![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 1nn | GIF version |
Description: Peano postulate: 1 is a positive integer. (Contributed by NM, 11-Jan-1997.) |
Ref | Expression |
---|---|
1nn | ⊢ 1 ∈ ℕ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfnn2 8984 | . . . 4 ⊢ ℕ = ∩ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)} | |
2 | 1 | eleq2i 2260 | . . 3 ⊢ (1 ∈ ℕ ↔ 1 ∈ ∩ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)}) |
3 | 1re 8018 | . . . 4 ⊢ 1 ∈ ℝ | |
4 | elintg 3878 | . . . 4 ⊢ (1 ∈ ℝ → (1 ∈ ∩ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)} ↔ ∀𝑧 ∈ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)}1 ∈ 𝑧)) | |
5 | 3, 4 | ax-mp 5 | . . 3 ⊢ (1 ∈ ∩ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)} ↔ ∀𝑧 ∈ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)}1 ∈ 𝑧) |
6 | 2, 5 | bitri 184 | . 2 ⊢ (1 ∈ ℕ ↔ ∀𝑧 ∈ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)}1 ∈ 𝑧) |
7 | vex 2763 | . . . 4 ⊢ 𝑧 ∈ V | |
8 | eleq2 2257 | . . . . 5 ⊢ (𝑥 = 𝑧 → (1 ∈ 𝑥 ↔ 1 ∈ 𝑧)) | |
9 | eleq2 2257 | . . . . . 6 ⊢ (𝑥 = 𝑧 → ((𝑦 + 1) ∈ 𝑥 ↔ (𝑦 + 1) ∈ 𝑧)) | |
10 | 9 | raleqbi1dv 2702 | . . . . 5 ⊢ (𝑥 = 𝑧 → (∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥 ↔ ∀𝑦 ∈ 𝑧 (𝑦 + 1) ∈ 𝑧)) |
11 | 8, 10 | anbi12d 473 | . . . 4 ⊢ (𝑥 = 𝑧 → ((1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥) ↔ (1 ∈ 𝑧 ∧ ∀𝑦 ∈ 𝑧 (𝑦 + 1) ∈ 𝑧))) |
12 | 7, 11 | elab 2904 | . . 3 ⊢ (𝑧 ∈ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)} ↔ (1 ∈ 𝑧 ∧ ∀𝑦 ∈ 𝑧 (𝑦 + 1) ∈ 𝑧)) |
13 | 12 | simplbi 274 | . 2 ⊢ (𝑧 ∈ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)} → 1 ∈ 𝑧) |
14 | 6, 13 | mprgbir 2552 | 1 ⊢ 1 ∈ ℕ |
Colors of variables: wff set class |
Syntax hints: ∧ wa 104 ↔ wb 105 ∈ wcel 2164 {cab 2179 ∀wral 2472 ∩ cint 3870 (class class class)co 5918 ℝcr 7871 1c1 7873 + caddc 7875 ℕcn 8982 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 ax-1re 7966 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-v 2762 df-int 3871 df-inn 8983 |
This theorem is referenced by: nnind 8998 nn1suc 9001 2nn 9143 1nn0 9256 nn0p1nn 9279 1z 9343 neg1z 9349 elz2 9388 nneoor 9419 9p1e10 9450 indstr 9658 elnn1uz2 9672 zq 9691 qreccl 9707 fz01or 10177 exp3vallem 10611 exp1 10616 nnexpcl 10623 expnbnd 10734 3dec 10785 fac1 10800 faccl 10806 faclbnd3 10814 fiubnn 10901 resqrexlemf1 11152 resqrexlemcalc3 11160 resqrexlemnmsq 11161 resqrexlemnm 11162 resqrexlemcvg 11163 resqrexlemglsq 11166 resqrexlemga 11167 sumsnf 11552 cvgratnnlemnexp 11667 cvgratnnlemfm 11672 cvgratnnlemrate 11673 cvgratnn 11674 prodsnf 11735 fprodnncl 11753 eftlub 11833 eirraplem 11920 n2dvds1 12053 ndvdsp1 12073 gcd1 12124 bezoutr1 12170 ncoprmgcdne1b 12227 1nprm 12252 1idssfct 12253 isprm2lem 12254 qden1elz 12343 phicl2 12352 phi1 12357 phiprm 12361 eulerthlema 12368 pcpre1 12430 pczpre 12435 pcmptcl 12480 pcmpt 12481 infpnlem2 12498 mul4sq 12532 exmidunben 12583 nninfdc 12610 base0 12668 baseval 12671 baseid 12672 basendx 12673 basendxnn 12674 1strstrg 12734 2strstrg 12736 basendxnplusgndx 12742 basendxnmulrndx 12751 rngstrg 12752 lmodstrd 12781 topgrpstrd 12813 basendxltdsndx 12832 dsndxnplusgndx 12834 dsndxnmulrndx 12835 slotsdnscsi 12836 dsndxntsetndx 12837 slotsdifdsndx 12838 basendxltunifndx 12842 unifndxntsetndx 12844 slotsdifunifndx 12845 mulg1 13199 mulg2 13201 mulgnndir 13221 cnfldstr 14049 setsmsdsg 14648 lgsdir2lem1 15144 lgsdir2lem4 15147 lgsdir2lem5 15148 lgsdir 15151 lgsne0 15154 lgs1 15160 trilpolemgt1 15529 |
Copyright terms: Public domain | W3C validator |