Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 1nn | GIF version |
Description: Peano postulate: 1 is a positive integer. (Contributed by NM, 11-Jan-1997.) |
Ref | Expression |
---|---|
1nn | ⊢ 1 ∈ ℕ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfnn2 8894 | . . . 4 ⊢ ℕ = ∩ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)} | |
2 | 1 | eleq2i 2242 | . . 3 ⊢ (1 ∈ ℕ ↔ 1 ∈ ∩ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)}) |
3 | 1re 7931 | . . . 4 ⊢ 1 ∈ ℝ | |
4 | elintg 3848 | . . . 4 ⊢ (1 ∈ ℝ → (1 ∈ ∩ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)} ↔ ∀𝑧 ∈ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)}1 ∈ 𝑧)) | |
5 | 3, 4 | ax-mp 5 | . . 3 ⊢ (1 ∈ ∩ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)} ↔ ∀𝑧 ∈ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)}1 ∈ 𝑧) |
6 | 2, 5 | bitri 184 | . 2 ⊢ (1 ∈ ℕ ↔ ∀𝑧 ∈ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)}1 ∈ 𝑧) |
7 | vex 2738 | . . . 4 ⊢ 𝑧 ∈ V | |
8 | eleq2 2239 | . . . . 5 ⊢ (𝑥 = 𝑧 → (1 ∈ 𝑥 ↔ 1 ∈ 𝑧)) | |
9 | eleq2 2239 | . . . . . 6 ⊢ (𝑥 = 𝑧 → ((𝑦 + 1) ∈ 𝑥 ↔ (𝑦 + 1) ∈ 𝑧)) | |
10 | 9 | raleqbi1dv 2678 | . . . . 5 ⊢ (𝑥 = 𝑧 → (∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥 ↔ ∀𝑦 ∈ 𝑧 (𝑦 + 1) ∈ 𝑧)) |
11 | 8, 10 | anbi12d 473 | . . . 4 ⊢ (𝑥 = 𝑧 → ((1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥) ↔ (1 ∈ 𝑧 ∧ ∀𝑦 ∈ 𝑧 (𝑦 + 1) ∈ 𝑧))) |
12 | 7, 11 | elab 2879 | . . 3 ⊢ (𝑧 ∈ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)} ↔ (1 ∈ 𝑧 ∧ ∀𝑦 ∈ 𝑧 (𝑦 + 1) ∈ 𝑧)) |
13 | 12 | simplbi 274 | . 2 ⊢ (𝑧 ∈ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)} → 1 ∈ 𝑧) |
14 | 6, 13 | mprgbir 2533 | 1 ⊢ 1 ∈ ℕ |
Colors of variables: wff set class |
Syntax hints: ∧ wa 104 ↔ wb 105 ∈ wcel 2146 {cab 2161 ∀wral 2453 ∩ cint 3840 (class class class)co 5865 ℝcr 7785 1c1 7787 + caddc 7789 ℕcn 8892 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-ext 2157 ax-1re 7880 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-nf 1459 df-sb 1761 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ral 2458 df-v 2737 df-int 3841 df-inn 8893 |
This theorem is referenced by: nnind 8908 nn1suc 8911 2nn 9053 1nn0 9165 nn0p1nn 9188 1z 9252 neg1z 9258 elz2 9297 nneoor 9328 9p1e10 9359 indstr 9566 elnn1uz2 9580 zq 9599 qreccl 9615 fz01or 10081 exp3vallem 10491 exp1 10496 nnexpcl 10503 expnbnd 10613 3dec 10662 fac1 10677 faccl 10683 faclbnd3 10691 fiubnn 10778 resqrexlemf1 10985 resqrexlemcalc3 10993 resqrexlemnmsq 10994 resqrexlemnm 10995 resqrexlemcvg 10996 resqrexlemglsq 10999 resqrexlemga 11000 sumsnf 11385 cvgratnnlemnexp 11500 cvgratnnlemfm 11505 cvgratnnlemrate 11506 cvgratnn 11507 prodsnf 11568 fprodnncl 11586 eftlub 11666 eirraplem 11752 n2dvds1 11884 ndvdsp1 11904 gcd1 11955 bezoutr1 12001 ncoprmgcdne1b 12056 1nprm 12081 1idssfct 12082 isprm2lem 12083 qden1elz 12172 phicl2 12181 phi1 12186 phiprm 12190 eulerthlema 12197 pcpre1 12259 pczpre 12264 pcmptcl 12307 pcmpt 12308 infpnlem2 12325 mul4sq 12359 exmidunben 12394 nninfdc 12421 base0 12478 baseval 12481 baseid 12482 basendx 12483 basendxnn 12484 1strstrg 12529 2strstrg 12531 basendxnplusgndx 12537 basendxnmulrndx 12545 rngstrg 12546 lmodstrd 12567 topgrpstrd 12592 basendxltdsndx 12603 dsndxnplusgndx 12605 dsndxnmulrndx 12606 slotsdnscsi 12607 dsndxntsetndx 12608 slotsdifdsndx 12609 mulg1 12851 mulg2 12853 mulgnndir 12872 setsmsdsg 13551 lgsdir2lem1 14000 lgsdir2lem4 14003 lgsdir2lem5 14004 lgsdir 14007 lgsne0 14010 lgs1 14016 trilpolemgt1 14348 |
Copyright terms: Public domain | W3C validator |