Step | Hyp | Ref
| Expression |
1 | | 1re 7898 |
. . . 4
⊢ 1 ∈
ℝ |
2 | | elin 3305 |
. . . . 5
⊢ (1 ∈
(𝐴 ∩ ℝ) ↔ (1
∈ 𝐴 ∧ 1 ∈
ℝ)) |
3 | 2 | biimpri 132 |
. . . 4
⊢ ((1
∈ 𝐴 ∧ 1 ∈
ℝ) → 1 ∈ (𝐴
∩ ℝ)) |
4 | 1, 3 | mpan2 422 |
. . 3
⊢ (1 ∈
𝐴 → 1 ∈ (𝐴 ∩
ℝ)) |
5 | | inss1 3342 |
. . . . 5
⊢ (𝐴 ∩ ℝ) ⊆ 𝐴 |
6 | | ssralv 3206 |
. . . . 5
⊢ ((𝐴 ∩ ℝ) ⊆ 𝐴 → (∀𝑥 ∈ 𝐴 (𝑥 + 1) ∈ 𝐴 → ∀𝑥 ∈ (𝐴 ∩ ℝ)(𝑥 + 1) ∈ 𝐴)) |
7 | 5, 6 | ax-mp 5 |
. . . 4
⊢
(∀𝑥 ∈
𝐴 (𝑥 + 1) ∈ 𝐴 → ∀𝑥 ∈ (𝐴 ∩ ℝ)(𝑥 + 1) ∈ 𝐴) |
8 | | inss2 3343 |
. . . . . . . 8
⊢ (𝐴 ∩ ℝ) ⊆
ℝ |
9 | 8 | sseli 3138 |
. . . . . . 7
⊢ (𝑥 ∈ (𝐴 ∩ ℝ) → 𝑥 ∈ ℝ) |
10 | | 1red 7914 |
. . . . . . 7
⊢ (𝑥 ∈ (𝐴 ∩ ℝ) → 1 ∈
ℝ) |
11 | 9, 10 | readdcld 7928 |
. . . . . 6
⊢ (𝑥 ∈ (𝐴 ∩ ℝ) → (𝑥 + 1) ∈ ℝ) |
12 | | elin 3305 |
. . . . . . 7
⊢ ((𝑥 + 1) ∈ (𝐴 ∩ ℝ) ↔ ((𝑥 + 1) ∈ 𝐴 ∧ (𝑥 + 1) ∈ ℝ)) |
13 | 12 | simplbi2com 1432 |
. . . . . 6
⊢ ((𝑥 + 1) ∈ ℝ →
((𝑥 + 1) ∈ 𝐴 → (𝑥 + 1) ∈ (𝐴 ∩ ℝ))) |
14 | 11, 13 | syl 14 |
. . . . 5
⊢ (𝑥 ∈ (𝐴 ∩ ℝ) → ((𝑥 + 1) ∈ 𝐴 → (𝑥 + 1) ∈ (𝐴 ∩ ℝ))) |
15 | 14 | ralimia 2527 |
. . . 4
⊢
(∀𝑥 ∈
(𝐴 ∩ ℝ)(𝑥 + 1) ∈ 𝐴 → ∀𝑥 ∈ (𝐴 ∩ ℝ)(𝑥 + 1) ∈ (𝐴 ∩ ℝ)) |
16 | 7, 15 | syl 14 |
. . 3
⊢
(∀𝑥 ∈
𝐴 (𝑥 + 1) ∈ 𝐴 → ∀𝑥 ∈ (𝐴 ∩ ℝ)(𝑥 + 1) ∈ (𝐴 ∩ ℝ)) |
17 | | reex 7887 |
. . . . 5
⊢ ℝ
∈ V |
18 | 17 | inex2 4117 |
. . . 4
⊢ (𝐴 ∩ ℝ) ∈
V |
19 | | eleq2 2230 |
. . . . . . 7
⊢ (𝑦 = (𝐴 ∩ ℝ) → (1 ∈ 𝑦 ↔ 1 ∈ (𝐴 ∩
ℝ))) |
20 | | eleq2 2230 |
. . . . . . . 8
⊢ (𝑦 = (𝐴 ∩ ℝ) → ((𝑥 + 1) ∈ 𝑦 ↔ (𝑥 + 1) ∈ (𝐴 ∩ ℝ))) |
21 | 20 | raleqbi1dv 2669 |
. . . . . . 7
⊢ (𝑦 = (𝐴 ∩ ℝ) → (∀𝑥 ∈ 𝑦 (𝑥 + 1) ∈ 𝑦 ↔ ∀𝑥 ∈ (𝐴 ∩ ℝ)(𝑥 + 1) ∈ (𝐴 ∩ ℝ))) |
22 | 19, 21 | anbi12d 465 |
. . . . . 6
⊢ (𝑦 = (𝐴 ∩ ℝ) → ((1 ∈ 𝑦 ∧ ∀𝑥 ∈ 𝑦 (𝑥 + 1) ∈ 𝑦) ↔ (1 ∈ (𝐴 ∩ ℝ) ∧ ∀𝑥 ∈ (𝐴 ∩ ℝ)(𝑥 + 1) ∈ (𝐴 ∩ ℝ)))) |
23 | 22 | elabg 2872 |
. . . . 5
⊢ ((𝐴 ∩ ℝ) ∈ V →
((𝐴 ∩ ℝ) ∈
{𝑦 ∣ (1 ∈ 𝑦 ∧ ∀𝑥 ∈ 𝑦 (𝑥 + 1) ∈ 𝑦)} ↔ (1 ∈ (𝐴 ∩ ℝ) ∧ ∀𝑥 ∈ (𝐴 ∩ ℝ)(𝑥 + 1) ∈ (𝐴 ∩ ℝ)))) |
24 | | dfnn2 8859 |
. . . . . 6
⊢ ℕ =
∩ {𝑦 ∣ (1 ∈ 𝑦 ∧ ∀𝑥 ∈ 𝑦 (𝑥 + 1) ∈ 𝑦)} |
25 | | intss1 3839 |
. . . . . 6
⊢ ((𝐴 ∩ ℝ) ∈ {𝑦 ∣ (1 ∈ 𝑦 ∧ ∀𝑥 ∈ 𝑦 (𝑥 + 1) ∈ 𝑦)} → ∩ {𝑦 ∣ (1 ∈ 𝑦 ∧ ∀𝑥 ∈ 𝑦 (𝑥 + 1) ∈ 𝑦)} ⊆ (𝐴 ∩ ℝ)) |
26 | 24, 25 | eqsstrid 3188 |
. . . . 5
⊢ ((𝐴 ∩ ℝ) ∈ {𝑦 ∣ (1 ∈ 𝑦 ∧ ∀𝑥 ∈ 𝑦 (𝑥 + 1) ∈ 𝑦)} → ℕ ⊆ (𝐴 ∩ ℝ)) |
27 | 23, 26 | syl6bir 163 |
. . . 4
⊢ ((𝐴 ∩ ℝ) ∈ V →
((1 ∈ (𝐴 ∩
ℝ) ∧ ∀𝑥
∈ (𝐴 ∩
ℝ)(𝑥 + 1) ∈
(𝐴 ∩ ℝ)) →
ℕ ⊆ (𝐴 ∩
ℝ))) |
28 | 18, 27 | ax-mp 5 |
. . 3
⊢ ((1
∈ (𝐴 ∩ ℝ)
∧ ∀𝑥 ∈
(𝐴 ∩ ℝ)(𝑥 + 1) ∈ (𝐴 ∩ ℝ)) → ℕ ⊆
(𝐴 ∩
ℝ)) |
29 | 4, 16, 28 | syl2an 287 |
. 2
⊢ ((1
∈ 𝐴 ∧
∀𝑥 ∈ 𝐴 (𝑥 + 1) ∈ 𝐴) → ℕ ⊆ (𝐴 ∩ ℝ)) |
30 | 29, 5 | sstrdi 3154 |
1
⊢ ((1
∈ 𝐴 ∧
∀𝑥 ∈ 𝐴 (𝑥 + 1) ∈ 𝐴) → ℕ ⊆ 𝐴) |