ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ennnfonelemf1 GIF version

Theorem ennnfonelemf1 12789
Description: Lemma for ennnfone 12796. 𝐿 is one-to-one. (Contributed by Jim Kingdon, 16-Jul-2023.)
Hypotheses
Ref Expression
ennnfonelemh.dceq (𝜑 → ∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦)
ennnfonelemh.f (𝜑𝐹:ω–onto𝐴)
ennnfonelemh.ne (𝜑 → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹𝑘) ≠ (𝐹𝑗))
ennnfonelemh.g 𝐺 = (𝑥 ∈ (𝐴pm ω), 𝑦 ∈ ω ↦ if((𝐹𝑦) ∈ (𝐹𝑦), 𝑥, (𝑥 ∪ {⟨dom 𝑥, (𝐹𝑦)⟩})))
ennnfonelemh.n 𝑁 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)
ennnfonelemh.j 𝐽 = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, ∅, (𝑁‘(𝑥 − 1))))
ennnfonelemh.h 𝐻 = seq0(𝐺, 𝐽)
ennnfone.l 𝐿 = 𝑖 ∈ ℕ0 (𝐻𝑖)
Assertion
Ref Expression
ennnfonelemf1 (𝜑𝐿:dom 𝐿1-1𝐴)
Distinct variable groups:   𝐴,𝑗,𝑥,𝑦   𝑥,𝐹,𝑦,𝑗,𝑘   𝑛,𝐹   𝑗,𝐺   𝑖,𝐻   𝑗,𝐻,𝑥,𝑦,𝑘   𝑗,𝐽   𝑥,𝑁,𝑦,𝑘,𝑗   𝜑,𝑗,𝑥,𝑦,𝑘   𝑘,𝑛,𝑗
Allowed substitution hints:   𝜑(𝑖,𝑛)   𝐴(𝑖,𝑘,𝑛)   𝐹(𝑖)   𝐺(𝑥,𝑦,𝑖,𝑘,𝑛)   𝐻(𝑛)   𝐽(𝑥,𝑦,𝑖,𝑘,𝑛)   𝐿(𝑥,𝑦,𝑖,𝑗,𝑘,𝑛)   𝑁(𝑖,𝑛)

Proof of Theorem ennnfonelemf1
Dummy variables 𝑞 𝑠 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ennnfonelemh.dceq . . . . 5 (𝜑 → ∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦)
2 ennnfonelemh.f . . . . 5 (𝜑𝐹:ω–onto𝐴)
3 ennnfonelemh.ne . . . . 5 (𝜑 → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹𝑘) ≠ (𝐹𝑗))
4 ennnfonelemh.g . . . . 5 𝐺 = (𝑥 ∈ (𝐴pm ω), 𝑦 ∈ ω ↦ if((𝐹𝑦) ∈ (𝐹𝑦), 𝑥, (𝑥 ∪ {⟨dom 𝑥, (𝐹𝑦)⟩})))
5 ennnfonelemh.n . . . . 5 𝑁 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)
6 ennnfonelemh.j . . . . 5 𝐽 = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, ∅, (𝑁‘(𝑥 − 1))))
7 ennnfonelemh.h . . . . 5 𝐻 = seq0(𝐺, 𝐽)
8 ennnfone.l . . . . 5 𝐿 = 𝑖 ∈ ℕ0 (𝐻𝑖)
91, 2, 3, 4, 5, 6, 7, 8ennnfonelemfun 12788 . . . 4 (𝜑 → Fun 𝐿)
109funfnd 5302 . . 3 (𝜑𝐿 Fn dom 𝐿)
111, 2, 3, 4, 5, 6, 7ennnfonelemh 12775 . . . . . . . . 9 (𝜑𝐻:ℕ0⟶(𝐴pm ω))
1211ffnd 5426 . . . . . . . 8 (𝜑𝐻 Fn ℕ0)
13 fniunfv 5831 . . . . . . . 8 (𝐻 Fn ℕ0 𝑖 ∈ ℕ0 (𝐻𝑖) = ran 𝐻)
1412, 13syl 14 . . . . . . 7 (𝜑 𝑖 ∈ ℕ0 (𝐻𝑖) = ran 𝐻)
158, 14eqtrid 2250 . . . . . 6 (𝜑𝐿 = ran 𝐻)
1615rneqd 4907 . . . . 5 (𝜑 → ran 𝐿 = ran ran 𝐻)
17 rnuni 5094 . . . . 5 ran ran 𝐻 = 𝑥 ∈ ran 𝐻ran 𝑥
1816, 17eqtrdi 2254 . . . 4 (𝜑 → ran 𝐿 = 𝑥 ∈ ran 𝐻ran 𝑥)
1911frnd 5435 . . . . . . . . . 10 (𝜑 → ran 𝐻 ⊆ (𝐴pm ω))
2019sselda 3193 . . . . . . . . 9 ((𝜑𝑥 ∈ ran 𝐻) → 𝑥 ∈ (𝐴pm ω))
21 elpmi 6754 . . . . . . . . 9 (𝑥 ∈ (𝐴pm ω) → (𝑥:dom 𝑥𝐴 ∧ dom 𝑥 ⊆ ω))
2220, 21syl 14 . . . . . . . 8 ((𝜑𝑥 ∈ ran 𝐻) → (𝑥:dom 𝑥𝐴 ∧ dom 𝑥 ⊆ ω))
2322simpld 112 . . . . . . 7 ((𝜑𝑥 ∈ ran 𝐻) → 𝑥:dom 𝑥𝐴)
2423frnd 5435 . . . . . 6 ((𝜑𝑥 ∈ ran 𝐻) → ran 𝑥𝐴)
2524ralrimiva 2579 . . . . 5 (𝜑 → ∀𝑥 ∈ ran 𝐻ran 𝑥𝐴)
26 iunss 3968 . . . . 5 ( 𝑥 ∈ ran 𝐻ran 𝑥𝐴 ↔ ∀𝑥 ∈ ran 𝐻ran 𝑥𝐴)
2725, 26sylibr 134 . . . 4 (𝜑 𝑥 ∈ ran 𝐻ran 𝑥𝐴)
2818, 27eqsstrd 3229 . . 3 (𝜑 → ran 𝐿𝐴)
29 df-f 5275 . . 3 (𝐿:dom 𝐿𝐴 ↔ (𝐿 Fn dom 𝐿 ∧ ran 𝐿𝐴))
3010, 28, 29sylanbrc 417 . 2 (𝜑𝐿:dom 𝐿𝐴)
3119sselda 3193 . . . . . . . 8 ((𝜑𝑠 ∈ ran 𝐻) → 𝑠 ∈ (𝐴pm ω))
32 pmfun 6755 . . . . . . . 8 (𝑠 ∈ (𝐴pm ω) → Fun 𝑠)
3331, 32syl 14 . . . . . . 7 ((𝜑𝑠 ∈ ran 𝐻) → Fun 𝑠)
3411ffund 5429 . . . . . . . . . 10 (𝜑 → Fun 𝐻)
3534adantr 276 . . . . . . . . 9 ((𝜑𝑠 ∈ ran 𝐻) → Fun 𝐻)
36 simpr 110 . . . . . . . . 9 ((𝜑𝑠 ∈ ran 𝐻) → 𝑠 ∈ ran 𝐻)
37 elrnrexdm 5719 . . . . . . . . 9 (Fun 𝐻 → (𝑠 ∈ ran 𝐻 → ∃𝑞 ∈ dom 𝐻 𝑠 = (𝐻𝑞)))
3835, 36, 37sylc 62 . . . . . . . 8 ((𝜑𝑠 ∈ ran 𝐻) → ∃𝑞 ∈ dom 𝐻 𝑠 = (𝐻𝑞))
391adantr 276 . . . . . . . . . . . 12 ((𝜑𝑞 ∈ dom 𝐻) → ∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦)
402adantr 276 . . . . . . . . . . . 12 ((𝜑𝑞 ∈ dom 𝐻) → 𝐹:ω–onto𝐴)
413adantr 276 . . . . . . . . . . . 12 ((𝜑𝑞 ∈ dom 𝐻) → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹𝑘) ≠ (𝐹𝑗))
4211fdmd 5432 . . . . . . . . . . . . . 14 (𝜑 → dom 𝐻 = ℕ0)
4342eleq2d 2275 . . . . . . . . . . . . 13 (𝜑 → (𝑞 ∈ dom 𝐻𝑞 ∈ ℕ0))
4443biimpa 296 . . . . . . . . . . . 12 ((𝜑𝑞 ∈ dom 𝐻) → 𝑞 ∈ ℕ0)
4539, 40, 41, 4, 5, 6, 7, 44ennnfonelemhf1o 12784 . . . . . . . . . . 11 ((𝜑𝑞 ∈ dom 𝐻) → (𝐻𝑞):dom (𝐻𝑞)–1-1-onto→(𝐹 “ (𝑁𝑞)))
46 f1ocnv 5535 . . . . . . . . . . 11 ((𝐻𝑞):dom (𝐻𝑞)–1-1-onto→(𝐹 “ (𝑁𝑞)) → (𝐻𝑞):(𝐹 “ (𝑁𝑞))–1-1-onto→dom (𝐻𝑞))
47 f1ofun 5524 . . . . . . . . . . 11 ((𝐻𝑞):(𝐹 “ (𝑁𝑞))–1-1-onto→dom (𝐻𝑞) → Fun (𝐻𝑞))
4845, 46, 473syl 17 . . . . . . . . . 10 ((𝜑𝑞 ∈ dom 𝐻) → Fun (𝐻𝑞))
4948ad2ant2r 509 . . . . . . . . 9 (((𝜑𝑠 ∈ ran 𝐻) ∧ (𝑞 ∈ dom 𝐻𝑠 = (𝐻𝑞))) → Fun (𝐻𝑞))
50 simprr 531 . . . . . . . . . . 11 (((𝜑𝑠 ∈ ran 𝐻) ∧ (𝑞 ∈ dom 𝐻𝑠 = (𝐻𝑞))) → 𝑠 = (𝐻𝑞))
5150cnveqd 4854 . . . . . . . . . 10 (((𝜑𝑠 ∈ ran 𝐻) ∧ (𝑞 ∈ dom 𝐻𝑠 = (𝐻𝑞))) → 𝑠 = (𝐻𝑞))
5251funeqd 5293 . . . . . . . . 9 (((𝜑𝑠 ∈ ran 𝐻) ∧ (𝑞 ∈ dom 𝐻𝑠 = (𝐻𝑞))) → (Fun 𝑠 ↔ Fun (𝐻𝑞)))
5349, 52mpbird 167 . . . . . . . 8 (((𝜑𝑠 ∈ ran 𝐻) ∧ (𝑞 ∈ dom 𝐻𝑠 = (𝐻𝑞))) → Fun 𝑠)
5438, 53rexlimddv 2628 . . . . . . 7 ((𝜑𝑠 ∈ ran 𝐻) → Fun 𝑠)
551ad2antrr 488 . . . . . . . . 9 (((𝜑𝑠 ∈ ran 𝐻) ∧ 𝑡 ∈ ran 𝐻) → ∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦)
562ad2antrr 488 . . . . . . . . 9 (((𝜑𝑠 ∈ ran 𝐻) ∧ 𝑡 ∈ ran 𝐻) → 𝐹:ω–onto𝐴)
573ad2antrr 488 . . . . . . . . 9 (((𝜑𝑠 ∈ ran 𝐻) ∧ 𝑡 ∈ ran 𝐻) → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹𝑘) ≠ (𝐹𝑗))
58 simplr 528 . . . . . . . . 9 (((𝜑𝑠 ∈ ran 𝐻) ∧ 𝑡 ∈ ran 𝐻) → 𝑠 ∈ ran 𝐻)
59 simpr 110 . . . . . . . . 9 (((𝜑𝑠 ∈ ran 𝐻) ∧ 𝑡 ∈ ran 𝐻) → 𝑡 ∈ ran 𝐻)
6055, 56, 57, 4, 5, 6, 7, 58, 59ennnfonelemrnh 12787 . . . . . . . 8 (((𝜑𝑠 ∈ ran 𝐻) ∧ 𝑡 ∈ ran 𝐻) → (𝑠𝑡𝑡𝑠))
6160ralrimiva 2579 . . . . . . 7 ((𝜑𝑠 ∈ ran 𝐻) → ∀𝑡 ∈ ran 𝐻(𝑠𝑡𝑡𝑠))
6233, 54, 61jca31 309 . . . . . 6 ((𝜑𝑠 ∈ ran 𝐻) → ((Fun 𝑠 ∧ Fun 𝑠) ∧ ∀𝑡 ∈ ran 𝐻(𝑠𝑡𝑡𝑠)))
6362ralrimiva 2579 . . . . 5 (𝜑 → ∀𝑠 ∈ ran 𝐻((Fun 𝑠 ∧ Fun 𝑠) ∧ ∀𝑡 ∈ ran 𝐻(𝑠𝑡𝑡𝑠)))
64 fun11uni 5344 . . . . 5 (∀𝑠 ∈ ran 𝐻((Fun 𝑠 ∧ Fun 𝑠) ∧ ∀𝑡 ∈ ran 𝐻(𝑠𝑡𝑡𝑠)) → (Fun ran 𝐻 ∧ Fun ran 𝐻))
6563, 64syl 14 . . . 4 (𝜑 → (Fun ran 𝐻 ∧ Fun ran 𝐻))
6665simprd 114 . . 3 (𝜑 → Fun ran 𝐻)
6715cnveqd 4854 . . . 4 (𝜑𝐿 = ran 𝐻)
6867funeqd 5293 . . 3 (𝜑 → (Fun 𝐿 ↔ Fun ran 𝐻))
6966, 68mpbird 167 . 2 (𝜑 → Fun 𝐿)
70 df-f1 5276 . 2 (𝐿:dom 𝐿1-1𝐴 ↔ (𝐿:dom 𝐿𝐴 ∧ Fun 𝐿))
7130, 69, 70sylanbrc 417 1 (𝜑𝐿:dom 𝐿1-1𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wo 710  DECID wdc 836   = wceq 1373  wcel 2176  wne 2376  wral 2484  wrex 2485  cun 3164  wss 3166  c0 3460  ifcif 3571  {csn 3633  cop 3636   cuni 3850   ciun 3927  cmpt 4105  suc csuc 4412  ωcom 4638  ccnv 4674  dom cdm 4675  ran crn 4676  cima 4678  Fun wfun 5265   Fn wfn 5266  wf 5267  1-1wf1 5268  ontowfo 5269  1-1-ontowf1o 5270  cfv 5271  (class class class)co 5944  cmpo 5946  freccfrec 6476  pm cpm 6736  0cc0 7925  1c1 7926   + caddc 7928  cmin 8243  0cn0 9295  cz 9372  seqcseq 10592
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4159  ax-sep 4162  ax-nul 4170  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-iinf 4636  ax-cnex 8016  ax-resscn 8017  ax-1cn 8018  ax-1re 8019  ax-icn 8020  ax-addcl 8021  ax-addrcl 8022  ax-mulcl 8023  ax-addcom 8025  ax-addass 8027  ax-distr 8029  ax-i2m1 8030  ax-0lt1 8031  ax-0id 8033  ax-rnegex 8034  ax-cnre 8036  ax-pre-ltirr 8037  ax-pre-ltwlin 8038  ax-pre-lttrn 8039  ax-pre-ltadd 8041
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-if 3572  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4045  df-opab 4106  df-mpt 4107  df-tr 4143  df-id 4340  df-iord 4413  df-on 4415  df-ilim 4416  df-suc 4418  df-iom 4639  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-riota 5899  df-ov 5947  df-oprab 5948  df-mpo 5949  df-1st 6226  df-2nd 6227  df-recs 6391  df-frec 6477  df-pm 6738  df-pnf 8109  df-mnf 8110  df-xr 8111  df-ltxr 8112  df-le 8113  df-sub 8245  df-neg 8246  df-inn 9037  df-n0 9296  df-z 9373  df-uz 9649  df-seqfrec 10593
This theorem is referenced by:  ennnfonelemrn  12790  ennnfonelemen  12792
  Copyright terms: Public domain W3C validator