ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ifpprsnssdc GIF version

Theorem ifpprsnssdc 3774
Description: An unordered pair is a singleton or a subset of itself. This theorem is helpful to convert theorems about walks in arbitrary graphs into theorems about walks in pseudographs. (Contributed by AV, 27-Feb-2021.)
Assertion
Ref Expression
ifpprsnssdc ((𝑃 = {𝐴, 𝐵} ∧ DECID 𝐴 = 𝐵) → if-(𝐴 = 𝐵, 𝑃 = {𝐴}, {𝐴, 𝐵} ⊆ 𝑃))

Proof of Theorem ifpprsnssdc
StepHypRef Expression
1 preq2 3744 . . . . . . 7 (𝐵 = 𝐴 → {𝐴, 𝐵} = {𝐴, 𝐴})
2 dfsn2 3680 . . . . . . 7 {𝐴} = {𝐴, 𝐴}
31, 2eqtr4di 2280 . . . . . 6 (𝐵 = 𝐴 → {𝐴, 𝐵} = {𝐴})
43eqcoms 2232 . . . . 5 (𝐴 = 𝐵 → {𝐴, 𝐵} = {𝐴})
54eqeq2d 2241 . . . 4 (𝐴 = 𝐵 → (𝑃 = {𝐴, 𝐵} ↔ 𝑃 = {𝐴}))
65biimpcd 159 . . 3 (𝑃 = {𝐴, 𝐵} → (𝐴 = 𝐵𝑃 = {𝐴}))
76adantr 276 . 2 ((𝑃 = {𝐴, 𝐵} ∧ DECID 𝐴 = 𝐵) → (𝐴 = 𝐵𝑃 = {𝐴}))
8 eqimss2 3279 . . . 4 (𝑃 = {𝐴, 𝐵} → {𝐴, 𝐵} ⊆ 𝑃)
98a1d 22 . . 3 (𝑃 = {𝐴, 𝐵} → (¬ 𝐴 = 𝐵 → {𝐴, 𝐵} ⊆ 𝑃))
109adantr 276 . 2 ((𝑃 = {𝐴, 𝐵} ∧ DECID 𝐴 = 𝐵) → (¬ 𝐴 = 𝐵 → {𝐴, 𝐵} ⊆ 𝑃))
11 dfifp2dc 987 . . 3 (DECID 𝐴 = 𝐵 → (if-(𝐴 = 𝐵, 𝑃 = {𝐴}, {𝐴, 𝐵} ⊆ 𝑃) ↔ ((𝐴 = 𝐵𝑃 = {𝐴}) ∧ (¬ 𝐴 = 𝐵 → {𝐴, 𝐵} ⊆ 𝑃))))
1211adantl 277 . 2 ((𝑃 = {𝐴, 𝐵} ∧ DECID 𝐴 = 𝐵) → (if-(𝐴 = 𝐵, 𝑃 = {𝐴}, {𝐴, 𝐵} ⊆ 𝑃) ↔ ((𝐴 = 𝐵𝑃 = {𝐴}) ∧ (¬ 𝐴 = 𝐵 → {𝐴, 𝐵} ⊆ 𝑃))))
137, 10, 12mpbir2and 950 1 ((𝑃 = {𝐴, 𝐵} ∧ DECID 𝐴 = 𝐵) → if-(𝐴 = 𝐵, 𝑃 = {𝐴}, {𝐴, 𝐵} ⊆ 𝑃))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  DECID wdc 839  if-wif 983   = wceq 1395  wss 3197  {csn 3666  {cpr 3667
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-dc 840  df-ifp 984  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-sn 3672  df-pr 3673
This theorem is referenced by:  upgriswlkdc  16071
  Copyright terms: Public domain W3C validator