Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 1nn | GIF version |
Description: Peano postulate: 1 is a positive integer. (Contributed by NM, 11-Jan-1997.) |
Ref | Expression |
---|---|
1nn | ⊢ 1 ∈ ℕ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfnn2 8859 | . . . 4 ⊢ ℕ = ∩ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)} | |
2 | 1 | eleq2i 2233 | . . 3 ⊢ (1 ∈ ℕ ↔ 1 ∈ ∩ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)}) |
3 | 1re 7898 | . . . 4 ⊢ 1 ∈ ℝ | |
4 | elintg 3832 | . . . 4 ⊢ (1 ∈ ℝ → (1 ∈ ∩ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)} ↔ ∀𝑧 ∈ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)}1 ∈ 𝑧)) | |
5 | 3, 4 | ax-mp 5 | . . 3 ⊢ (1 ∈ ∩ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)} ↔ ∀𝑧 ∈ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)}1 ∈ 𝑧) |
6 | 2, 5 | bitri 183 | . 2 ⊢ (1 ∈ ℕ ↔ ∀𝑧 ∈ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)}1 ∈ 𝑧) |
7 | vex 2729 | . . . 4 ⊢ 𝑧 ∈ V | |
8 | eleq2 2230 | . . . . 5 ⊢ (𝑥 = 𝑧 → (1 ∈ 𝑥 ↔ 1 ∈ 𝑧)) | |
9 | eleq2 2230 | . . . . . 6 ⊢ (𝑥 = 𝑧 → ((𝑦 + 1) ∈ 𝑥 ↔ (𝑦 + 1) ∈ 𝑧)) | |
10 | 9 | raleqbi1dv 2669 | . . . . 5 ⊢ (𝑥 = 𝑧 → (∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥 ↔ ∀𝑦 ∈ 𝑧 (𝑦 + 1) ∈ 𝑧)) |
11 | 8, 10 | anbi12d 465 | . . . 4 ⊢ (𝑥 = 𝑧 → ((1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥) ↔ (1 ∈ 𝑧 ∧ ∀𝑦 ∈ 𝑧 (𝑦 + 1) ∈ 𝑧))) |
12 | 7, 11 | elab 2870 | . . 3 ⊢ (𝑧 ∈ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)} ↔ (1 ∈ 𝑧 ∧ ∀𝑦 ∈ 𝑧 (𝑦 + 1) ∈ 𝑧)) |
13 | 12 | simplbi 272 | . 2 ⊢ (𝑧 ∈ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)} → 1 ∈ 𝑧) |
14 | 6, 13 | mprgbir 2524 | 1 ⊢ 1 ∈ ℕ |
Colors of variables: wff set class |
Syntax hints: ∧ wa 103 ↔ wb 104 ∈ wcel 2136 {cab 2151 ∀wral 2444 ∩ cint 3824 (class class class)co 5842 ℝcr 7752 1c1 7754 + caddc 7756 ℕcn 8857 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 ax-1re 7847 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-v 2728 df-int 3825 df-inn 8858 |
This theorem is referenced by: nnind 8873 nn1suc 8876 2nn 9018 1nn0 9130 nn0p1nn 9153 1z 9217 neg1z 9223 elz2 9262 nneoor 9293 9p1e10 9324 indstr 9531 elnn1uz2 9545 zq 9564 qreccl 9580 fz01or 10046 exp3vallem 10456 exp1 10461 nnexpcl 10468 expnbnd 10578 3dec 10627 fac1 10642 faccl 10648 faclbnd3 10656 fiubnn 10743 resqrexlemf1 10950 resqrexlemcalc3 10958 resqrexlemnmsq 10959 resqrexlemnm 10960 resqrexlemcvg 10961 resqrexlemglsq 10964 resqrexlemga 10965 sumsnf 11350 cvgratnnlemnexp 11465 cvgratnnlemfm 11470 cvgratnnlemrate 11471 cvgratnn 11472 prodsnf 11533 fprodnncl 11551 eftlub 11631 eirraplem 11717 n2dvds1 11849 ndvdsp1 11869 gcd1 11920 bezoutr1 11966 ncoprmgcdne1b 12021 1nprm 12046 1idssfct 12047 isprm2lem 12048 qden1elz 12137 phicl2 12146 phi1 12151 phiprm 12155 eulerthlema 12162 pcpre1 12224 pczpre 12229 pcmptcl 12272 pcmpt 12273 infpnlem2 12290 mul4sq 12324 exmidunben 12359 nninfdc 12386 base0 12443 baseval 12446 baseid 12447 basendx 12448 basendxnn 12449 1strstrg 12493 2strstrg 12495 basendxnplusgndx 12501 basendxnmulrndx 12509 rngstrg 12510 lmodstrd 12528 topgrpstrd 12546 setsmsdsg 13120 lgsdir2lem1 13569 lgsdir2lem4 13572 lgsdir2lem5 13573 lgsdir 13576 lgsne0 13579 lgs1 13585 trilpolemgt1 13918 |
Copyright terms: Public domain | W3C validator |