| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 1nn | GIF version | ||
| Description: Peano postulate: 1 is a positive integer. (Contributed by NM, 11-Jan-1997.) |
| Ref | Expression |
|---|---|
| 1nn | ⊢ 1 ∈ ℕ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfnn2 9053 | . . . 4 ⊢ ℕ = ∩ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)} | |
| 2 | 1 | eleq2i 2273 | . . 3 ⊢ (1 ∈ ℕ ↔ 1 ∈ ∩ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)}) |
| 3 | 1re 8086 | . . . 4 ⊢ 1 ∈ ℝ | |
| 4 | elintg 3898 | . . . 4 ⊢ (1 ∈ ℝ → (1 ∈ ∩ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)} ↔ ∀𝑧 ∈ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)}1 ∈ 𝑧)) | |
| 5 | 3, 4 | ax-mp 5 | . . 3 ⊢ (1 ∈ ∩ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)} ↔ ∀𝑧 ∈ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)}1 ∈ 𝑧) |
| 6 | 2, 5 | bitri 184 | . 2 ⊢ (1 ∈ ℕ ↔ ∀𝑧 ∈ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)}1 ∈ 𝑧) |
| 7 | vex 2776 | . . . 4 ⊢ 𝑧 ∈ V | |
| 8 | eleq2 2270 | . . . . 5 ⊢ (𝑥 = 𝑧 → (1 ∈ 𝑥 ↔ 1 ∈ 𝑧)) | |
| 9 | eleq2 2270 | . . . . . 6 ⊢ (𝑥 = 𝑧 → ((𝑦 + 1) ∈ 𝑥 ↔ (𝑦 + 1) ∈ 𝑧)) | |
| 10 | 9 | raleqbi1dv 2715 | . . . . 5 ⊢ (𝑥 = 𝑧 → (∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥 ↔ ∀𝑦 ∈ 𝑧 (𝑦 + 1) ∈ 𝑧)) |
| 11 | 8, 10 | anbi12d 473 | . . . 4 ⊢ (𝑥 = 𝑧 → ((1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥) ↔ (1 ∈ 𝑧 ∧ ∀𝑦 ∈ 𝑧 (𝑦 + 1) ∈ 𝑧))) |
| 12 | 7, 11 | elab 2921 | . . 3 ⊢ (𝑧 ∈ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)} ↔ (1 ∈ 𝑧 ∧ ∀𝑦 ∈ 𝑧 (𝑦 + 1) ∈ 𝑧)) |
| 13 | 12 | simplbi 274 | . 2 ⊢ (𝑧 ∈ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)} → 1 ∈ 𝑧) |
| 14 | 6, 13 | mprgbir 2565 | 1 ⊢ 1 ∈ ℕ |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 ↔ wb 105 ∈ wcel 2177 {cab 2192 ∀wral 2485 ∩ cint 3890 (class class class)co 5956 ℝcr 7939 1c1 7941 + caddc 7943 ℕcn 9051 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 ax-1re 8034 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-v 2775 df-int 3891 df-inn 9052 |
| This theorem is referenced by: nnind 9067 nn1suc 9070 2nn 9213 1nn0 9326 nn0p1nn 9349 1z 9413 neg1z 9419 elz2 9459 nneoor 9490 9p1e10 9521 indstr 9729 elnn1uz2 9743 zq 9762 qreccl 9778 fz01or 10248 exp3vallem 10702 exp1 10707 nnexpcl 10714 expnbnd 10825 3dec 10876 fac1 10891 faccl 10897 faclbnd3 10905 fiubnn 10992 lsw0 11058 cats1un 11192 resqrexlemf1 11389 resqrexlemcalc3 11397 resqrexlemnmsq 11398 resqrexlemnm 11399 resqrexlemcvg 11400 resqrexlemglsq 11403 resqrexlemga 11404 sumsnf 11790 cvgratnnlemnexp 11905 cvgratnnlemfm 11910 cvgratnnlemrate 11911 cvgratnn 11912 prodsnf 11973 fprodnncl 11991 eftlub 12071 eirraplem 12158 n2dvds1 12293 ndvdsp1 12313 5ndvds6 12316 gcd1 12378 bezoutr1 12424 ncoprmgcdne1b 12481 1nprm 12506 1idssfct 12507 isprm2lem 12508 qden1elz 12597 phicl2 12606 phi1 12611 phiprm 12615 eulerthlema 12622 pcpre1 12685 pczpre 12690 pcmptcl 12735 pcmpt 12736 infpnlem2 12753 mul4sq 12787 exmidunben 12867 nninfdc 12894 base0 12952 baseval 12955 baseid 12956 basendx 12957 basendxnn 12958 1strstrg 13018 2strstrg 13021 basendxnplusgndx 13027 basendxnmulrndx 13036 rngstrg 13037 lmodstrd 13066 topgrpstrd 13098 ocndx 13113 ocid 13114 basendxnocndx 13115 plendxnocndx 13116 basendxltdsndx 13121 dsndxnplusgndx 13123 dsndxnmulrndx 13124 slotsdnscsi 13125 dsndxntsetndx 13126 slotsdifdsndx 13127 basendxltunifndx 13131 unifndxntsetndx 13133 slotsdifunifndx 13134 mulg1 13535 mulg2 13537 mulgnndir 13557 setsmsdsg 15022 perfectlem1 15541 perfectlem2 15542 lgsdir2lem1 15575 lgsdir2lem4 15578 lgsdir2lem5 15579 lgsdir 15582 lgsne0 15585 lgs1 15591 lgsquad2lem2 15629 basendxltedgfndx 15679 trilpolemgt1 16113 |
| Copyright terms: Public domain | W3C validator |