![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > falxorfal | GIF version |
Description: A ⊻ identity. (Contributed by David A. Wheeler, 2-Mar-2018.) |
Ref | Expression |
---|---|
falxorfal | ⊢ ((⊥ ⊻ ⊥) ↔ ⊥) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-xor 1337 | . 2 ⊢ ((⊥ ⊻ ⊥) ↔ ((⊥ ∨ ⊥) ∧ ¬ (⊥ ∧ ⊥))) | |
2 | oridm 729 | . . 3 ⊢ ((⊥ ∨ ⊥) ↔ ⊥) | |
3 | notfal 1375 | . . . 4 ⊢ (¬ ⊥ ↔ ⊤) | |
4 | anidm 391 | . . . 4 ⊢ ((⊥ ∧ ⊥) ↔ ⊥) | |
5 | 3, 4 | xchnxbir 653 | . . 3 ⊢ (¬ (⊥ ∧ ⊥) ↔ ⊤) |
6 | 2, 5 | anbi12i 453 | . 2 ⊢ (((⊥ ∨ ⊥) ∧ ¬ (⊥ ∧ ⊥)) ↔ (⊥ ∧ ⊤)) |
7 | falantru 1364 | . 2 ⊢ ((⊥ ∧ ⊤) ↔ ⊥) | |
8 | 1, 6, 7 | 3bitri 205 | 1 ⊢ ((⊥ ⊻ ⊥) ↔ ⊥) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 ∧ wa 103 ↔ wb 104 ∨ wo 680 ⊤wtru 1315 ⊥wfal 1319 ⊻ wxo 1336 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 586 ax-in2 587 ax-io 681 |
This theorem depends on definitions: df-bi 116 df-tru 1317 df-fal 1320 df-xor 1337 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |