| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > falxorfal | GIF version | ||
| Description: A ⊻ identity. (Contributed by David A. Wheeler, 2-Mar-2018.) |
| Ref | Expression |
|---|---|
| falxorfal | ⊢ ((⊥ ⊻ ⊥) ↔ ⊥) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-xor 1387 | . 2 ⊢ ((⊥ ⊻ ⊥) ↔ ((⊥ ∨ ⊥) ∧ ¬ (⊥ ∧ ⊥))) | |
| 2 | oridm 758 | . . 3 ⊢ ((⊥ ∨ ⊥) ↔ ⊥) | |
| 3 | notfal 1425 | . . . 4 ⊢ (¬ ⊥ ↔ ⊤) | |
| 4 | anidm 396 | . . . 4 ⊢ ((⊥ ∧ ⊥) ↔ ⊥) | |
| 5 | 3, 4 | xchnxbir 682 | . . 3 ⊢ (¬ (⊥ ∧ ⊥) ↔ ⊤) |
| 6 | 2, 5 | anbi12i 460 | . 2 ⊢ (((⊥ ∨ ⊥) ∧ ¬ (⊥ ∧ ⊥)) ↔ (⊥ ∧ ⊤)) |
| 7 | falantru 1414 | . 2 ⊢ ((⊥ ∧ ⊤) ↔ ⊥) | |
| 8 | 1, 6, 7 | 3bitri 206 | 1 ⊢ ((⊥ ⊻ ⊥) ↔ ⊥) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 ∧ wa 104 ↔ wb 105 ∨ wo 709 ⊤wtru 1365 ⊥wfal 1369 ⊻ wxo 1386 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-fal 1370 df-xor 1387 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |