Step | Hyp | Ref
| Expression |
1 | | dfnn2 8859 |
. . . . . 6
⊢ ℕ =
∩ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)} |
2 | 1 | eleq2i 2233 |
. . . . 5
⊢ (𝐴 ∈ ℕ ↔ 𝐴 ∈ ∩ {𝑥
∣ (1 ∈ 𝑥 ∧
∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)}) |
3 | | elintg 3832 |
. . . . 5
⊢ (𝐴 ∈ ℕ → (𝐴 ∈ ∩ {𝑥
∣ (1 ∈ 𝑥 ∧
∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)} ↔ ∀𝑧 ∈ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)}𝐴 ∈ 𝑧)) |
4 | 2, 3 | syl5bb 191 |
. . . 4
⊢ (𝐴 ∈ ℕ → (𝐴 ∈ ℕ ↔
∀𝑧 ∈ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)}𝐴 ∈ 𝑧)) |
5 | 4 | ibi 175 |
. . 3
⊢ (𝐴 ∈ ℕ →
∀𝑧 ∈ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)}𝐴 ∈ 𝑧) |
6 | | vex 2729 |
. . . . . . . 8
⊢ 𝑧 ∈ V |
7 | | eleq2 2230 |
. . . . . . . . 9
⊢ (𝑥 = 𝑧 → (1 ∈ 𝑥 ↔ 1 ∈ 𝑧)) |
8 | | eleq2 2230 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑧 → ((𝑦 + 1) ∈ 𝑥 ↔ (𝑦 + 1) ∈ 𝑧)) |
9 | 8 | raleqbi1dv 2669 |
. . . . . . . . 9
⊢ (𝑥 = 𝑧 → (∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥 ↔ ∀𝑦 ∈ 𝑧 (𝑦 + 1) ∈ 𝑧)) |
10 | 7, 9 | anbi12d 465 |
. . . . . . . 8
⊢ (𝑥 = 𝑧 → ((1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥) ↔ (1 ∈ 𝑧 ∧ ∀𝑦 ∈ 𝑧 (𝑦 + 1) ∈ 𝑧))) |
11 | 6, 10 | elab 2870 |
. . . . . . 7
⊢ (𝑧 ∈ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)} ↔ (1 ∈ 𝑧 ∧ ∀𝑦 ∈ 𝑧 (𝑦 + 1) ∈ 𝑧)) |
12 | 11 | simprbi 273 |
. . . . . 6
⊢ (𝑧 ∈ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)} → ∀𝑦 ∈ 𝑧 (𝑦 + 1) ∈ 𝑧) |
13 | | oveq1 5849 |
. . . . . . . 8
⊢ (𝑦 = 𝐴 → (𝑦 + 1) = (𝐴 + 1)) |
14 | 13 | eleq1d 2235 |
. . . . . . 7
⊢ (𝑦 = 𝐴 → ((𝑦 + 1) ∈ 𝑧 ↔ (𝐴 + 1) ∈ 𝑧)) |
15 | 14 | rspcva 2828 |
. . . . . 6
⊢ ((𝐴 ∈ 𝑧 ∧ ∀𝑦 ∈ 𝑧 (𝑦 + 1) ∈ 𝑧) → (𝐴 + 1) ∈ 𝑧) |
16 | 12, 15 | sylan2 284 |
. . . . 5
⊢ ((𝐴 ∈ 𝑧 ∧ 𝑧 ∈ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)}) → (𝐴 + 1) ∈ 𝑧) |
17 | 16 | expcom 115 |
. . . 4
⊢ (𝑧 ∈ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)} → (𝐴 ∈ 𝑧 → (𝐴 + 1) ∈ 𝑧)) |
18 | 17 | ralimia 2527 |
. . 3
⊢
(∀𝑧 ∈
{𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)}𝐴 ∈ 𝑧 → ∀𝑧 ∈ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)} (𝐴 + 1) ∈ 𝑧) |
19 | 5, 18 | syl 14 |
. 2
⊢ (𝐴 ∈ ℕ →
∀𝑧 ∈ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)} (𝐴 + 1) ∈ 𝑧) |
20 | | nnre 8864 |
. . . 4
⊢ (𝐴 ∈ ℕ → 𝐴 ∈
ℝ) |
21 | | 1red 7914 |
. . . 4
⊢ (𝐴 ∈ ℕ → 1 ∈
ℝ) |
22 | 20, 21 | readdcld 7928 |
. . 3
⊢ (𝐴 ∈ ℕ → (𝐴 + 1) ∈
ℝ) |
23 | 1 | eleq2i 2233 |
. . . 4
⊢ ((𝐴 + 1) ∈ ℕ ↔
(𝐴 + 1) ∈ ∩ {𝑥
∣ (1 ∈ 𝑥 ∧
∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)}) |
24 | | elintg 3832 |
. . . 4
⊢ ((𝐴 + 1) ∈ ℝ →
((𝐴 + 1) ∈ ∩ {𝑥
∣ (1 ∈ 𝑥 ∧
∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)} ↔ ∀𝑧 ∈ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)} (𝐴 + 1) ∈ 𝑧)) |
25 | 23, 24 | syl5bb 191 |
. . 3
⊢ ((𝐴 + 1) ∈ ℝ →
((𝐴 + 1) ∈ ℕ
↔ ∀𝑧 ∈
{𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)} (𝐴 + 1) ∈ 𝑧)) |
26 | 22, 25 | syl 14 |
. 2
⊢ (𝐴 ∈ ℕ → ((𝐴 + 1) ∈ ℕ ↔
∀𝑧 ∈ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)} (𝐴 + 1) ∈ 𝑧)) |
27 | 19, 26 | mpbird 166 |
1
⊢ (𝐴 ∈ ℕ → (𝐴 + 1) ∈
ℕ) |