Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > falxortru | GIF version |
Description: A ⊻ identity. (Contributed by David A. Wheeler, 2-Mar-2018.) |
Ref | Expression |
---|---|
falxortru | ⊢ ((⊥ ⊻ ⊤) ↔ ⊤) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-xor 1355 | . 2 ⊢ ((⊥ ⊻ ⊤) ↔ ((⊥ ∨ ⊤) ∧ ¬ (⊥ ∧ ⊤))) | |
2 | falortru 1386 | . . 3 ⊢ ((⊥ ∨ ⊤) ↔ ⊤) | |
3 | notfal 1393 | . . . 4 ⊢ (¬ ⊥ ↔ ⊤) | |
4 | falantru 1382 | . . . 4 ⊢ ((⊥ ∧ ⊤) ↔ ⊥) | |
5 | 3, 4 | xchnxbir 671 | . . 3 ⊢ (¬ (⊥ ∧ ⊤) ↔ ⊤) |
6 | 2, 5 | anbi12i 456 | . 2 ⊢ (((⊥ ∨ ⊤) ∧ ¬ (⊥ ∧ ⊤)) ↔ (⊤ ∧ ⊤)) |
7 | anidm 394 | . 2 ⊢ ((⊤ ∧ ⊤) ↔ ⊤) | |
8 | 1, 6, 7 | 3bitri 205 | 1 ⊢ ((⊥ ⊻ ⊤) ↔ ⊤) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 ∧ wa 103 ↔ wb 104 ∨ wo 698 ⊤wtru 1333 ⊥wfal 1337 ⊻ wxo 1354 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 |
This theorem depends on definitions: df-bi 116 df-tru 1335 df-fal 1338 df-xor 1355 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |