| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 1nn | GIF version | ||
| Description: Peano postulate: 1 is a positive integer. (Contributed by NM, 11-Jan-1997.) |
| Ref | Expression |
|---|---|
| 1nn | ⊢ 1 ∈ ℕ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfnn2 9108 | . . . 4 ⊢ ℕ = ∩ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)} | |
| 2 | 1 | eleq2i 2296 | . . 3 ⊢ (1 ∈ ℕ ↔ 1 ∈ ∩ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)}) |
| 3 | 1re 8141 | . . . 4 ⊢ 1 ∈ ℝ | |
| 4 | elintg 3930 | . . . 4 ⊢ (1 ∈ ℝ → (1 ∈ ∩ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)} ↔ ∀𝑧 ∈ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)}1 ∈ 𝑧)) | |
| 5 | 3, 4 | ax-mp 5 | . . 3 ⊢ (1 ∈ ∩ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)} ↔ ∀𝑧 ∈ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)}1 ∈ 𝑧) |
| 6 | 2, 5 | bitri 184 | . 2 ⊢ (1 ∈ ℕ ↔ ∀𝑧 ∈ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)}1 ∈ 𝑧) |
| 7 | vex 2802 | . . . 4 ⊢ 𝑧 ∈ V | |
| 8 | eleq2 2293 | . . . . 5 ⊢ (𝑥 = 𝑧 → (1 ∈ 𝑥 ↔ 1 ∈ 𝑧)) | |
| 9 | eleq2 2293 | . . . . . 6 ⊢ (𝑥 = 𝑧 → ((𝑦 + 1) ∈ 𝑥 ↔ (𝑦 + 1) ∈ 𝑧)) | |
| 10 | 9 | raleqbi1dv 2740 | . . . . 5 ⊢ (𝑥 = 𝑧 → (∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥 ↔ ∀𝑦 ∈ 𝑧 (𝑦 + 1) ∈ 𝑧)) |
| 11 | 8, 10 | anbi12d 473 | . . . 4 ⊢ (𝑥 = 𝑧 → ((1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥) ↔ (1 ∈ 𝑧 ∧ ∀𝑦 ∈ 𝑧 (𝑦 + 1) ∈ 𝑧))) |
| 12 | 7, 11 | elab 2947 | . . 3 ⊢ (𝑧 ∈ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)} ↔ (1 ∈ 𝑧 ∧ ∀𝑦 ∈ 𝑧 (𝑦 + 1) ∈ 𝑧)) |
| 13 | 12 | simplbi 274 | . 2 ⊢ (𝑧 ∈ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)} → 1 ∈ 𝑧) |
| 14 | 6, 13 | mprgbir 2588 | 1 ⊢ 1 ∈ ℕ |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 ↔ wb 105 ∈ wcel 2200 {cab 2215 ∀wral 2508 ∩ cint 3922 (class class class)co 6000 ℝcr 7994 1c1 7996 + caddc 7998 ℕcn 9106 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 ax-1re 8089 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-v 2801 df-int 3923 df-inn 9107 |
| This theorem is referenced by: nnind 9122 nn1suc 9125 2nn 9268 1nn0 9381 nn0p1nn 9404 1z 9468 neg1z 9474 elz2 9514 nneoor 9545 9p1e10 9576 indstr 9784 elnn1uz2 9798 zq 9817 qreccl 9833 fz01or 10303 exp3vallem 10757 exp1 10762 nnexpcl 10769 expnbnd 10880 3dec 10931 fac1 10946 faccl 10952 faclbnd3 10960 fiubnn 11047 lsw0 11114 cats1un 11248 cats1fvn 11291 cats1fvnd 11292 resqrexlemf1 11514 resqrexlemcalc3 11522 resqrexlemnmsq 11523 resqrexlemnm 11524 resqrexlemcvg 11525 resqrexlemglsq 11528 resqrexlemga 11529 sumsnf 11915 cvgratnnlemnexp 12030 cvgratnnlemfm 12035 cvgratnnlemrate 12036 cvgratnn 12037 prodsnf 12098 fprodnncl 12116 eftlub 12196 eirraplem 12283 n2dvds1 12418 ndvdsp1 12438 5ndvds6 12441 gcd1 12503 bezoutr1 12549 ncoprmgcdne1b 12606 1nprm 12631 1idssfct 12632 isprm2lem 12633 qden1elz 12722 phicl2 12731 phi1 12736 phiprm 12740 eulerthlema 12747 pcpre1 12810 pczpre 12815 pcmptcl 12860 pcmpt 12861 infpnlem2 12878 mul4sq 12912 exmidunben 12992 nninfdc 13019 base0 13077 baseval 13080 baseid 13081 basendx 13082 basendxnn 13083 1strstrg 13144 2strstrg 13147 basendxnplusgndx 13153 basendxnmulrndx 13162 rngstrg 13163 lmodstrd 13192 topgrpstrd 13224 ocndx 13239 ocid 13240 basendxnocndx 13241 plendxnocndx 13242 basendxltdsndx 13247 dsndxnplusgndx 13249 dsndxnmulrndx 13250 slotsdnscsi 13251 dsndxntsetndx 13252 slotsdifdsndx 13253 basendxltunifndx 13257 unifndxntsetndx 13259 slotsdifunifndx 13260 mulg1 13661 mulg2 13663 mulgnndir 13683 setsmsdsg 15148 perfectlem1 15667 perfectlem2 15668 lgsdir2lem1 15701 lgsdir2lem4 15704 lgsdir2lem5 15705 lgsdir 15708 lgsne0 15711 lgs1 15717 lgsquad2lem2 15755 basendxltedgfndx 15805 trilpolemgt1 16366 |
| Copyright terms: Public domain | W3C validator |