ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ennnfonelemf1 GIF version

Theorem ennnfonelemf1 12660
Description: Lemma for ennnfone 12667. 𝐿 is one-to-one. (Contributed by Jim Kingdon, 16-Jul-2023.)
Hypotheses
Ref Expression
ennnfonelemh.dceq (𝜑 → ∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦)
ennnfonelemh.f (𝜑𝐹:ω–onto𝐴)
ennnfonelemh.ne (𝜑 → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹𝑘) ≠ (𝐹𝑗))
ennnfonelemh.g 𝐺 = (𝑥 ∈ (𝐴pm ω), 𝑦 ∈ ω ↦ if((𝐹𝑦) ∈ (𝐹𝑦), 𝑥, (𝑥 ∪ {⟨dom 𝑥, (𝐹𝑦)⟩})))
ennnfonelemh.n 𝑁 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)
ennnfonelemh.j 𝐽 = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, ∅, (𝑁‘(𝑥 − 1))))
ennnfonelemh.h 𝐻 = seq0(𝐺, 𝐽)
ennnfone.l 𝐿 = 𝑖 ∈ ℕ0 (𝐻𝑖)
Assertion
Ref Expression
ennnfonelemf1 (𝜑𝐿:dom 𝐿1-1𝐴)
Distinct variable groups:   𝐴,𝑗,𝑥,𝑦   𝑥,𝐹,𝑦,𝑗,𝑘   𝑛,𝐹   𝑗,𝐺   𝑖,𝐻   𝑗,𝐻,𝑥,𝑦,𝑘   𝑗,𝐽   𝑥,𝑁,𝑦,𝑘,𝑗   𝜑,𝑗,𝑥,𝑦,𝑘   𝑘,𝑛,𝑗
Allowed substitution hints:   𝜑(𝑖,𝑛)   𝐴(𝑖,𝑘,𝑛)   𝐹(𝑖)   𝐺(𝑥,𝑦,𝑖,𝑘,𝑛)   𝐻(𝑛)   𝐽(𝑥,𝑦,𝑖,𝑘,𝑛)   𝐿(𝑥,𝑦,𝑖,𝑗,𝑘,𝑛)   𝑁(𝑖,𝑛)

Proof of Theorem ennnfonelemf1
Dummy variables 𝑞 𝑠 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ennnfonelemh.dceq . . . . 5 (𝜑 → ∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦)
2 ennnfonelemh.f . . . . 5 (𝜑𝐹:ω–onto𝐴)
3 ennnfonelemh.ne . . . . 5 (𝜑 → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹𝑘) ≠ (𝐹𝑗))
4 ennnfonelemh.g . . . . 5 𝐺 = (𝑥 ∈ (𝐴pm ω), 𝑦 ∈ ω ↦ if((𝐹𝑦) ∈ (𝐹𝑦), 𝑥, (𝑥 ∪ {⟨dom 𝑥, (𝐹𝑦)⟩})))
5 ennnfonelemh.n . . . . 5 𝑁 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)
6 ennnfonelemh.j . . . . 5 𝐽 = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, ∅, (𝑁‘(𝑥 − 1))))
7 ennnfonelemh.h . . . . 5 𝐻 = seq0(𝐺, 𝐽)
8 ennnfone.l . . . . 5 𝐿 = 𝑖 ∈ ℕ0 (𝐻𝑖)
91, 2, 3, 4, 5, 6, 7, 8ennnfonelemfun 12659 . . . 4 (𝜑 → Fun 𝐿)
109funfnd 5290 . . 3 (𝜑𝐿 Fn dom 𝐿)
111, 2, 3, 4, 5, 6, 7ennnfonelemh 12646 . . . . . . . . 9 (𝜑𝐻:ℕ0⟶(𝐴pm ω))
1211ffnd 5411 . . . . . . . 8 (𝜑𝐻 Fn ℕ0)
13 fniunfv 5812 . . . . . . . 8 (𝐻 Fn ℕ0 𝑖 ∈ ℕ0 (𝐻𝑖) = ran 𝐻)
1412, 13syl 14 . . . . . . 7 (𝜑 𝑖 ∈ ℕ0 (𝐻𝑖) = ran 𝐻)
158, 14eqtrid 2241 . . . . . 6 (𝜑𝐿 = ran 𝐻)
1615rneqd 4896 . . . . 5 (𝜑 → ran 𝐿 = ran ran 𝐻)
17 rnuni 5082 . . . . 5 ran ran 𝐻 = 𝑥 ∈ ran 𝐻ran 𝑥
1816, 17eqtrdi 2245 . . . 4 (𝜑 → ran 𝐿 = 𝑥 ∈ ran 𝐻ran 𝑥)
1911frnd 5420 . . . . . . . . . 10 (𝜑 → ran 𝐻 ⊆ (𝐴pm ω))
2019sselda 3184 . . . . . . . . 9 ((𝜑𝑥 ∈ ran 𝐻) → 𝑥 ∈ (𝐴pm ω))
21 elpmi 6735 . . . . . . . . 9 (𝑥 ∈ (𝐴pm ω) → (𝑥:dom 𝑥𝐴 ∧ dom 𝑥 ⊆ ω))
2220, 21syl 14 . . . . . . . 8 ((𝜑𝑥 ∈ ran 𝐻) → (𝑥:dom 𝑥𝐴 ∧ dom 𝑥 ⊆ ω))
2322simpld 112 . . . . . . 7 ((𝜑𝑥 ∈ ran 𝐻) → 𝑥:dom 𝑥𝐴)
2423frnd 5420 . . . . . 6 ((𝜑𝑥 ∈ ran 𝐻) → ran 𝑥𝐴)
2524ralrimiva 2570 . . . . 5 (𝜑 → ∀𝑥 ∈ ran 𝐻ran 𝑥𝐴)
26 iunss 3958 . . . . 5 ( 𝑥 ∈ ran 𝐻ran 𝑥𝐴 ↔ ∀𝑥 ∈ ran 𝐻ran 𝑥𝐴)
2725, 26sylibr 134 . . . 4 (𝜑 𝑥 ∈ ran 𝐻ran 𝑥𝐴)
2818, 27eqsstrd 3220 . . 3 (𝜑 → ran 𝐿𝐴)
29 df-f 5263 . . 3 (𝐿:dom 𝐿𝐴 ↔ (𝐿 Fn dom 𝐿 ∧ ran 𝐿𝐴))
3010, 28, 29sylanbrc 417 . 2 (𝜑𝐿:dom 𝐿𝐴)
3119sselda 3184 . . . . . . . 8 ((𝜑𝑠 ∈ ran 𝐻) → 𝑠 ∈ (𝐴pm ω))
32 pmfun 6736 . . . . . . . 8 (𝑠 ∈ (𝐴pm ω) → Fun 𝑠)
3331, 32syl 14 . . . . . . 7 ((𝜑𝑠 ∈ ran 𝐻) → Fun 𝑠)
3411ffund 5414 . . . . . . . . . 10 (𝜑 → Fun 𝐻)
3534adantr 276 . . . . . . . . 9 ((𝜑𝑠 ∈ ran 𝐻) → Fun 𝐻)
36 simpr 110 . . . . . . . . 9 ((𝜑𝑠 ∈ ran 𝐻) → 𝑠 ∈ ran 𝐻)
37 elrnrexdm 5704 . . . . . . . . 9 (Fun 𝐻 → (𝑠 ∈ ran 𝐻 → ∃𝑞 ∈ dom 𝐻 𝑠 = (𝐻𝑞)))
3835, 36, 37sylc 62 . . . . . . . 8 ((𝜑𝑠 ∈ ran 𝐻) → ∃𝑞 ∈ dom 𝐻 𝑠 = (𝐻𝑞))
391adantr 276 . . . . . . . . . . . 12 ((𝜑𝑞 ∈ dom 𝐻) → ∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦)
402adantr 276 . . . . . . . . . . . 12 ((𝜑𝑞 ∈ dom 𝐻) → 𝐹:ω–onto𝐴)
413adantr 276 . . . . . . . . . . . 12 ((𝜑𝑞 ∈ dom 𝐻) → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹𝑘) ≠ (𝐹𝑗))
4211fdmd 5417 . . . . . . . . . . . . . 14 (𝜑 → dom 𝐻 = ℕ0)
4342eleq2d 2266 . . . . . . . . . . . . 13 (𝜑 → (𝑞 ∈ dom 𝐻𝑞 ∈ ℕ0))
4443biimpa 296 . . . . . . . . . . . 12 ((𝜑𝑞 ∈ dom 𝐻) → 𝑞 ∈ ℕ0)
4539, 40, 41, 4, 5, 6, 7, 44ennnfonelemhf1o 12655 . . . . . . . . . . 11 ((𝜑𝑞 ∈ dom 𝐻) → (𝐻𝑞):dom (𝐻𝑞)–1-1-onto→(𝐹 “ (𝑁𝑞)))
46 f1ocnv 5520 . . . . . . . . . . 11 ((𝐻𝑞):dom (𝐻𝑞)–1-1-onto→(𝐹 “ (𝑁𝑞)) → (𝐻𝑞):(𝐹 “ (𝑁𝑞))–1-1-onto→dom (𝐻𝑞))
47 f1ofun 5509 . . . . . . . . . . 11 ((𝐻𝑞):(𝐹 “ (𝑁𝑞))–1-1-onto→dom (𝐻𝑞) → Fun (𝐻𝑞))
4845, 46, 473syl 17 . . . . . . . . . 10 ((𝜑𝑞 ∈ dom 𝐻) → Fun (𝐻𝑞))
4948ad2ant2r 509 . . . . . . . . 9 (((𝜑𝑠 ∈ ran 𝐻) ∧ (𝑞 ∈ dom 𝐻𝑠 = (𝐻𝑞))) → Fun (𝐻𝑞))
50 simprr 531 . . . . . . . . . . 11 (((𝜑𝑠 ∈ ran 𝐻) ∧ (𝑞 ∈ dom 𝐻𝑠 = (𝐻𝑞))) → 𝑠 = (𝐻𝑞))
5150cnveqd 4843 . . . . . . . . . 10 (((𝜑𝑠 ∈ ran 𝐻) ∧ (𝑞 ∈ dom 𝐻𝑠 = (𝐻𝑞))) → 𝑠 = (𝐻𝑞))
5251funeqd 5281 . . . . . . . . 9 (((𝜑𝑠 ∈ ran 𝐻) ∧ (𝑞 ∈ dom 𝐻𝑠 = (𝐻𝑞))) → (Fun 𝑠 ↔ Fun (𝐻𝑞)))
5349, 52mpbird 167 . . . . . . . 8 (((𝜑𝑠 ∈ ran 𝐻) ∧ (𝑞 ∈ dom 𝐻𝑠 = (𝐻𝑞))) → Fun 𝑠)
5438, 53rexlimddv 2619 . . . . . . 7 ((𝜑𝑠 ∈ ran 𝐻) → Fun 𝑠)
551ad2antrr 488 . . . . . . . . 9 (((𝜑𝑠 ∈ ran 𝐻) ∧ 𝑡 ∈ ran 𝐻) → ∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦)
562ad2antrr 488 . . . . . . . . 9 (((𝜑𝑠 ∈ ran 𝐻) ∧ 𝑡 ∈ ran 𝐻) → 𝐹:ω–onto𝐴)
573ad2antrr 488 . . . . . . . . 9 (((𝜑𝑠 ∈ ran 𝐻) ∧ 𝑡 ∈ ran 𝐻) → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹𝑘) ≠ (𝐹𝑗))
58 simplr 528 . . . . . . . . 9 (((𝜑𝑠 ∈ ran 𝐻) ∧ 𝑡 ∈ ran 𝐻) → 𝑠 ∈ ran 𝐻)
59 simpr 110 . . . . . . . . 9 (((𝜑𝑠 ∈ ran 𝐻) ∧ 𝑡 ∈ ran 𝐻) → 𝑡 ∈ ran 𝐻)
6055, 56, 57, 4, 5, 6, 7, 58, 59ennnfonelemrnh 12658 . . . . . . . 8 (((𝜑𝑠 ∈ ran 𝐻) ∧ 𝑡 ∈ ran 𝐻) → (𝑠𝑡𝑡𝑠))
6160ralrimiva 2570 . . . . . . 7 ((𝜑𝑠 ∈ ran 𝐻) → ∀𝑡 ∈ ran 𝐻(𝑠𝑡𝑡𝑠))
6233, 54, 61jca31 309 . . . . . 6 ((𝜑𝑠 ∈ ran 𝐻) → ((Fun 𝑠 ∧ Fun 𝑠) ∧ ∀𝑡 ∈ ran 𝐻(𝑠𝑡𝑡𝑠)))
6362ralrimiva 2570 . . . . 5 (𝜑 → ∀𝑠 ∈ ran 𝐻((Fun 𝑠 ∧ Fun 𝑠) ∧ ∀𝑡 ∈ ran 𝐻(𝑠𝑡𝑡𝑠)))
64 fun11uni 5329 . . . . 5 (∀𝑠 ∈ ran 𝐻((Fun 𝑠 ∧ Fun 𝑠) ∧ ∀𝑡 ∈ ran 𝐻(𝑠𝑡𝑡𝑠)) → (Fun ran 𝐻 ∧ Fun ran 𝐻))
6563, 64syl 14 . . . 4 (𝜑 → (Fun ran 𝐻 ∧ Fun ran 𝐻))
6665simprd 114 . . 3 (𝜑 → Fun ran 𝐻)
6715cnveqd 4843 . . . 4 (𝜑𝐿 = ran 𝐻)
6867funeqd 5281 . . 3 (𝜑 → (Fun 𝐿 ↔ Fun ran 𝐻))
6966, 68mpbird 167 . 2 (𝜑 → Fun 𝐿)
70 df-f1 5264 . 2 (𝐿:dom 𝐿1-1𝐴 ↔ (𝐿:dom 𝐿𝐴 ∧ Fun 𝐿))
7130, 69, 70sylanbrc 417 1 (𝜑𝐿:dom 𝐿1-1𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wo 709  DECID wdc 835   = wceq 1364  wcel 2167  wne 2367  wral 2475  wrex 2476  cun 3155  wss 3157  c0 3451  ifcif 3562  {csn 3623  cop 3626   cuni 3840   ciun 3917  cmpt 4095  suc csuc 4401  ωcom 4627  ccnv 4663  dom cdm 4664  ran crn 4665  cima 4667  Fun wfun 5253   Fn wfn 5254  wf 5255  1-1wf1 5256  ontowfo 5257  1-1-ontowf1o 5258  cfv 5259  (class class class)co 5925  cmpo 5927  freccfrec 6457  pm cpm 6717  0cc0 7896  1c1 7897   + caddc 7899  cmin 8214  0cn0 9266  cz 9343  seqcseq 10556
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-addcom 7996  ax-addass 7998  ax-distr 8000  ax-i2m1 8001  ax-0lt1 8002  ax-0id 8004  ax-rnegex 8005  ax-cnre 8007  ax-pre-ltirr 8008  ax-pre-ltwlin 8009  ax-pre-lttrn 8010  ax-pre-ltadd 8012
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-if 3563  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-iord 4402  df-on 4404  df-ilim 4405  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-recs 6372  df-frec 6458  df-pm 6719  df-pnf 8080  df-mnf 8081  df-xr 8082  df-ltxr 8083  df-le 8084  df-sub 8216  df-neg 8217  df-inn 9008  df-n0 9267  df-z 9344  df-uz 9619  df-seqfrec 10557
This theorem is referenced by:  ennnfonelemrn  12661  ennnfonelemen  12663
  Copyright terms: Public domain W3C validator