ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ennnfonelemf1 GIF version

Theorem ennnfonelemf1 12419
Description: Lemma for ennnfone 12426. 𝐿 is one-to-one. (Contributed by Jim Kingdon, 16-Jul-2023.)
Hypotheses
Ref Expression
ennnfonelemh.dceq (𝜑 → ∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦)
ennnfonelemh.f (𝜑𝐹:ω–onto𝐴)
ennnfonelemh.ne (𝜑 → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹𝑘) ≠ (𝐹𝑗))
ennnfonelemh.g 𝐺 = (𝑥 ∈ (𝐴pm ω), 𝑦 ∈ ω ↦ if((𝐹𝑦) ∈ (𝐹𝑦), 𝑥, (𝑥 ∪ {⟨dom 𝑥, (𝐹𝑦)⟩})))
ennnfonelemh.n 𝑁 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)
ennnfonelemh.j 𝐽 = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, ∅, (𝑁‘(𝑥 − 1))))
ennnfonelemh.h 𝐻 = seq0(𝐺, 𝐽)
ennnfone.l 𝐿 = 𝑖 ∈ ℕ0 (𝐻𝑖)
Assertion
Ref Expression
ennnfonelemf1 (𝜑𝐿:dom 𝐿1-1𝐴)
Distinct variable groups:   𝐴,𝑗,𝑥,𝑦   𝑥,𝐹,𝑦,𝑗,𝑘   𝑛,𝐹   𝑗,𝐺   𝑖,𝐻   𝑗,𝐻,𝑥,𝑦,𝑘   𝑗,𝐽   𝑥,𝑁,𝑦,𝑘,𝑗   𝜑,𝑗,𝑥,𝑦,𝑘   𝑘,𝑛,𝑗
Allowed substitution hints:   𝜑(𝑖,𝑛)   𝐴(𝑖,𝑘,𝑛)   𝐹(𝑖)   𝐺(𝑥,𝑦,𝑖,𝑘,𝑛)   𝐻(𝑛)   𝐽(𝑥,𝑦,𝑖,𝑘,𝑛)   𝐿(𝑥,𝑦,𝑖,𝑗,𝑘,𝑛)   𝑁(𝑖,𝑛)

Proof of Theorem ennnfonelemf1
Dummy variables 𝑞 𝑠 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ennnfonelemh.dceq . . . . 5 (𝜑 → ∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦)
2 ennnfonelemh.f . . . . 5 (𝜑𝐹:ω–onto𝐴)
3 ennnfonelemh.ne . . . . 5 (𝜑 → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹𝑘) ≠ (𝐹𝑗))
4 ennnfonelemh.g . . . . 5 𝐺 = (𝑥 ∈ (𝐴pm ω), 𝑦 ∈ ω ↦ if((𝐹𝑦) ∈ (𝐹𝑦), 𝑥, (𝑥 ∪ {⟨dom 𝑥, (𝐹𝑦)⟩})))
5 ennnfonelemh.n . . . . 5 𝑁 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)
6 ennnfonelemh.j . . . . 5 𝐽 = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, ∅, (𝑁‘(𝑥 − 1))))
7 ennnfonelemh.h . . . . 5 𝐻 = seq0(𝐺, 𝐽)
8 ennnfone.l . . . . 5 𝐿 = 𝑖 ∈ ℕ0 (𝐻𝑖)
91, 2, 3, 4, 5, 6, 7, 8ennnfonelemfun 12418 . . . 4 (𝜑 → Fun 𝐿)
109funfnd 5248 . . 3 (𝜑𝐿 Fn dom 𝐿)
111, 2, 3, 4, 5, 6, 7ennnfonelemh 12405 . . . . . . . . 9 (𝜑𝐻:ℕ0⟶(𝐴pm ω))
1211ffnd 5367 . . . . . . . 8 (𝜑𝐻 Fn ℕ0)
13 fniunfv 5763 . . . . . . . 8 (𝐻 Fn ℕ0 𝑖 ∈ ℕ0 (𝐻𝑖) = ran 𝐻)
1412, 13syl 14 . . . . . . 7 (𝜑 𝑖 ∈ ℕ0 (𝐻𝑖) = ran 𝐻)
158, 14eqtrid 2222 . . . . . 6 (𝜑𝐿 = ran 𝐻)
1615rneqd 4857 . . . . 5 (𝜑 → ran 𝐿 = ran ran 𝐻)
17 rnuni 5041 . . . . 5 ran ran 𝐻 = 𝑥 ∈ ran 𝐻ran 𝑥
1816, 17eqtrdi 2226 . . . 4 (𝜑 → ran 𝐿 = 𝑥 ∈ ran 𝐻ran 𝑥)
1911frnd 5376 . . . . . . . . . 10 (𝜑 → ran 𝐻 ⊆ (𝐴pm ω))
2019sselda 3156 . . . . . . . . 9 ((𝜑𝑥 ∈ ran 𝐻) → 𝑥 ∈ (𝐴pm ω))
21 elpmi 6667 . . . . . . . . 9 (𝑥 ∈ (𝐴pm ω) → (𝑥:dom 𝑥𝐴 ∧ dom 𝑥 ⊆ ω))
2220, 21syl 14 . . . . . . . 8 ((𝜑𝑥 ∈ ran 𝐻) → (𝑥:dom 𝑥𝐴 ∧ dom 𝑥 ⊆ ω))
2322simpld 112 . . . . . . 7 ((𝜑𝑥 ∈ ran 𝐻) → 𝑥:dom 𝑥𝐴)
2423frnd 5376 . . . . . 6 ((𝜑𝑥 ∈ ran 𝐻) → ran 𝑥𝐴)
2524ralrimiva 2550 . . . . 5 (𝜑 → ∀𝑥 ∈ ran 𝐻ran 𝑥𝐴)
26 iunss 3928 . . . . 5 ( 𝑥 ∈ ran 𝐻ran 𝑥𝐴 ↔ ∀𝑥 ∈ ran 𝐻ran 𝑥𝐴)
2725, 26sylibr 134 . . . 4 (𝜑 𝑥 ∈ ran 𝐻ran 𝑥𝐴)
2818, 27eqsstrd 3192 . . 3 (𝜑 → ran 𝐿𝐴)
29 df-f 5221 . . 3 (𝐿:dom 𝐿𝐴 ↔ (𝐿 Fn dom 𝐿 ∧ ran 𝐿𝐴))
3010, 28, 29sylanbrc 417 . 2 (𝜑𝐿:dom 𝐿𝐴)
3119sselda 3156 . . . . . . . 8 ((𝜑𝑠 ∈ ran 𝐻) → 𝑠 ∈ (𝐴pm ω))
32 pmfun 6668 . . . . . . . 8 (𝑠 ∈ (𝐴pm ω) → Fun 𝑠)
3331, 32syl 14 . . . . . . 7 ((𝜑𝑠 ∈ ran 𝐻) → Fun 𝑠)
3411ffund 5370 . . . . . . . . . 10 (𝜑 → Fun 𝐻)
3534adantr 276 . . . . . . . . 9 ((𝜑𝑠 ∈ ran 𝐻) → Fun 𝐻)
36 simpr 110 . . . . . . . . 9 ((𝜑𝑠 ∈ ran 𝐻) → 𝑠 ∈ ran 𝐻)
37 elrnrexdm 5656 . . . . . . . . 9 (Fun 𝐻 → (𝑠 ∈ ran 𝐻 → ∃𝑞 ∈ dom 𝐻 𝑠 = (𝐻𝑞)))
3835, 36, 37sylc 62 . . . . . . . 8 ((𝜑𝑠 ∈ ran 𝐻) → ∃𝑞 ∈ dom 𝐻 𝑠 = (𝐻𝑞))
391adantr 276 . . . . . . . . . . . 12 ((𝜑𝑞 ∈ dom 𝐻) → ∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦)
402adantr 276 . . . . . . . . . . . 12 ((𝜑𝑞 ∈ dom 𝐻) → 𝐹:ω–onto𝐴)
413adantr 276 . . . . . . . . . . . 12 ((𝜑𝑞 ∈ dom 𝐻) → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹𝑘) ≠ (𝐹𝑗))
4211fdmd 5373 . . . . . . . . . . . . . 14 (𝜑 → dom 𝐻 = ℕ0)
4342eleq2d 2247 . . . . . . . . . . . . 13 (𝜑 → (𝑞 ∈ dom 𝐻𝑞 ∈ ℕ0))
4443biimpa 296 . . . . . . . . . . . 12 ((𝜑𝑞 ∈ dom 𝐻) → 𝑞 ∈ ℕ0)
4539, 40, 41, 4, 5, 6, 7, 44ennnfonelemhf1o 12414 . . . . . . . . . . 11 ((𝜑𝑞 ∈ dom 𝐻) → (𝐻𝑞):dom (𝐻𝑞)–1-1-onto→(𝐹 “ (𝑁𝑞)))
46 f1ocnv 5475 . . . . . . . . . . 11 ((𝐻𝑞):dom (𝐻𝑞)–1-1-onto→(𝐹 “ (𝑁𝑞)) → (𝐻𝑞):(𝐹 “ (𝑁𝑞))–1-1-onto→dom (𝐻𝑞))
47 f1ofun 5464 . . . . . . . . . . 11 ((𝐻𝑞):(𝐹 “ (𝑁𝑞))–1-1-onto→dom (𝐻𝑞) → Fun (𝐻𝑞))
4845, 46, 473syl 17 . . . . . . . . . 10 ((𝜑𝑞 ∈ dom 𝐻) → Fun (𝐻𝑞))
4948ad2ant2r 509 . . . . . . . . 9 (((𝜑𝑠 ∈ ran 𝐻) ∧ (𝑞 ∈ dom 𝐻𝑠 = (𝐻𝑞))) → Fun (𝐻𝑞))
50 simprr 531 . . . . . . . . . . 11 (((𝜑𝑠 ∈ ran 𝐻) ∧ (𝑞 ∈ dom 𝐻𝑠 = (𝐻𝑞))) → 𝑠 = (𝐻𝑞))
5150cnveqd 4804 . . . . . . . . . 10 (((𝜑𝑠 ∈ ran 𝐻) ∧ (𝑞 ∈ dom 𝐻𝑠 = (𝐻𝑞))) → 𝑠 = (𝐻𝑞))
5251funeqd 5239 . . . . . . . . 9 (((𝜑𝑠 ∈ ran 𝐻) ∧ (𝑞 ∈ dom 𝐻𝑠 = (𝐻𝑞))) → (Fun 𝑠 ↔ Fun (𝐻𝑞)))
5349, 52mpbird 167 . . . . . . . 8 (((𝜑𝑠 ∈ ran 𝐻) ∧ (𝑞 ∈ dom 𝐻𝑠 = (𝐻𝑞))) → Fun 𝑠)
5438, 53rexlimddv 2599 . . . . . . 7 ((𝜑𝑠 ∈ ran 𝐻) → Fun 𝑠)
551ad2antrr 488 . . . . . . . . 9 (((𝜑𝑠 ∈ ran 𝐻) ∧ 𝑡 ∈ ran 𝐻) → ∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦)
562ad2antrr 488 . . . . . . . . 9 (((𝜑𝑠 ∈ ran 𝐻) ∧ 𝑡 ∈ ran 𝐻) → 𝐹:ω–onto𝐴)
573ad2antrr 488 . . . . . . . . 9 (((𝜑𝑠 ∈ ran 𝐻) ∧ 𝑡 ∈ ran 𝐻) → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹𝑘) ≠ (𝐹𝑗))
58 simplr 528 . . . . . . . . 9 (((𝜑𝑠 ∈ ran 𝐻) ∧ 𝑡 ∈ ran 𝐻) → 𝑠 ∈ ran 𝐻)
59 simpr 110 . . . . . . . . 9 (((𝜑𝑠 ∈ ran 𝐻) ∧ 𝑡 ∈ ran 𝐻) → 𝑡 ∈ ran 𝐻)
6055, 56, 57, 4, 5, 6, 7, 58, 59ennnfonelemrnh 12417 . . . . . . . 8 (((𝜑𝑠 ∈ ran 𝐻) ∧ 𝑡 ∈ ran 𝐻) → (𝑠𝑡𝑡𝑠))
6160ralrimiva 2550 . . . . . . 7 ((𝜑𝑠 ∈ ran 𝐻) → ∀𝑡 ∈ ran 𝐻(𝑠𝑡𝑡𝑠))
6233, 54, 61jca31 309 . . . . . 6 ((𝜑𝑠 ∈ ran 𝐻) → ((Fun 𝑠 ∧ Fun 𝑠) ∧ ∀𝑡 ∈ ran 𝐻(𝑠𝑡𝑡𝑠)))
6362ralrimiva 2550 . . . . 5 (𝜑 → ∀𝑠 ∈ ran 𝐻((Fun 𝑠 ∧ Fun 𝑠) ∧ ∀𝑡 ∈ ran 𝐻(𝑠𝑡𝑡𝑠)))
64 fun11uni 5287 . . . . 5 (∀𝑠 ∈ ran 𝐻((Fun 𝑠 ∧ Fun 𝑠) ∧ ∀𝑡 ∈ ran 𝐻(𝑠𝑡𝑡𝑠)) → (Fun ran 𝐻 ∧ Fun ran 𝐻))
6563, 64syl 14 . . . 4 (𝜑 → (Fun ran 𝐻 ∧ Fun ran 𝐻))
6665simprd 114 . . 3 (𝜑 → Fun ran 𝐻)
6715cnveqd 4804 . . . 4 (𝜑𝐿 = ran 𝐻)
6867funeqd 5239 . . 3 (𝜑 → (Fun 𝐿 ↔ Fun ran 𝐻))
6966, 68mpbird 167 . 2 (𝜑 → Fun 𝐿)
70 df-f1 5222 . 2 (𝐿:dom 𝐿1-1𝐴 ↔ (𝐿:dom 𝐿𝐴 ∧ Fun 𝐿))
7130, 69, 70sylanbrc 417 1 (𝜑𝐿:dom 𝐿1-1𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wo 708  DECID wdc 834   = wceq 1353  wcel 2148  wne 2347  wral 2455  wrex 2456  cun 3128  wss 3130  c0 3423  ifcif 3535  {csn 3593  cop 3596   cuni 3810   ciun 3887  cmpt 4065  suc csuc 4366  ωcom 4590  ccnv 4626  dom cdm 4627  ran crn 4628  cima 4630  Fun wfun 5211   Fn wfn 5212  wf 5213  1-1wf1 5214  ontowfo 5215  1-1-ontowf1o 5216  cfv 5217  (class class class)co 5875  cmpo 5877  freccfrec 6391  pm cpm 6649  0cc0 7811  1c1 7812   + caddc 7814  cmin 8128  0cn0 9176  cz 9253  seqcseq 10445
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4119  ax-sep 4122  ax-nul 4130  ax-pow 4175  ax-pr 4210  ax-un 4434  ax-setind 4537  ax-iinf 4588  ax-cnex 7902  ax-resscn 7903  ax-1cn 7904  ax-1re 7905  ax-icn 7906  ax-addcl 7907  ax-addrcl 7908  ax-mulcl 7909  ax-addcom 7911  ax-addass 7913  ax-distr 7915  ax-i2m1 7916  ax-0lt1 7917  ax-0id 7919  ax-rnegex 7920  ax-cnre 7922  ax-pre-ltirr 7923  ax-pre-ltwlin 7924  ax-pre-lttrn 7925  ax-pre-ltadd 7927
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2740  df-sbc 2964  df-csb 3059  df-dif 3132  df-un 3134  df-in 3136  df-ss 3143  df-nul 3424  df-if 3536  df-pw 3578  df-sn 3599  df-pr 3600  df-op 3602  df-uni 3811  df-int 3846  df-iun 3889  df-br 4005  df-opab 4066  df-mpt 4067  df-tr 4103  df-id 4294  df-iord 4367  df-on 4369  df-ilim 4370  df-suc 4372  df-iom 4591  df-xp 4633  df-rel 4634  df-cnv 4635  df-co 4636  df-dm 4637  df-rn 4638  df-res 4639  df-ima 4640  df-iota 5179  df-fun 5219  df-fn 5220  df-f 5221  df-f1 5222  df-fo 5223  df-f1o 5224  df-fv 5225  df-riota 5831  df-ov 5878  df-oprab 5879  df-mpo 5880  df-1st 6141  df-2nd 6142  df-recs 6306  df-frec 6392  df-pm 6651  df-pnf 7994  df-mnf 7995  df-xr 7996  df-ltxr 7997  df-le 7998  df-sub 8130  df-neg 8131  df-inn 8920  df-n0 9177  df-z 9254  df-uz 9529  df-seqfrec 10446
This theorem is referenced by:  ennnfonelemrn  12420  ennnfonelemen  12422
  Copyright terms: Public domain W3C validator