ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  peano2nn GIF version

Theorem peano2nn 9068
Description: Peano postulate: a successor of a positive integer is a positive integer. (Contributed by NM, 11-Jan-1997.) (Revised by Mario Carneiro, 17-Nov-2014.)
Assertion
Ref Expression
peano2nn (𝐴 ∈ ℕ → (𝐴 + 1) ∈ ℕ)

Proof of Theorem peano2nn
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dfnn2 9058 . . . . . 6 ℕ = {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)}
21eleq2i 2273 . . . . 5 (𝐴 ∈ ℕ ↔ 𝐴 {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)})
3 elintg 3899 . . . . 5 (𝐴 ∈ ℕ → (𝐴 {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)} ↔ ∀𝑧 ∈ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)}𝐴𝑧))
42, 3bitrid 192 . . . 4 (𝐴 ∈ ℕ → (𝐴 ∈ ℕ ↔ ∀𝑧 ∈ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)}𝐴𝑧))
54ibi 176 . . 3 (𝐴 ∈ ℕ → ∀𝑧 ∈ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)}𝐴𝑧)
6 vex 2776 . . . . . . . 8 𝑧 ∈ V
7 eleq2 2270 . . . . . . . . 9 (𝑥 = 𝑧 → (1 ∈ 𝑥 ↔ 1 ∈ 𝑧))
8 eleq2 2270 . . . . . . . . . 10 (𝑥 = 𝑧 → ((𝑦 + 1) ∈ 𝑥 ↔ (𝑦 + 1) ∈ 𝑧))
98raleqbi1dv 2715 . . . . . . . . 9 (𝑥 = 𝑧 → (∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥 ↔ ∀𝑦𝑧 (𝑦 + 1) ∈ 𝑧))
107, 9anbi12d 473 . . . . . . . 8 (𝑥 = 𝑧 → ((1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥) ↔ (1 ∈ 𝑧 ∧ ∀𝑦𝑧 (𝑦 + 1) ∈ 𝑧)))
116, 10elab 2921 . . . . . . 7 (𝑧 ∈ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)} ↔ (1 ∈ 𝑧 ∧ ∀𝑦𝑧 (𝑦 + 1) ∈ 𝑧))
1211simprbi 275 . . . . . 6 (𝑧 ∈ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)} → ∀𝑦𝑧 (𝑦 + 1) ∈ 𝑧)
13 oveq1 5964 . . . . . . . 8 (𝑦 = 𝐴 → (𝑦 + 1) = (𝐴 + 1))
1413eleq1d 2275 . . . . . . 7 (𝑦 = 𝐴 → ((𝑦 + 1) ∈ 𝑧 ↔ (𝐴 + 1) ∈ 𝑧))
1514rspcva 2879 . . . . . 6 ((𝐴𝑧 ∧ ∀𝑦𝑧 (𝑦 + 1) ∈ 𝑧) → (𝐴 + 1) ∈ 𝑧)
1612, 15sylan2 286 . . . . 5 ((𝐴𝑧𝑧 ∈ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)}) → (𝐴 + 1) ∈ 𝑧)
1716expcom 116 . . . 4 (𝑧 ∈ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)} → (𝐴𝑧 → (𝐴 + 1) ∈ 𝑧))
1817ralimia 2568 . . 3 (∀𝑧 ∈ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)}𝐴𝑧 → ∀𝑧 ∈ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)} (𝐴 + 1) ∈ 𝑧)
195, 18syl 14 . 2 (𝐴 ∈ ℕ → ∀𝑧 ∈ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)} (𝐴 + 1) ∈ 𝑧)
20 nnre 9063 . . . 4 (𝐴 ∈ ℕ → 𝐴 ∈ ℝ)
21 1red 8107 . . . 4 (𝐴 ∈ ℕ → 1 ∈ ℝ)
2220, 21readdcld 8122 . . 3 (𝐴 ∈ ℕ → (𝐴 + 1) ∈ ℝ)
231eleq2i 2273 . . . 4 ((𝐴 + 1) ∈ ℕ ↔ (𝐴 + 1) ∈ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)})
24 elintg 3899 . . . 4 ((𝐴 + 1) ∈ ℝ → ((𝐴 + 1) ∈ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)} ↔ ∀𝑧 ∈ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)} (𝐴 + 1) ∈ 𝑧))
2523, 24bitrid 192 . . 3 ((𝐴 + 1) ∈ ℝ → ((𝐴 + 1) ∈ ℕ ↔ ∀𝑧 ∈ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)} (𝐴 + 1) ∈ 𝑧))
2622, 25syl 14 . 2 (𝐴 ∈ ℕ → ((𝐴 + 1) ∈ ℕ ↔ ∀𝑧 ∈ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)} (𝐴 + 1) ∈ 𝑧))
2719, 26mpbird 167 1 (𝐴 ∈ ℕ → (𝐴 + 1) ∈ ℕ)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1373  wcel 2177  {cab 2192  wral 2485   cint 3891  (class class class)co 5957  cr 7944  1c1 7946   + caddc 7948  cn 9056
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188  ax-sep 4170  ax-cnex 8036  ax-resscn 8037  ax-1re 8039  ax-addrcl 8042
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-v 2775  df-un 3174  df-in 3176  df-ss 3183  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3857  df-int 3892  df-br 4052  df-iota 5241  df-fv 5288  df-ov 5960  df-inn 9057
This theorem is referenced by:  peano2nnd  9071  nnind  9072  nnaddcl  9076  2nn  9218  3nn  9219  4nn  9220  5nn  9221  6nn  9222  7nn  9223  8nn  9224  9nn  9225  nneoor  9495  10nn  9539  nnsplit  10279  fzonn0p1p1  10364  expp1  10713  facp1  10897  resqrexlemfp1  11395  resqrexlemcalc3  11402  trireciplem  11886  trirecip  11887  cvgratnnlemnexp  11910  cvgratz  11918  nno  12292  nnoddm1d2  12296  rplpwr  12423  prmind2  12517  sqrt2irr  12559  pcmpt  12741  pockthi  12756  dec5nprm  12812  mulgnnp1  13541  2sqlem10  15677
  Copyright terms: Public domain W3C validator