ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  peano2nn GIF version

Theorem peano2nn 9019
Description: Peano postulate: a successor of a positive integer is a positive integer. (Contributed by NM, 11-Jan-1997.) (Revised by Mario Carneiro, 17-Nov-2014.)
Assertion
Ref Expression
peano2nn (𝐴 ∈ ℕ → (𝐴 + 1) ∈ ℕ)

Proof of Theorem peano2nn
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dfnn2 9009 . . . . . 6 ℕ = {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)}
21eleq2i 2263 . . . . 5 (𝐴 ∈ ℕ ↔ 𝐴 {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)})
3 elintg 3883 . . . . 5 (𝐴 ∈ ℕ → (𝐴 {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)} ↔ ∀𝑧 ∈ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)}𝐴𝑧))
42, 3bitrid 192 . . . 4 (𝐴 ∈ ℕ → (𝐴 ∈ ℕ ↔ ∀𝑧 ∈ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)}𝐴𝑧))
54ibi 176 . . 3 (𝐴 ∈ ℕ → ∀𝑧 ∈ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)}𝐴𝑧)
6 vex 2766 . . . . . . . 8 𝑧 ∈ V
7 eleq2 2260 . . . . . . . . 9 (𝑥 = 𝑧 → (1 ∈ 𝑥 ↔ 1 ∈ 𝑧))
8 eleq2 2260 . . . . . . . . . 10 (𝑥 = 𝑧 → ((𝑦 + 1) ∈ 𝑥 ↔ (𝑦 + 1) ∈ 𝑧))
98raleqbi1dv 2705 . . . . . . . . 9 (𝑥 = 𝑧 → (∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥 ↔ ∀𝑦𝑧 (𝑦 + 1) ∈ 𝑧))
107, 9anbi12d 473 . . . . . . . 8 (𝑥 = 𝑧 → ((1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥) ↔ (1 ∈ 𝑧 ∧ ∀𝑦𝑧 (𝑦 + 1) ∈ 𝑧)))
116, 10elab 2908 . . . . . . 7 (𝑧 ∈ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)} ↔ (1 ∈ 𝑧 ∧ ∀𝑦𝑧 (𝑦 + 1) ∈ 𝑧))
1211simprbi 275 . . . . . 6 (𝑧 ∈ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)} → ∀𝑦𝑧 (𝑦 + 1) ∈ 𝑧)
13 oveq1 5932 . . . . . . . 8 (𝑦 = 𝐴 → (𝑦 + 1) = (𝐴 + 1))
1413eleq1d 2265 . . . . . . 7 (𝑦 = 𝐴 → ((𝑦 + 1) ∈ 𝑧 ↔ (𝐴 + 1) ∈ 𝑧))
1514rspcva 2866 . . . . . 6 ((𝐴𝑧 ∧ ∀𝑦𝑧 (𝑦 + 1) ∈ 𝑧) → (𝐴 + 1) ∈ 𝑧)
1612, 15sylan2 286 . . . . 5 ((𝐴𝑧𝑧 ∈ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)}) → (𝐴 + 1) ∈ 𝑧)
1716expcom 116 . . . 4 (𝑧 ∈ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)} → (𝐴𝑧 → (𝐴 + 1) ∈ 𝑧))
1817ralimia 2558 . . 3 (∀𝑧 ∈ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)}𝐴𝑧 → ∀𝑧 ∈ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)} (𝐴 + 1) ∈ 𝑧)
195, 18syl 14 . 2 (𝐴 ∈ ℕ → ∀𝑧 ∈ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)} (𝐴 + 1) ∈ 𝑧)
20 nnre 9014 . . . 4 (𝐴 ∈ ℕ → 𝐴 ∈ ℝ)
21 1red 8058 . . . 4 (𝐴 ∈ ℕ → 1 ∈ ℝ)
2220, 21readdcld 8073 . . 3 (𝐴 ∈ ℕ → (𝐴 + 1) ∈ ℝ)
231eleq2i 2263 . . . 4 ((𝐴 + 1) ∈ ℕ ↔ (𝐴 + 1) ∈ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)})
24 elintg 3883 . . . 4 ((𝐴 + 1) ∈ ℝ → ((𝐴 + 1) ∈ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)} ↔ ∀𝑧 ∈ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)} (𝐴 + 1) ∈ 𝑧))
2523, 24bitrid 192 . . 3 ((𝐴 + 1) ∈ ℝ → ((𝐴 + 1) ∈ ℕ ↔ ∀𝑧 ∈ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)} (𝐴 + 1) ∈ 𝑧))
2622, 25syl 14 . 2 (𝐴 ∈ ℕ → ((𝐴 + 1) ∈ ℕ ↔ ∀𝑧 ∈ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)} (𝐴 + 1) ∈ 𝑧))
2719, 26mpbird 167 1 (𝐴 ∈ ℕ → (𝐴 + 1) ∈ ℕ)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1364  wcel 2167  {cab 2182  wral 2475   cint 3875  (class class class)co 5925  cr 7895  1c1 7897   + caddc 7899  cn 9007
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178  ax-sep 4152  ax-cnex 7987  ax-resscn 7988  ax-1re 7990  ax-addrcl 7993
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-un 3161  df-in 3163  df-ss 3170  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-br 4035  df-iota 5220  df-fv 5267  df-ov 5928  df-inn 9008
This theorem is referenced by:  peano2nnd  9022  nnind  9023  nnaddcl  9027  2nn  9169  3nn  9170  4nn  9171  5nn  9172  6nn  9173  7nn  9174  8nn  9175  9nn  9176  nneoor  9445  10nn  9489  nnsplit  10229  fzonn0p1p1  10306  expp1  10655  facp1  10839  resqrexlemfp1  11191  resqrexlemcalc3  11198  trireciplem  11682  trirecip  11683  cvgratnnlemnexp  11706  cvgratz  11714  nno  12088  nnoddm1d2  12092  rplpwr  12219  prmind2  12313  sqrt2irr  12355  pcmpt  12537  pockthi  12552  dec5nprm  12608  mulgnnp1  13336  2sqlem10  15450
  Copyright terms: Public domain W3C validator