| Step | Hyp | Ref
| Expression |
| 1 | | dfnn2 9009 |
. . . . . 6
⊢ ℕ =
∩ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)} |
| 2 | 1 | eleq2i 2263 |
. . . . 5
⊢ (𝐴 ∈ ℕ ↔ 𝐴 ∈ ∩ {𝑥
∣ (1 ∈ 𝑥 ∧
∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)}) |
| 3 | | elintg 3883 |
. . . . 5
⊢ (𝐴 ∈ ℕ → (𝐴 ∈ ∩ {𝑥
∣ (1 ∈ 𝑥 ∧
∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)} ↔ ∀𝑧 ∈ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)}𝐴 ∈ 𝑧)) |
| 4 | 2, 3 | bitrid 192 |
. . . 4
⊢ (𝐴 ∈ ℕ → (𝐴 ∈ ℕ ↔
∀𝑧 ∈ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)}𝐴 ∈ 𝑧)) |
| 5 | 4 | ibi 176 |
. . 3
⊢ (𝐴 ∈ ℕ →
∀𝑧 ∈ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)}𝐴 ∈ 𝑧) |
| 6 | | vex 2766 |
. . . . . . . 8
⊢ 𝑧 ∈ V |
| 7 | | eleq2 2260 |
. . . . . . . . 9
⊢ (𝑥 = 𝑧 → (1 ∈ 𝑥 ↔ 1 ∈ 𝑧)) |
| 8 | | eleq2 2260 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑧 → ((𝑦 + 1) ∈ 𝑥 ↔ (𝑦 + 1) ∈ 𝑧)) |
| 9 | 8 | raleqbi1dv 2705 |
. . . . . . . . 9
⊢ (𝑥 = 𝑧 → (∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥 ↔ ∀𝑦 ∈ 𝑧 (𝑦 + 1) ∈ 𝑧)) |
| 10 | 7, 9 | anbi12d 473 |
. . . . . . . 8
⊢ (𝑥 = 𝑧 → ((1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥) ↔ (1 ∈ 𝑧 ∧ ∀𝑦 ∈ 𝑧 (𝑦 + 1) ∈ 𝑧))) |
| 11 | 6, 10 | elab 2908 |
. . . . . . 7
⊢ (𝑧 ∈ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)} ↔ (1 ∈ 𝑧 ∧ ∀𝑦 ∈ 𝑧 (𝑦 + 1) ∈ 𝑧)) |
| 12 | 11 | simprbi 275 |
. . . . . 6
⊢ (𝑧 ∈ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)} → ∀𝑦 ∈ 𝑧 (𝑦 + 1) ∈ 𝑧) |
| 13 | | oveq1 5932 |
. . . . . . . 8
⊢ (𝑦 = 𝐴 → (𝑦 + 1) = (𝐴 + 1)) |
| 14 | 13 | eleq1d 2265 |
. . . . . . 7
⊢ (𝑦 = 𝐴 → ((𝑦 + 1) ∈ 𝑧 ↔ (𝐴 + 1) ∈ 𝑧)) |
| 15 | 14 | rspcva 2866 |
. . . . . 6
⊢ ((𝐴 ∈ 𝑧 ∧ ∀𝑦 ∈ 𝑧 (𝑦 + 1) ∈ 𝑧) → (𝐴 + 1) ∈ 𝑧) |
| 16 | 12, 15 | sylan2 286 |
. . . . 5
⊢ ((𝐴 ∈ 𝑧 ∧ 𝑧 ∈ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)}) → (𝐴 + 1) ∈ 𝑧) |
| 17 | 16 | expcom 116 |
. . . 4
⊢ (𝑧 ∈ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)} → (𝐴 ∈ 𝑧 → (𝐴 + 1) ∈ 𝑧)) |
| 18 | 17 | ralimia 2558 |
. . 3
⊢
(∀𝑧 ∈
{𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)}𝐴 ∈ 𝑧 → ∀𝑧 ∈ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)} (𝐴 + 1) ∈ 𝑧) |
| 19 | 5, 18 | syl 14 |
. 2
⊢ (𝐴 ∈ ℕ →
∀𝑧 ∈ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)} (𝐴 + 1) ∈ 𝑧) |
| 20 | | nnre 9014 |
. . . 4
⊢ (𝐴 ∈ ℕ → 𝐴 ∈
ℝ) |
| 21 | | 1red 8058 |
. . . 4
⊢ (𝐴 ∈ ℕ → 1 ∈
ℝ) |
| 22 | 20, 21 | readdcld 8073 |
. . 3
⊢ (𝐴 ∈ ℕ → (𝐴 + 1) ∈
ℝ) |
| 23 | 1 | eleq2i 2263 |
. . . 4
⊢ ((𝐴 + 1) ∈ ℕ ↔
(𝐴 + 1) ∈ ∩ {𝑥
∣ (1 ∈ 𝑥 ∧
∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)}) |
| 24 | | elintg 3883 |
. . . 4
⊢ ((𝐴 + 1) ∈ ℝ →
((𝐴 + 1) ∈ ∩ {𝑥
∣ (1 ∈ 𝑥 ∧
∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)} ↔ ∀𝑧 ∈ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)} (𝐴 + 1) ∈ 𝑧)) |
| 25 | 23, 24 | bitrid 192 |
. . 3
⊢ ((𝐴 + 1) ∈ ℝ →
((𝐴 + 1) ∈ ℕ
↔ ∀𝑧 ∈
{𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)} (𝐴 + 1) ∈ 𝑧)) |
| 26 | 22, 25 | syl 14 |
. 2
⊢ (𝐴 ∈ ℕ → ((𝐴 + 1) ∈ ℕ ↔
∀𝑧 ∈ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)} (𝐴 + 1) ∈ 𝑧)) |
| 27 | 19, 26 | mpbird 167 |
1
⊢ (𝐴 ∈ ℕ → (𝐴 + 1) ∈
ℕ) |