| Step | Hyp | Ref
 | Expression | 
| 1 |   | dfnn2 8992 | 
. . . . . 6
⊢ ℕ =
∩ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)} | 
| 2 | 1 | eleq2i 2263 | 
. . . . 5
⊢ (𝐴 ∈ ℕ ↔ 𝐴 ∈ ∩ {𝑥
∣ (1 ∈ 𝑥 ∧
∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)}) | 
| 3 |   | elintg 3882 | 
. . . . 5
⊢ (𝐴 ∈ ℕ → (𝐴 ∈ ∩ {𝑥
∣ (1 ∈ 𝑥 ∧
∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)} ↔ ∀𝑧 ∈ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)}𝐴 ∈ 𝑧)) | 
| 4 | 2, 3 | bitrid 192 | 
. . . 4
⊢ (𝐴 ∈ ℕ → (𝐴 ∈ ℕ ↔
∀𝑧 ∈ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)}𝐴 ∈ 𝑧)) | 
| 5 | 4 | ibi 176 | 
. . 3
⊢ (𝐴 ∈ ℕ →
∀𝑧 ∈ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)}𝐴 ∈ 𝑧) | 
| 6 |   | vex 2766 | 
. . . . . . . 8
⊢ 𝑧 ∈ V | 
| 7 |   | eleq2 2260 | 
. . . . . . . . 9
⊢ (𝑥 = 𝑧 → (1 ∈ 𝑥 ↔ 1 ∈ 𝑧)) | 
| 8 |   | eleq2 2260 | 
. . . . . . . . . 10
⊢ (𝑥 = 𝑧 → ((𝑦 + 1) ∈ 𝑥 ↔ (𝑦 + 1) ∈ 𝑧)) | 
| 9 | 8 | raleqbi1dv 2705 | 
. . . . . . . . 9
⊢ (𝑥 = 𝑧 → (∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥 ↔ ∀𝑦 ∈ 𝑧 (𝑦 + 1) ∈ 𝑧)) | 
| 10 | 7, 9 | anbi12d 473 | 
. . . . . . . 8
⊢ (𝑥 = 𝑧 → ((1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥) ↔ (1 ∈ 𝑧 ∧ ∀𝑦 ∈ 𝑧 (𝑦 + 1) ∈ 𝑧))) | 
| 11 | 6, 10 | elab 2908 | 
. . . . . . 7
⊢ (𝑧 ∈ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)} ↔ (1 ∈ 𝑧 ∧ ∀𝑦 ∈ 𝑧 (𝑦 + 1) ∈ 𝑧)) | 
| 12 | 11 | simprbi 275 | 
. . . . . 6
⊢ (𝑧 ∈ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)} → ∀𝑦 ∈ 𝑧 (𝑦 + 1) ∈ 𝑧) | 
| 13 |   | oveq1 5929 | 
. . . . . . . 8
⊢ (𝑦 = 𝐴 → (𝑦 + 1) = (𝐴 + 1)) | 
| 14 | 13 | eleq1d 2265 | 
. . . . . . 7
⊢ (𝑦 = 𝐴 → ((𝑦 + 1) ∈ 𝑧 ↔ (𝐴 + 1) ∈ 𝑧)) | 
| 15 | 14 | rspcva 2866 | 
. . . . . 6
⊢ ((𝐴 ∈ 𝑧 ∧ ∀𝑦 ∈ 𝑧 (𝑦 + 1) ∈ 𝑧) → (𝐴 + 1) ∈ 𝑧) | 
| 16 | 12, 15 | sylan2 286 | 
. . . . 5
⊢ ((𝐴 ∈ 𝑧 ∧ 𝑧 ∈ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)}) → (𝐴 + 1) ∈ 𝑧) | 
| 17 | 16 | expcom 116 | 
. . . 4
⊢ (𝑧 ∈ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)} → (𝐴 ∈ 𝑧 → (𝐴 + 1) ∈ 𝑧)) | 
| 18 | 17 | ralimia 2558 | 
. . 3
⊢
(∀𝑧 ∈
{𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)}𝐴 ∈ 𝑧 → ∀𝑧 ∈ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)} (𝐴 + 1) ∈ 𝑧) | 
| 19 | 5, 18 | syl 14 | 
. 2
⊢ (𝐴 ∈ ℕ →
∀𝑧 ∈ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)} (𝐴 + 1) ∈ 𝑧) | 
| 20 |   | nnre 8997 | 
. . . 4
⊢ (𝐴 ∈ ℕ → 𝐴 ∈
ℝ) | 
| 21 |   | 1red 8041 | 
. . . 4
⊢ (𝐴 ∈ ℕ → 1 ∈
ℝ) | 
| 22 | 20, 21 | readdcld 8056 | 
. . 3
⊢ (𝐴 ∈ ℕ → (𝐴 + 1) ∈
ℝ) | 
| 23 | 1 | eleq2i 2263 | 
. . . 4
⊢ ((𝐴 + 1) ∈ ℕ ↔
(𝐴 + 1) ∈ ∩ {𝑥
∣ (1 ∈ 𝑥 ∧
∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)}) | 
| 24 |   | elintg 3882 | 
. . . 4
⊢ ((𝐴 + 1) ∈ ℝ →
((𝐴 + 1) ∈ ∩ {𝑥
∣ (1 ∈ 𝑥 ∧
∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)} ↔ ∀𝑧 ∈ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)} (𝐴 + 1) ∈ 𝑧)) | 
| 25 | 23, 24 | bitrid 192 | 
. . 3
⊢ ((𝐴 + 1) ∈ ℝ →
((𝐴 + 1) ∈ ℕ
↔ ∀𝑧 ∈
{𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)} (𝐴 + 1) ∈ 𝑧)) | 
| 26 | 22, 25 | syl 14 | 
. 2
⊢ (𝐴 ∈ ℕ → ((𝐴 + 1) ∈ ℕ ↔
∀𝑧 ∈ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)} (𝐴 + 1) ∈ 𝑧)) | 
| 27 | 19, 26 | mpbird 167 | 
1
⊢ (𝐴 ∈ ℕ → (𝐴 + 1) ∈
ℕ) |