ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  peano2nn GIF version

Theorem peano2nn 8996
Description: Peano postulate: a successor of a positive integer is a positive integer. (Contributed by NM, 11-Jan-1997.) (Revised by Mario Carneiro, 17-Nov-2014.)
Assertion
Ref Expression
peano2nn (𝐴 ∈ ℕ → (𝐴 + 1) ∈ ℕ)

Proof of Theorem peano2nn
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dfnn2 8986 . . . . . 6 ℕ = {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)}
21eleq2i 2260 . . . . 5 (𝐴 ∈ ℕ ↔ 𝐴 {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)})
3 elintg 3879 . . . . 5 (𝐴 ∈ ℕ → (𝐴 {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)} ↔ ∀𝑧 ∈ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)}𝐴𝑧))
42, 3bitrid 192 . . . 4 (𝐴 ∈ ℕ → (𝐴 ∈ ℕ ↔ ∀𝑧 ∈ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)}𝐴𝑧))
54ibi 176 . . 3 (𝐴 ∈ ℕ → ∀𝑧 ∈ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)}𝐴𝑧)
6 vex 2763 . . . . . . . 8 𝑧 ∈ V
7 eleq2 2257 . . . . . . . . 9 (𝑥 = 𝑧 → (1 ∈ 𝑥 ↔ 1 ∈ 𝑧))
8 eleq2 2257 . . . . . . . . . 10 (𝑥 = 𝑧 → ((𝑦 + 1) ∈ 𝑥 ↔ (𝑦 + 1) ∈ 𝑧))
98raleqbi1dv 2702 . . . . . . . . 9 (𝑥 = 𝑧 → (∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥 ↔ ∀𝑦𝑧 (𝑦 + 1) ∈ 𝑧))
107, 9anbi12d 473 . . . . . . . 8 (𝑥 = 𝑧 → ((1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥) ↔ (1 ∈ 𝑧 ∧ ∀𝑦𝑧 (𝑦 + 1) ∈ 𝑧)))
116, 10elab 2905 . . . . . . 7 (𝑧 ∈ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)} ↔ (1 ∈ 𝑧 ∧ ∀𝑦𝑧 (𝑦 + 1) ∈ 𝑧))
1211simprbi 275 . . . . . 6 (𝑧 ∈ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)} → ∀𝑦𝑧 (𝑦 + 1) ∈ 𝑧)
13 oveq1 5926 . . . . . . . 8 (𝑦 = 𝐴 → (𝑦 + 1) = (𝐴 + 1))
1413eleq1d 2262 . . . . . . 7 (𝑦 = 𝐴 → ((𝑦 + 1) ∈ 𝑧 ↔ (𝐴 + 1) ∈ 𝑧))
1514rspcva 2863 . . . . . 6 ((𝐴𝑧 ∧ ∀𝑦𝑧 (𝑦 + 1) ∈ 𝑧) → (𝐴 + 1) ∈ 𝑧)
1612, 15sylan2 286 . . . . 5 ((𝐴𝑧𝑧 ∈ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)}) → (𝐴 + 1) ∈ 𝑧)
1716expcom 116 . . . 4 (𝑧 ∈ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)} → (𝐴𝑧 → (𝐴 + 1) ∈ 𝑧))
1817ralimia 2555 . . 3 (∀𝑧 ∈ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)}𝐴𝑧 → ∀𝑧 ∈ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)} (𝐴 + 1) ∈ 𝑧)
195, 18syl 14 . 2 (𝐴 ∈ ℕ → ∀𝑧 ∈ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)} (𝐴 + 1) ∈ 𝑧)
20 nnre 8991 . . . 4 (𝐴 ∈ ℕ → 𝐴 ∈ ℝ)
21 1red 8036 . . . 4 (𝐴 ∈ ℕ → 1 ∈ ℝ)
2220, 21readdcld 8051 . . 3 (𝐴 ∈ ℕ → (𝐴 + 1) ∈ ℝ)
231eleq2i 2260 . . . 4 ((𝐴 + 1) ∈ ℕ ↔ (𝐴 + 1) ∈ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)})
24 elintg 3879 . . . 4 ((𝐴 + 1) ∈ ℝ → ((𝐴 + 1) ∈ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)} ↔ ∀𝑧 ∈ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)} (𝐴 + 1) ∈ 𝑧))
2523, 24bitrid 192 . . 3 ((𝐴 + 1) ∈ ℝ → ((𝐴 + 1) ∈ ℕ ↔ ∀𝑧 ∈ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)} (𝐴 + 1) ∈ 𝑧))
2622, 25syl 14 . 2 (𝐴 ∈ ℕ → ((𝐴 + 1) ∈ ℕ ↔ ∀𝑧 ∈ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)} (𝐴 + 1) ∈ 𝑧))
2719, 26mpbird 167 1 (𝐴 ∈ ℕ → (𝐴 + 1) ∈ ℕ)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1364  wcel 2164  {cab 2179  wral 2472   cint 3871  (class class class)co 5919  cr 7873  1c1 7875   + caddc 7877  cn 8984
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175  ax-sep 4148  ax-cnex 7965  ax-resscn 7966  ax-1re 7968  ax-addrcl 7971
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-un 3158  df-in 3160  df-ss 3167  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-br 4031  df-iota 5216  df-fv 5263  df-ov 5922  df-inn 8985
This theorem is referenced by:  peano2nnd  8999  nnind  9000  nnaddcl  9004  2nn  9146  3nn  9147  4nn  9148  5nn  9149  6nn  9150  7nn  9151  8nn  9152  9nn  9153  nneoor  9422  10nn  9466  nnsplit  10206  fzonn0p1p1  10283  expp1  10620  facp1  10804  resqrexlemfp1  11156  resqrexlemcalc3  11163  trireciplem  11646  trirecip  11647  cvgratnnlemnexp  11670  cvgratz  11678  nno  12050  nnoddm1d2  12054  rplpwr  12167  prmind2  12261  sqrt2irr  12303  pcmpt  12484  pockthi  12499  mulgnnp1  13203  2sqlem10  15282
  Copyright terms: Public domain W3C validator