ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  peano5nni GIF version

Theorem peano5nni 8881
Description: Peano's inductive postulate. Theorem I.36 (principle of mathematical induction) of [Apostol] p. 34. (Contributed by NM, 10-Jan-1997.) (Revised by Mario Carneiro, 17-Nov-2014.)
Assertion
Ref Expression
peano5nni ((1 ∈ 𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴) → ℕ ⊆ 𝐴)
Distinct variable group:   𝑥,𝐴

Proof of Theorem peano5nni
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 1re 7919 . . . 4 1 ∈ ℝ
2 elin 3310 . . . . 5 (1 ∈ (𝐴 ∩ ℝ) ↔ (1 ∈ 𝐴 ∧ 1 ∈ ℝ))
32biimpri 132 . . . 4 ((1 ∈ 𝐴 ∧ 1 ∈ ℝ) → 1 ∈ (𝐴 ∩ ℝ))
41, 3mpan2 423 . . 3 (1 ∈ 𝐴 → 1 ∈ (𝐴 ∩ ℝ))
5 inss1 3347 . . . . 5 (𝐴 ∩ ℝ) ⊆ 𝐴
6 ssralv 3211 . . . . 5 ((𝐴 ∩ ℝ) ⊆ 𝐴 → (∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴 → ∀𝑥 ∈ (𝐴 ∩ ℝ)(𝑥 + 1) ∈ 𝐴))
75, 6ax-mp 5 . . . 4 (∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴 → ∀𝑥 ∈ (𝐴 ∩ ℝ)(𝑥 + 1) ∈ 𝐴)
8 inss2 3348 . . . . . . . 8 (𝐴 ∩ ℝ) ⊆ ℝ
98sseli 3143 . . . . . . 7 (𝑥 ∈ (𝐴 ∩ ℝ) → 𝑥 ∈ ℝ)
10 1red 7935 . . . . . . 7 (𝑥 ∈ (𝐴 ∩ ℝ) → 1 ∈ ℝ)
119, 10readdcld 7949 . . . . . 6 (𝑥 ∈ (𝐴 ∩ ℝ) → (𝑥 + 1) ∈ ℝ)
12 elin 3310 . . . . . . 7 ((𝑥 + 1) ∈ (𝐴 ∩ ℝ) ↔ ((𝑥 + 1) ∈ 𝐴 ∧ (𝑥 + 1) ∈ ℝ))
1312simplbi2com 1437 . . . . . 6 ((𝑥 + 1) ∈ ℝ → ((𝑥 + 1) ∈ 𝐴 → (𝑥 + 1) ∈ (𝐴 ∩ ℝ)))
1411, 13syl 14 . . . . 5 (𝑥 ∈ (𝐴 ∩ ℝ) → ((𝑥 + 1) ∈ 𝐴 → (𝑥 + 1) ∈ (𝐴 ∩ ℝ)))
1514ralimia 2531 . . . 4 (∀𝑥 ∈ (𝐴 ∩ ℝ)(𝑥 + 1) ∈ 𝐴 → ∀𝑥 ∈ (𝐴 ∩ ℝ)(𝑥 + 1) ∈ (𝐴 ∩ ℝ))
167, 15syl 14 . . 3 (∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴 → ∀𝑥 ∈ (𝐴 ∩ ℝ)(𝑥 + 1) ∈ (𝐴 ∩ ℝ))
17 reex 7908 . . . . 5 ℝ ∈ V
1817inex2 4124 . . . 4 (𝐴 ∩ ℝ) ∈ V
19 eleq2 2234 . . . . . . 7 (𝑦 = (𝐴 ∩ ℝ) → (1 ∈ 𝑦 ↔ 1 ∈ (𝐴 ∩ ℝ)))
20 eleq2 2234 . . . . . . . 8 (𝑦 = (𝐴 ∩ ℝ) → ((𝑥 + 1) ∈ 𝑦 ↔ (𝑥 + 1) ∈ (𝐴 ∩ ℝ)))
2120raleqbi1dv 2673 . . . . . . 7 (𝑦 = (𝐴 ∩ ℝ) → (∀𝑥𝑦 (𝑥 + 1) ∈ 𝑦 ↔ ∀𝑥 ∈ (𝐴 ∩ ℝ)(𝑥 + 1) ∈ (𝐴 ∩ ℝ)))
2219, 21anbi12d 470 . . . . . 6 (𝑦 = (𝐴 ∩ ℝ) → ((1 ∈ 𝑦 ∧ ∀𝑥𝑦 (𝑥 + 1) ∈ 𝑦) ↔ (1 ∈ (𝐴 ∩ ℝ) ∧ ∀𝑥 ∈ (𝐴 ∩ ℝ)(𝑥 + 1) ∈ (𝐴 ∩ ℝ))))
2322elabg 2876 . . . . 5 ((𝐴 ∩ ℝ) ∈ V → ((𝐴 ∩ ℝ) ∈ {𝑦 ∣ (1 ∈ 𝑦 ∧ ∀𝑥𝑦 (𝑥 + 1) ∈ 𝑦)} ↔ (1 ∈ (𝐴 ∩ ℝ) ∧ ∀𝑥 ∈ (𝐴 ∩ ℝ)(𝑥 + 1) ∈ (𝐴 ∩ ℝ))))
24 dfnn2 8880 . . . . . 6 ℕ = {𝑦 ∣ (1 ∈ 𝑦 ∧ ∀𝑥𝑦 (𝑥 + 1) ∈ 𝑦)}
25 intss1 3846 . . . . . 6 ((𝐴 ∩ ℝ) ∈ {𝑦 ∣ (1 ∈ 𝑦 ∧ ∀𝑥𝑦 (𝑥 + 1) ∈ 𝑦)} → {𝑦 ∣ (1 ∈ 𝑦 ∧ ∀𝑥𝑦 (𝑥 + 1) ∈ 𝑦)} ⊆ (𝐴 ∩ ℝ))
2624, 25eqsstrid 3193 . . . . 5 ((𝐴 ∩ ℝ) ∈ {𝑦 ∣ (1 ∈ 𝑦 ∧ ∀𝑥𝑦 (𝑥 + 1) ∈ 𝑦)} → ℕ ⊆ (𝐴 ∩ ℝ))
2723, 26syl6bir 163 . . . 4 ((𝐴 ∩ ℝ) ∈ V → ((1 ∈ (𝐴 ∩ ℝ) ∧ ∀𝑥 ∈ (𝐴 ∩ ℝ)(𝑥 + 1) ∈ (𝐴 ∩ ℝ)) → ℕ ⊆ (𝐴 ∩ ℝ)))
2818, 27ax-mp 5 . . 3 ((1 ∈ (𝐴 ∩ ℝ) ∧ ∀𝑥 ∈ (𝐴 ∩ ℝ)(𝑥 + 1) ∈ (𝐴 ∩ ℝ)) → ℕ ⊆ (𝐴 ∩ ℝ))
294, 16, 28syl2an 287 . 2 ((1 ∈ 𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴) → ℕ ⊆ (𝐴 ∩ ℝ))
3029, 5sstrdi 3159 1 ((1 ∈ 𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴) → ℕ ⊆ 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1348  wcel 2141  {cab 2156  wral 2448  Vcvv 2730  cin 3120  wss 3121   cint 3831  (class class class)co 5853  cr 7773  1c1 7775   + caddc 7777  cn 8878
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152  ax-sep 4107  ax-cnex 7865  ax-resscn 7866  ax-1re 7868  ax-addrcl 7871
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-v 2732  df-in 3127  df-ss 3134  df-int 3832  df-inn 8879
This theorem is referenced by:  nnssre  8882  nnind  8894
  Copyright terms: Public domain W3C validator