| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 1nn | GIF version | ||
| Description: Peano postulate: 1 is a positive integer. (Contributed by NM, 11-Jan-1997.) |
| Ref | Expression |
|---|---|
| 1nn | ⊢ 1 ∈ ℕ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfnn2 9011 | . . . 4 ⊢ ℕ = ∩ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)} | |
| 2 | 1 | eleq2i 2263 | . . 3 ⊢ (1 ∈ ℕ ↔ 1 ∈ ∩ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)}) |
| 3 | 1re 8044 | . . . 4 ⊢ 1 ∈ ℝ | |
| 4 | elintg 3883 | . . . 4 ⊢ (1 ∈ ℝ → (1 ∈ ∩ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)} ↔ ∀𝑧 ∈ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)}1 ∈ 𝑧)) | |
| 5 | 3, 4 | ax-mp 5 | . . 3 ⊢ (1 ∈ ∩ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)} ↔ ∀𝑧 ∈ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)}1 ∈ 𝑧) |
| 6 | 2, 5 | bitri 184 | . 2 ⊢ (1 ∈ ℕ ↔ ∀𝑧 ∈ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)}1 ∈ 𝑧) |
| 7 | vex 2766 | . . . 4 ⊢ 𝑧 ∈ V | |
| 8 | eleq2 2260 | . . . . 5 ⊢ (𝑥 = 𝑧 → (1 ∈ 𝑥 ↔ 1 ∈ 𝑧)) | |
| 9 | eleq2 2260 | . . . . . 6 ⊢ (𝑥 = 𝑧 → ((𝑦 + 1) ∈ 𝑥 ↔ (𝑦 + 1) ∈ 𝑧)) | |
| 10 | 9 | raleqbi1dv 2705 | . . . . 5 ⊢ (𝑥 = 𝑧 → (∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥 ↔ ∀𝑦 ∈ 𝑧 (𝑦 + 1) ∈ 𝑧)) |
| 11 | 8, 10 | anbi12d 473 | . . . 4 ⊢ (𝑥 = 𝑧 → ((1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥) ↔ (1 ∈ 𝑧 ∧ ∀𝑦 ∈ 𝑧 (𝑦 + 1) ∈ 𝑧))) |
| 12 | 7, 11 | elab 2908 | . . 3 ⊢ (𝑧 ∈ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)} ↔ (1 ∈ 𝑧 ∧ ∀𝑦 ∈ 𝑧 (𝑦 + 1) ∈ 𝑧)) |
| 13 | 12 | simplbi 274 | . 2 ⊢ (𝑧 ∈ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)} → 1 ∈ 𝑧) |
| 14 | 6, 13 | mprgbir 2555 | 1 ⊢ 1 ∈ ℕ |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 ↔ wb 105 ∈ wcel 2167 {cab 2182 ∀wral 2475 ∩ cint 3875 (class class class)co 5925 ℝcr 7897 1c1 7899 + caddc 7901 ℕcn 9009 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 ax-1re 7992 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-v 2765 df-int 3876 df-inn 9010 |
| This theorem is referenced by: nnind 9025 nn1suc 9028 2nn 9171 1nn0 9284 nn0p1nn 9307 1z 9371 neg1z 9377 elz2 9416 nneoor 9447 9p1e10 9478 indstr 9686 elnn1uz2 9700 zq 9719 qreccl 9735 fz01or 10205 exp3vallem 10651 exp1 10656 nnexpcl 10663 expnbnd 10774 3dec 10825 fac1 10840 faccl 10846 faclbnd3 10854 fiubnn 10941 resqrexlemf1 11192 resqrexlemcalc3 11200 resqrexlemnmsq 11201 resqrexlemnm 11202 resqrexlemcvg 11203 resqrexlemglsq 11206 resqrexlemga 11207 sumsnf 11593 cvgratnnlemnexp 11708 cvgratnnlemfm 11713 cvgratnnlemrate 11714 cvgratnn 11715 prodsnf 11776 fprodnncl 11794 eftlub 11874 eirraplem 11961 n2dvds1 12096 ndvdsp1 12116 5ndvds6 12119 gcd1 12181 bezoutr1 12227 ncoprmgcdne1b 12284 1nprm 12309 1idssfct 12310 isprm2lem 12311 qden1elz 12400 phicl2 12409 phi1 12414 phiprm 12418 eulerthlema 12425 pcpre1 12488 pczpre 12493 pcmptcl 12538 pcmpt 12539 infpnlem2 12556 mul4sq 12590 exmidunben 12670 nninfdc 12697 base0 12755 baseval 12758 baseid 12759 basendx 12760 basendxnn 12761 1strstrg 12821 2strstrg 12823 basendxnplusgndx 12829 basendxnmulrndx 12838 rngstrg 12839 lmodstrd 12868 topgrpstrd 12900 ocndx 12915 ocid 12916 basendxnocndx 12917 plendxnocndx 12918 basendxltdsndx 12923 dsndxnplusgndx 12925 dsndxnmulrndx 12926 slotsdnscsi 12927 dsndxntsetndx 12928 slotsdifdsndx 12929 basendxltunifndx 12933 unifndxntsetndx 12935 slotsdifunifndx 12936 mulg1 13337 mulg2 13339 mulgnndir 13359 setsmsdsg 14824 perfectlem1 15343 perfectlem2 15344 lgsdir2lem1 15377 lgsdir2lem4 15380 lgsdir2lem5 15381 lgsdir 15384 lgsne0 15387 lgs1 15393 lgsquad2lem2 15431 trilpolemgt1 15796 |
| Copyright terms: Public domain | W3C validator |