ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ennnfonelemf1 GIF version

Theorem ennnfonelemf1 12822
Description: Lemma for ennnfone 12829. 𝐿 is one-to-one. (Contributed by Jim Kingdon, 16-Jul-2023.)
Hypotheses
Ref Expression
ennnfonelemh.dceq (𝜑 → ∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦)
ennnfonelemh.f (𝜑𝐹:ω–onto𝐴)
ennnfonelemh.ne (𝜑 → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹𝑘) ≠ (𝐹𝑗))
ennnfonelemh.g 𝐺 = (𝑥 ∈ (𝐴pm ω), 𝑦 ∈ ω ↦ if((𝐹𝑦) ∈ (𝐹𝑦), 𝑥, (𝑥 ∪ {⟨dom 𝑥, (𝐹𝑦)⟩})))
ennnfonelemh.n 𝑁 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)
ennnfonelemh.j 𝐽 = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, ∅, (𝑁‘(𝑥 − 1))))
ennnfonelemh.h 𝐻 = seq0(𝐺, 𝐽)
ennnfone.l 𝐿 = 𝑖 ∈ ℕ0 (𝐻𝑖)
Assertion
Ref Expression
ennnfonelemf1 (𝜑𝐿:dom 𝐿1-1𝐴)
Distinct variable groups:   𝐴,𝑗,𝑥,𝑦   𝑥,𝐹,𝑦,𝑗,𝑘   𝑛,𝐹   𝑗,𝐺   𝑖,𝐻   𝑗,𝐻,𝑥,𝑦,𝑘   𝑗,𝐽   𝑥,𝑁,𝑦,𝑘,𝑗   𝜑,𝑗,𝑥,𝑦,𝑘   𝑘,𝑛,𝑗
Allowed substitution hints:   𝜑(𝑖,𝑛)   𝐴(𝑖,𝑘,𝑛)   𝐹(𝑖)   𝐺(𝑥,𝑦,𝑖,𝑘,𝑛)   𝐻(𝑛)   𝐽(𝑥,𝑦,𝑖,𝑘,𝑛)   𝐿(𝑥,𝑦,𝑖,𝑗,𝑘,𝑛)   𝑁(𝑖,𝑛)

Proof of Theorem ennnfonelemf1
Dummy variables 𝑞 𝑠 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ennnfonelemh.dceq . . . . 5 (𝜑 → ∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦)
2 ennnfonelemh.f . . . . 5 (𝜑𝐹:ω–onto𝐴)
3 ennnfonelemh.ne . . . . 5 (𝜑 → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹𝑘) ≠ (𝐹𝑗))
4 ennnfonelemh.g . . . . 5 𝐺 = (𝑥 ∈ (𝐴pm ω), 𝑦 ∈ ω ↦ if((𝐹𝑦) ∈ (𝐹𝑦), 𝑥, (𝑥 ∪ {⟨dom 𝑥, (𝐹𝑦)⟩})))
5 ennnfonelemh.n . . . . 5 𝑁 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)
6 ennnfonelemh.j . . . . 5 𝐽 = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, ∅, (𝑁‘(𝑥 − 1))))
7 ennnfonelemh.h . . . . 5 𝐻 = seq0(𝐺, 𝐽)
8 ennnfone.l . . . . 5 𝐿 = 𝑖 ∈ ℕ0 (𝐻𝑖)
91, 2, 3, 4, 5, 6, 7, 8ennnfonelemfun 12821 . . . 4 (𝜑 → Fun 𝐿)
109funfnd 5303 . . 3 (𝜑𝐿 Fn dom 𝐿)
111, 2, 3, 4, 5, 6, 7ennnfonelemh 12808 . . . . . . . . 9 (𝜑𝐻:ℕ0⟶(𝐴pm ω))
1211ffnd 5428 . . . . . . . 8 (𝜑𝐻 Fn ℕ0)
13 fniunfv 5833 . . . . . . . 8 (𝐻 Fn ℕ0 𝑖 ∈ ℕ0 (𝐻𝑖) = ran 𝐻)
1412, 13syl 14 . . . . . . 7 (𝜑 𝑖 ∈ ℕ0 (𝐻𝑖) = ran 𝐻)
158, 14eqtrid 2250 . . . . . 6 (𝜑𝐿 = ran 𝐻)
1615rneqd 4908 . . . . 5 (𝜑 → ran 𝐿 = ran ran 𝐻)
17 rnuni 5095 . . . . 5 ran ran 𝐻 = 𝑥 ∈ ran 𝐻ran 𝑥
1816, 17eqtrdi 2254 . . . 4 (𝜑 → ran 𝐿 = 𝑥 ∈ ran 𝐻ran 𝑥)
1911frnd 5437 . . . . . . . . . 10 (𝜑 → ran 𝐻 ⊆ (𝐴pm ω))
2019sselda 3193 . . . . . . . . 9 ((𝜑𝑥 ∈ ran 𝐻) → 𝑥 ∈ (𝐴pm ω))
21 elpmi 6756 . . . . . . . . 9 (𝑥 ∈ (𝐴pm ω) → (𝑥:dom 𝑥𝐴 ∧ dom 𝑥 ⊆ ω))
2220, 21syl 14 . . . . . . . 8 ((𝜑𝑥 ∈ ran 𝐻) → (𝑥:dom 𝑥𝐴 ∧ dom 𝑥 ⊆ ω))
2322simpld 112 . . . . . . 7 ((𝜑𝑥 ∈ ran 𝐻) → 𝑥:dom 𝑥𝐴)
2423frnd 5437 . . . . . 6 ((𝜑𝑥 ∈ ran 𝐻) → ran 𝑥𝐴)
2524ralrimiva 2579 . . . . 5 (𝜑 → ∀𝑥 ∈ ran 𝐻ran 𝑥𝐴)
26 iunss 3968 . . . . 5 ( 𝑥 ∈ ran 𝐻ran 𝑥𝐴 ↔ ∀𝑥 ∈ ran 𝐻ran 𝑥𝐴)
2725, 26sylibr 134 . . . 4 (𝜑 𝑥 ∈ ran 𝐻ran 𝑥𝐴)
2818, 27eqsstrd 3229 . . 3 (𝜑 → ran 𝐿𝐴)
29 df-f 5276 . . 3 (𝐿:dom 𝐿𝐴 ↔ (𝐿 Fn dom 𝐿 ∧ ran 𝐿𝐴))
3010, 28, 29sylanbrc 417 . 2 (𝜑𝐿:dom 𝐿𝐴)
3119sselda 3193 . . . . . . . 8 ((𝜑𝑠 ∈ ran 𝐻) → 𝑠 ∈ (𝐴pm ω))
32 pmfun 6757 . . . . . . . 8 (𝑠 ∈ (𝐴pm ω) → Fun 𝑠)
3331, 32syl 14 . . . . . . 7 ((𝜑𝑠 ∈ ran 𝐻) → Fun 𝑠)
3411ffund 5431 . . . . . . . . . 10 (𝜑 → Fun 𝐻)
3534adantr 276 . . . . . . . . 9 ((𝜑𝑠 ∈ ran 𝐻) → Fun 𝐻)
36 simpr 110 . . . . . . . . 9 ((𝜑𝑠 ∈ ran 𝐻) → 𝑠 ∈ ran 𝐻)
37 elrnrexdm 5721 . . . . . . . . 9 (Fun 𝐻 → (𝑠 ∈ ran 𝐻 → ∃𝑞 ∈ dom 𝐻 𝑠 = (𝐻𝑞)))
3835, 36, 37sylc 62 . . . . . . . 8 ((𝜑𝑠 ∈ ran 𝐻) → ∃𝑞 ∈ dom 𝐻 𝑠 = (𝐻𝑞))
391adantr 276 . . . . . . . . . . . 12 ((𝜑𝑞 ∈ dom 𝐻) → ∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦)
402adantr 276 . . . . . . . . . . . 12 ((𝜑𝑞 ∈ dom 𝐻) → 𝐹:ω–onto𝐴)
413adantr 276 . . . . . . . . . . . 12 ((𝜑𝑞 ∈ dom 𝐻) → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹𝑘) ≠ (𝐹𝑗))
4211fdmd 5434 . . . . . . . . . . . . . 14 (𝜑 → dom 𝐻 = ℕ0)
4342eleq2d 2275 . . . . . . . . . . . . 13 (𝜑 → (𝑞 ∈ dom 𝐻𝑞 ∈ ℕ0))
4443biimpa 296 . . . . . . . . . . . 12 ((𝜑𝑞 ∈ dom 𝐻) → 𝑞 ∈ ℕ0)
4539, 40, 41, 4, 5, 6, 7, 44ennnfonelemhf1o 12817 . . . . . . . . . . 11 ((𝜑𝑞 ∈ dom 𝐻) → (𝐻𝑞):dom (𝐻𝑞)–1-1-onto→(𝐹 “ (𝑁𝑞)))
46 f1ocnv 5537 . . . . . . . . . . 11 ((𝐻𝑞):dom (𝐻𝑞)–1-1-onto→(𝐹 “ (𝑁𝑞)) → (𝐻𝑞):(𝐹 “ (𝑁𝑞))–1-1-onto→dom (𝐻𝑞))
47 f1ofun 5526 . . . . . . . . . . 11 ((𝐻𝑞):(𝐹 “ (𝑁𝑞))–1-1-onto→dom (𝐻𝑞) → Fun (𝐻𝑞))
4845, 46, 473syl 17 . . . . . . . . . 10 ((𝜑𝑞 ∈ dom 𝐻) → Fun (𝐻𝑞))
4948ad2ant2r 509 . . . . . . . . 9 (((𝜑𝑠 ∈ ran 𝐻) ∧ (𝑞 ∈ dom 𝐻𝑠 = (𝐻𝑞))) → Fun (𝐻𝑞))
50 simprr 531 . . . . . . . . . . 11 (((𝜑𝑠 ∈ ran 𝐻) ∧ (𝑞 ∈ dom 𝐻𝑠 = (𝐻𝑞))) → 𝑠 = (𝐻𝑞))
5150cnveqd 4855 . . . . . . . . . 10 (((𝜑𝑠 ∈ ran 𝐻) ∧ (𝑞 ∈ dom 𝐻𝑠 = (𝐻𝑞))) → 𝑠 = (𝐻𝑞))
5251funeqd 5294 . . . . . . . . 9 (((𝜑𝑠 ∈ ran 𝐻) ∧ (𝑞 ∈ dom 𝐻𝑠 = (𝐻𝑞))) → (Fun 𝑠 ↔ Fun (𝐻𝑞)))
5349, 52mpbird 167 . . . . . . . 8 (((𝜑𝑠 ∈ ran 𝐻) ∧ (𝑞 ∈ dom 𝐻𝑠 = (𝐻𝑞))) → Fun 𝑠)
5438, 53rexlimddv 2628 . . . . . . 7 ((𝜑𝑠 ∈ ran 𝐻) → Fun 𝑠)
551ad2antrr 488 . . . . . . . . 9 (((𝜑𝑠 ∈ ran 𝐻) ∧ 𝑡 ∈ ran 𝐻) → ∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦)
562ad2antrr 488 . . . . . . . . 9 (((𝜑𝑠 ∈ ran 𝐻) ∧ 𝑡 ∈ ran 𝐻) → 𝐹:ω–onto𝐴)
573ad2antrr 488 . . . . . . . . 9 (((𝜑𝑠 ∈ ran 𝐻) ∧ 𝑡 ∈ ran 𝐻) → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹𝑘) ≠ (𝐹𝑗))
58 simplr 528 . . . . . . . . 9 (((𝜑𝑠 ∈ ran 𝐻) ∧ 𝑡 ∈ ran 𝐻) → 𝑠 ∈ ran 𝐻)
59 simpr 110 . . . . . . . . 9 (((𝜑𝑠 ∈ ran 𝐻) ∧ 𝑡 ∈ ran 𝐻) → 𝑡 ∈ ran 𝐻)
6055, 56, 57, 4, 5, 6, 7, 58, 59ennnfonelemrnh 12820 . . . . . . . 8 (((𝜑𝑠 ∈ ran 𝐻) ∧ 𝑡 ∈ ran 𝐻) → (𝑠𝑡𝑡𝑠))
6160ralrimiva 2579 . . . . . . 7 ((𝜑𝑠 ∈ ran 𝐻) → ∀𝑡 ∈ ran 𝐻(𝑠𝑡𝑡𝑠))
6233, 54, 61jca31 309 . . . . . 6 ((𝜑𝑠 ∈ ran 𝐻) → ((Fun 𝑠 ∧ Fun 𝑠) ∧ ∀𝑡 ∈ ran 𝐻(𝑠𝑡𝑡𝑠)))
6362ralrimiva 2579 . . . . 5 (𝜑 → ∀𝑠 ∈ ran 𝐻((Fun 𝑠 ∧ Fun 𝑠) ∧ ∀𝑡 ∈ ran 𝐻(𝑠𝑡𝑡𝑠)))
64 fun11uni 5345 . . . . 5 (∀𝑠 ∈ ran 𝐻((Fun 𝑠 ∧ Fun 𝑠) ∧ ∀𝑡 ∈ ran 𝐻(𝑠𝑡𝑡𝑠)) → (Fun ran 𝐻 ∧ Fun ran 𝐻))
6563, 64syl 14 . . . 4 (𝜑 → (Fun ran 𝐻 ∧ Fun ran 𝐻))
6665simprd 114 . . 3 (𝜑 → Fun ran 𝐻)
6715cnveqd 4855 . . . 4 (𝜑𝐿 = ran 𝐻)
6867funeqd 5294 . . 3 (𝜑 → (Fun 𝐿 ↔ Fun ran 𝐻))
6966, 68mpbird 167 . 2 (𝜑 → Fun 𝐿)
70 df-f1 5277 . 2 (𝐿:dom 𝐿1-1𝐴 ↔ (𝐿:dom 𝐿𝐴 ∧ Fun 𝐿))
7130, 69, 70sylanbrc 417 1 (𝜑𝐿:dom 𝐿1-1𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wo 710  DECID wdc 836   = wceq 1373  wcel 2176  wne 2376  wral 2484  wrex 2485  cun 3164  wss 3166  c0 3460  ifcif 3571  {csn 3633  cop 3636   cuni 3850   ciun 3927  cmpt 4106  suc csuc 4413  ωcom 4639  ccnv 4675  dom cdm 4676  ran crn 4677  cima 4679  Fun wfun 5266   Fn wfn 5267  wf 5268  1-1wf1 5269  ontowfo 5270  1-1-ontowf1o 5271  cfv 5272  (class class class)co 5946  cmpo 5948  freccfrec 6478  pm cpm 6738  0cc0 7927  1c1 7928   + caddc 7930  cmin 8245  0cn0 9297  cz 9374  seqcseq 10594
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4160  ax-sep 4163  ax-nul 4171  ax-pow 4219  ax-pr 4254  ax-un 4481  ax-setind 4586  ax-iinf 4637  ax-cnex 8018  ax-resscn 8019  ax-1cn 8020  ax-1re 8021  ax-icn 8022  ax-addcl 8023  ax-addrcl 8024  ax-mulcl 8025  ax-addcom 8027  ax-addass 8029  ax-distr 8031  ax-i2m1 8032  ax-0lt1 8033  ax-0id 8035  ax-rnegex 8036  ax-cnre 8038  ax-pre-ltirr 8039  ax-pre-ltwlin 8040  ax-pre-lttrn 8041  ax-pre-ltadd 8043
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-if 3572  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4046  df-opab 4107  df-mpt 4108  df-tr 4144  df-id 4341  df-iord 4414  df-on 4416  df-ilim 4417  df-suc 4419  df-iom 4640  df-xp 4682  df-rel 4683  df-cnv 4684  df-co 4685  df-dm 4686  df-rn 4687  df-res 4688  df-ima 4689  df-iota 5233  df-fun 5274  df-fn 5275  df-f 5276  df-f1 5277  df-fo 5278  df-f1o 5279  df-fv 5280  df-riota 5901  df-ov 5949  df-oprab 5950  df-mpo 5951  df-1st 6228  df-2nd 6229  df-recs 6393  df-frec 6479  df-pm 6740  df-pnf 8111  df-mnf 8112  df-xr 8113  df-ltxr 8114  df-le 8115  df-sub 8247  df-neg 8248  df-inn 9039  df-n0 9298  df-z 9375  df-uz 9651  df-seqfrec 10595
This theorem is referenced by:  ennnfonelemrn  12823  ennnfonelemen  12825
  Copyright terms: Public domain W3C validator