧ DECID 𝐴 = 𝐵) → (if-(𝐴 = 𝐵, 𝑃 = {𝐴}, {𝐴, 𝐵} ⊆ 𝑃) ↔ ((𝐴 = 𝐵 → 𝑃 = {𝐴}) ∧ (¬ 𝐴 = 𝐵 → {𝐴, 𝐵} ⊆ 𝑃)))) |
| 13 | 7, 10, 12 | mpbir2and 950 | 1 ⊢ ((𝑃 = {𝐴, 𝐵} ∧ DECID 𝐴 = 𝐵) → if-(𝐴 = 𝐵, 𝑃 = {𝐴}, {𝐴, 𝐵} ⊆ 𝑃)) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ↔ wb 105 DECID wdc 839 if-wif 983 = wceq 1395 ⊆ wss 3197 {csn 3666 {cpr 3667 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-ifp 984 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-sn 3672 df-pr 3673 |
| This theorem is referenced by: upgriswlkdc 16071 |
| Copyright terms: Public domain | W3C validator |