![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 1nn | GIF version |
Description: Peano postulate: 1 is a positive integer. (Contributed by NM, 11-Jan-1997.) |
Ref | Expression |
---|---|
1nn | ⊢ 1 ∈ ℕ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfnn2 8921 | . . . 4 ⊢ ℕ = ∩ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)} | |
2 | 1 | eleq2i 2244 | . . 3 ⊢ (1 ∈ ℕ ↔ 1 ∈ ∩ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)}) |
3 | 1re 7956 | . . . 4 ⊢ 1 ∈ ℝ | |
4 | elintg 3853 | . . . 4 ⊢ (1 ∈ ℝ → (1 ∈ ∩ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)} ↔ ∀𝑧 ∈ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)}1 ∈ 𝑧)) | |
5 | 3, 4 | ax-mp 5 | . . 3 ⊢ (1 ∈ ∩ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)} ↔ ∀𝑧 ∈ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)}1 ∈ 𝑧) |
6 | 2, 5 | bitri 184 | . 2 ⊢ (1 ∈ ℕ ↔ ∀𝑧 ∈ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)}1 ∈ 𝑧) |
7 | vex 2741 | . . . 4 ⊢ 𝑧 ∈ V | |
8 | eleq2 2241 | . . . . 5 ⊢ (𝑥 = 𝑧 → (1 ∈ 𝑥 ↔ 1 ∈ 𝑧)) | |
9 | eleq2 2241 | . . . . . 6 ⊢ (𝑥 = 𝑧 → ((𝑦 + 1) ∈ 𝑥 ↔ (𝑦 + 1) ∈ 𝑧)) | |
10 | 9 | raleqbi1dv 2681 | . . . . 5 ⊢ (𝑥 = 𝑧 → (∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥 ↔ ∀𝑦 ∈ 𝑧 (𝑦 + 1) ∈ 𝑧)) |
11 | 8, 10 | anbi12d 473 | . . . 4 ⊢ (𝑥 = 𝑧 → ((1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥) ↔ (1 ∈ 𝑧 ∧ ∀𝑦 ∈ 𝑧 (𝑦 + 1) ∈ 𝑧))) |
12 | 7, 11 | elab 2882 | . . 3 ⊢ (𝑧 ∈ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)} ↔ (1 ∈ 𝑧 ∧ ∀𝑦 ∈ 𝑧 (𝑦 + 1) ∈ 𝑧)) |
13 | 12 | simplbi 274 | . 2 ⊢ (𝑧 ∈ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)} → 1 ∈ 𝑧) |
14 | 6, 13 | mprgbir 2535 | 1 ⊢ 1 ∈ ℕ |
Colors of variables: wff set class |
Syntax hints: ∧ wa 104 ↔ wb 105 ∈ wcel 2148 {cab 2163 ∀wral 2455 ∩ cint 3845 (class class class)co 5875 ℝcr 7810 1c1 7812 + caddc 7814 ℕcn 8919 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-ext 2159 ax-1re 7905 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ral 2460 df-v 2740 df-int 3846 df-inn 8920 |
This theorem is referenced by: nnind 8935 nn1suc 8938 2nn 9080 1nn0 9192 nn0p1nn 9215 1z 9279 neg1z 9285 elz2 9324 nneoor 9355 9p1e10 9386 indstr 9593 elnn1uz2 9607 zq 9626 qreccl 9642 fz01or 10111 exp3vallem 10521 exp1 10526 nnexpcl 10533 expnbnd 10644 3dec 10694 fac1 10709 faccl 10715 faclbnd3 10723 fiubnn 10810 resqrexlemf1 11017 resqrexlemcalc3 11025 resqrexlemnmsq 11026 resqrexlemnm 11027 resqrexlemcvg 11028 resqrexlemglsq 11031 resqrexlemga 11032 sumsnf 11417 cvgratnnlemnexp 11532 cvgratnnlemfm 11537 cvgratnnlemrate 11538 cvgratnn 11539 prodsnf 11600 fprodnncl 11618 eftlub 11698 eirraplem 11784 n2dvds1 11917 ndvdsp1 11937 gcd1 11988 bezoutr1 12034 ncoprmgcdne1b 12089 1nprm 12114 1idssfct 12115 isprm2lem 12116 qden1elz 12205 phicl2 12214 phi1 12219 phiprm 12223 eulerthlema 12230 pcpre1 12292 pczpre 12297 pcmptcl 12340 pcmpt 12341 infpnlem2 12358 mul4sq 12392 exmidunben 12427 nninfdc 12454 base0 12512 baseval 12515 baseid 12516 basendx 12517 basendxnn 12518 1strstrg 12575 2strstrg 12577 basendxnplusgndx 12583 basendxnmulrndx 12592 rngstrg 12593 lmodstrd 12622 topgrpstrd 12651 basendxltdsndx 12670 dsndxnplusgndx 12672 dsndxnmulrndx 12673 slotsdnscsi 12674 dsndxntsetndx 12675 slotsdifdsndx 12676 basendxltunifndx 12680 unifndxntsetndx 12682 slotsdifunifndx 12683 mulg1 12990 mulg2 12992 mulgnndir 13012 cnfldstr 13460 setsmsdsg 13983 lgsdir2lem1 14432 lgsdir2lem4 14435 lgsdir2lem5 14436 lgsdir 14439 lgsne0 14442 lgs1 14448 trilpolemgt1 14790 |
Copyright terms: Public domain | W3C validator |