ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  peano5nni GIF version

Theorem peano5nni 9069
Description: Peano's inductive postulate. Theorem I.36 (principle of mathematical induction) of [Apostol] p. 34. (Contributed by NM, 10-Jan-1997.) (Revised by Mario Carneiro, 17-Nov-2014.)
Assertion
Ref Expression
peano5nni ((1 ∈ 𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴) → ℕ ⊆ 𝐴)
Distinct variable group:   𝑥,𝐴

Proof of Theorem peano5nni
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 1re 8101 . . . 4 1 ∈ ℝ
2 elin 3360 . . . . 5 (1 ∈ (𝐴 ∩ ℝ) ↔ (1 ∈ 𝐴 ∧ 1 ∈ ℝ))
32biimpri 133 . . . 4 ((1 ∈ 𝐴 ∧ 1 ∈ ℝ) → 1 ∈ (𝐴 ∩ ℝ))
41, 3mpan2 425 . . 3 (1 ∈ 𝐴 → 1 ∈ (𝐴 ∩ ℝ))
5 inss1 3397 . . . . 5 (𝐴 ∩ ℝ) ⊆ 𝐴
6 ssralv 3261 . . . . 5 ((𝐴 ∩ ℝ) ⊆ 𝐴 → (∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴 → ∀𝑥 ∈ (𝐴 ∩ ℝ)(𝑥 + 1) ∈ 𝐴))
75, 6ax-mp 5 . . . 4 (∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴 → ∀𝑥 ∈ (𝐴 ∩ ℝ)(𝑥 + 1) ∈ 𝐴)
8 inss2 3398 . . . . . . . 8 (𝐴 ∩ ℝ) ⊆ ℝ
98sseli 3193 . . . . . . 7 (𝑥 ∈ (𝐴 ∩ ℝ) → 𝑥 ∈ ℝ)
10 1red 8117 . . . . . . 7 (𝑥 ∈ (𝐴 ∩ ℝ) → 1 ∈ ℝ)
119, 10readdcld 8132 . . . . . 6 (𝑥 ∈ (𝐴 ∩ ℝ) → (𝑥 + 1) ∈ ℝ)
12 elin 3360 . . . . . . 7 ((𝑥 + 1) ∈ (𝐴 ∩ ℝ) ↔ ((𝑥 + 1) ∈ 𝐴 ∧ (𝑥 + 1) ∈ ℝ))
1312simplbi2com 1465 . . . . . 6 ((𝑥 + 1) ∈ ℝ → ((𝑥 + 1) ∈ 𝐴 → (𝑥 + 1) ∈ (𝐴 ∩ ℝ)))
1411, 13syl 14 . . . . 5 (𝑥 ∈ (𝐴 ∩ ℝ) → ((𝑥 + 1) ∈ 𝐴 → (𝑥 + 1) ∈ (𝐴 ∩ ℝ)))
1514ralimia 2568 . . . 4 (∀𝑥 ∈ (𝐴 ∩ ℝ)(𝑥 + 1) ∈ 𝐴 → ∀𝑥 ∈ (𝐴 ∩ ℝ)(𝑥 + 1) ∈ (𝐴 ∩ ℝ))
167, 15syl 14 . . 3 (∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴 → ∀𝑥 ∈ (𝐴 ∩ ℝ)(𝑥 + 1) ∈ (𝐴 ∩ ℝ))
17 reex 8089 . . . . 5 ℝ ∈ V
1817inex2 4190 . . . 4 (𝐴 ∩ ℝ) ∈ V
19 eleq2 2270 . . . . . . 7 (𝑦 = (𝐴 ∩ ℝ) → (1 ∈ 𝑦 ↔ 1 ∈ (𝐴 ∩ ℝ)))
20 eleq2 2270 . . . . . . . 8 (𝑦 = (𝐴 ∩ ℝ) → ((𝑥 + 1) ∈ 𝑦 ↔ (𝑥 + 1) ∈ (𝐴 ∩ ℝ)))
2120raleqbi1dv 2715 . . . . . . 7 (𝑦 = (𝐴 ∩ ℝ) → (∀𝑥𝑦 (𝑥 + 1) ∈ 𝑦 ↔ ∀𝑥 ∈ (𝐴 ∩ ℝ)(𝑥 + 1) ∈ (𝐴 ∩ ℝ)))
2219, 21anbi12d 473 . . . . . 6 (𝑦 = (𝐴 ∩ ℝ) → ((1 ∈ 𝑦 ∧ ∀𝑥𝑦 (𝑥 + 1) ∈ 𝑦) ↔ (1 ∈ (𝐴 ∩ ℝ) ∧ ∀𝑥 ∈ (𝐴 ∩ ℝ)(𝑥 + 1) ∈ (𝐴 ∩ ℝ))))
2322elabg 2923 . . . . 5 ((𝐴 ∩ ℝ) ∈ V → ((𝐴 ∩ ℝ) ∈ {𝑦 ∣ (1 ∈ 𝑦 ∧ ∀𝑥𝑦 (𝑥 + 1) ∈ 𝑦)} ↔ (1 ∈ (𝐴 ∩ ℝ) ∧ ∀𝑥 ∈ (𝐴 ∩ ℝ)(𝑥 + 1) ∈ (𝐴 ∩ ℝ))))
24 dfnn2 9068 . . . . . 6 ℕ = {𝑦 ∣ (1 ∈ 𝑦 ∧ ∀𝑥𝑦 (𝑥 + 1) ∈ 𝑦)}
25 intss1 3909 . . . . . 6 ((𝐴 ∩ ℝ) ∈ {𝑦 ∣ (1 ∈ 𝑦 ∧ ∀𝑥𝑦 (𝑥 + 1) ∈ 𝑦)} → {𝑦 ∣ (1 ∈ 𝑦 ∧ ∀𝑥𝑦 (𝑥 + 1) ∈ 𝑦)} ⊆ (𝐴 ∩ ℝ))
2624, 25eqsstrid 3243 . . . . 5 ((𝐴 ∩ ℝ) ∈ {𝑦 ∣ (1 ∈ 𝑦 ∧ ∀𝑥𝑦 (𝑥 + 1) ∈ 𝑦)} → ℕ ⊆ (𝐴 ∩ ℝ))
2723, 26biimtrrdi 164 . . . 4 ((𝐴 ∩ ℝ) ∈ V → ((1 ∈ (𝐴 ∩ ℝ) ∧ ∀𝑥 ∈ (𝐴 ∩ ℝ)(𝑥 + 1) ∈ (𝐴 ∩ ℝ)) → ℕ ⊆ (𝐴 ∩ ℝ)))
2818, 27ax-mp 5 . . 3 ((1 ∈ (𝐴 ∩ ℝ) ∧ ∀𝑥 ∈ (𝐴 ∩ ℝ)(𝑥 + 1) ∈ (𝐴 ∩ ℝ)) → ℕ ⊆ (𝐴 ∩ ℝ))
294, 16, 28syl2an 289 . 2 ((1 ∈ 𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴) → ℕ ⊆ (𝐴 ∩ ℝ))
3029, 5sstrdi 3209 1 ((1 ∈ 𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴) → ℕ ⊆ 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1373  wcel 2177  {cab 2192  wral 2485  Vcvv 2773  cin 3169  wss 3170   cint 3894  (class class class)co 5962  cr 7954  1c1 7956   + caddc 7958  cn 9066
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188  ax-sep 4173  ax-cnex 8046  ax-resscn 8047  ax-1re 8049  ax-addrcl 8052
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-v 2775  df-in 3176  df-ss 3183  df-int 3895  df-inn 9067
This theorem is referenced by:  nnssre  9070  nnind  9082
  Copyright terms: Public domain W3C validator