Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  ennnfonelemf1 GIF version

Theorem ennnfonelemf1 11942
 Description: Lemma for ennnfone 11949. 𝐿 is one-to-one. (Contributed by Jim Kingdon, 16-Jul-2023.)
Hypotheses
Ref Expression
ennnfonelemh.dceq (𝜑 → ∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦)
ennnfonelemh.f (𝜑𝐹:ω–onto𝐴)
ennnfonelemh.ne (𝜑 → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹𝑘) ≠ (𝐹𝑗))
ennnfonelemh.g 𝐺 = (𝑥 ∈ (𝐴pm ω), 𝑦 ∈ ω ↦ if((𝐹𝑦) ∈ (𝐹𝑦), 𝑥, (𝑥 ∪ {⟨dom 𝑥, (𝐹𝑦)⟩})))
ennnfonelemh.n 𝑁 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)
ennnfonelemh.j 𝐽 = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, ∅, (𝑁‘(𝑥 − 1))))
ennnfonelemh.h 𝐻 = seq0(𝐺, 𝐽)
ennnfone.l 𝐿 = 𝑖 ∈ ℕ0 (𝐻𝑖)
Assertion
Ref Expression
ennnfonelemf1 (𝜑𝐿:dom 𝐿1-1𝐴)
Distinct variable groups:   𝐴,𝑗,𝑥,𝑦   𝑥,𝐹,𝑦,𝑗,𝑘   𝑛,𝐹   𝑗,𝐺   𝑖,𝐻   𝑗,𝐻,𝑥,𝑦,𝑘   𝑗,𝐽   𝑥,𝑁,𝑦,𝑘,𝑗   𝜑,𝑗,𝑥,𝑦,𝑘   𝑘,𝑛,𝑗
Allowed substitution hints:   𝜑(𝑖,𝑛)   𝐴(𝑖,𝑘,𝑛)   𝐹(𝑖)   𝐺(𝑥,𝑦,𝑖,𝑘,𝑛)   𝐻(𝑛)   𝐽(𝑥,𝑦,𝑖,𝑘,𝑛)   𝐿(𝑥,𝑦,𝑖,𝑗,𝑘,𝑛)   𝑁(𝑖,𝑛)

Proof of Theorem ennnfonelemf1
Dummy variables 𝑞 𝑠 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ennnfonelemh.dceq . . . . 5 (𝜑 → ∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦)
2 ennnfonelemh.f . . . . 5 (𝜑𝐹:ω–onto𝐴)
3 ennnfonelemh.ne . . . . 5 (𝜑 → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹𝑘) ≠ (𝐹𝑗))
4 ennnfonelemh.g . . . . 5 𝐺 = (𝑥 ∈ (𝐴pm ω), 𝑦 ∈ ω ↦ if((𝐹𝑦) ∈ (𝐹𝑦), 𝑥, (𝑥 ∪ {⟨dom 𝑥, (𝐹𝑦)⟩})))
5 ennnfonelemh.n . . . . 5 𝑁 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)
6 ennnfonelemh.j . . . . 5 𝐽 = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, ∅, (𝑁‘(𝑥 − 1))))
7 ennnfonelemh.h . . . . 5 𝐻 = seq0(𝐺, 𝐽)
8 ennnfone.l . . . . 5 𝐿 = 𝑖 ∈ ℕ0 (𝐻𝑖)
91, 2, 3, 4, 5, 6, 7, 8ennnfonelemfun 11941 . . . 4 (𝜑 → Fun 𝐿)
109funfnd 5154 . . 3 (𝜑𝐿 Fn dom 𝐿)
111, 2, 3, 4, 5, 6, 7ennnfonelemh 11928 . . . . . . . . 9 (𝜑𝐻:ℕ0⟶(𝐴pm ω))
1211ffnd 5273 . . . . . . . 8 (𝜑𝐻 Fn ℕ0)
13 fniunfv 5663 . . . . . . . 8 (𝐻 Fn ℕ0 𝑖 ∈ ℕ0 (𝐻𝑖) = ran 𝐻)
1412, 13syl 14 . . . . . . 7 (𝜑 𝑖 ∈ ℕ0 (𝐻𝑖) = ran 𝐻)
158, 14syl5eq 2184 . . . . . 6 (𝜑𝐿 = ran 𝐻)
1615rneqd 4768 . . . . 5 (𝜑 → ran 𝐿 = ran ran 𝐻)
17 rnuni 4950 . . . . 5 ran ran 𝐻 = 𝑥 ∈ ran 𝐻ran 𝑥
1816, 17syl6eq 2188 . . . 4 (𝜑 → ran 𝐿 = 𝑥 ∈ ran 𝐻ran 𝑥)
1911frnd 5282 . . . . . . . . . 10 (𝜑 → ran 𝐻 ⊆ (𝐴pm ω))
2019sselda 3097 . . . . . . . . 9 ((𝜑𝑥 ∈ ran 𝐻) → 𝑥 ∈ (𝐴pm ω))
21 elpmi 6561 . . . . . . . . 9 (𝑥 ∈ (𝐴pm ω) → (𝑥:dom 𝑥𝐴 ∧ dom 𝑥 ⊆ ω))
2220, 21syl 14 . . . . . . . 8 ((𝜑𝑥 ∈ ran 𝐻) → (𝑥:dom 𝑥𝐴 ∧ dom 𝑥 ⊆ ω))
2322simpld 111 . . . . . . 7 ((𝜑𝑥 ∈ ran 𝐻) → 𝑥:dom 𝑥𝐴)
2423frnd 5282 . . . . . 6 ((𝜑𝑥 ∈ ran 𝐻) → ran 𝑥𝐴)
2524ralrimiva 2505 . . . . 5 (𝜑 → ∀𝑥 ∈ ran 𝐻ran 𝑥𝐴)
26 iunss 3854 . . . . 5 ( 𝑥 ∈ ran 𝐻ran 𝑥𝐴 ↔ ∀𝑥 ∈ ran 𝐻ran 𝑥𝐴)
2725, 26sylibr 133 . . . 4 (𝜑 𝑥 ∈ ran 𝐻ran 𝑥𝐴)
2818, 27eqsstrd 3133 . . 3 (𝜑 → ran 𝐿𝐴)
29 df-f 5127 . . 3 (𝐿:dom 𝐿𝐴 ↔ (𝐿 Fn dom 𝐿 ∧ ran 𝐿𝐴))
3010, 28, 29sylanbrc 413 . 2 (𝜑𝐿:dom 𝐿𝐴)
3119sselda 3097 . . . . . . . 8 ((𝜑𝑠 ∈ ran 𝐻) → 𝑠 ∈ (𝐴pm ω))
32 pmfun 6562 . . . . . . . 8 (𝑠 ∈ (𝐴pm ω) → Fun 𝑠)
3331, 32syl 14 . . . . . . 7 ((𝜑𝑠 ∈ ran 𝐻) → Fun 𝑠)
3411ffund 5276 . . . . . . . . . 10 (𝜑 → Fun 𝐻)
3534adantr 274 . . . . . . . . 9 ((𝜑𝑠 ∈ ran 𝐻) → Fun 𝐻)
36 simpr 109 . . . . . . . . 9 ((𝜑𝑠 ∈ ran 𝐻) → 𝑠 ∈ ran 𝐻)
37 elrnrexdm 5559 . . . . . . . . 9 (Fun 𝐻 → (𝑠 ∈ ran 𝐻 → ∃𝑞 ∈ dom 𝐻 𝑠 = (𝐻𝑞)))
3835, 36, 37sylc 62 . . . . . . . 8 ((𝜑𝑠 ∈ ran 𝐻) → ∃𝑞 ∈ dom 𝐻 𝑠 = (𝐻𝑞))
391adantr 274 . . . . . . . . . . . 12 ((𝜑𝑞 ∈ dom 𝐻) → ∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦)
402adantr 274 . . . . . . . . . . . 12 ((𝜑𝑞 ∈ dom 𝐻) → 𝐹:ω–onto𝐴)
413adantr 274 . . . . . . . . . . . 12 ((𝜑𝑞 ∈ dom 𝐻) → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹𝑘) ≠ (𝐹𝑗))
4211fdmd 5279 . . . . . . . . . . . . . 14 (𝜑 → dom 𝐻 = ℕ0)
4342eleq2d 2209 . . . . . . . . . . . . 13 (𝜑 → (𝑞 ∈ dom 𝐻𝑞 ∈ ℕ0))
4443biimpa 294 . . . . . . . . . . . 12 ((𝜑𝑞 ∈ dom 𝐻) → 𝑞 ∈ ℕ0)
4539, 40, 41, 4, 5, 6, 7, 44ennnfonelemhf1o 11937 . . . . . . . . . . 11 ((𝜑𝑞 ∈ dom 𝐻) → (𝐻𝑞):dom (𝐻𝑞)–1-1-onto→(𝐹 “ (𝑁𝑞)))
46 f1ocnv 5380 . . . . . . . . . . 11 ((𝐻𝑞):dom (𝐻𝑞)–1-1-onto→(𝐹 “ (𝑁𝑞)) → (𝐻𝑞):(𝐹 “ (𝑁𝑞))–1-1-onto→dom (𝐻𝑞))
47 f1ofun 5369 . . . . . . . . . . 11 ((𝐻𝑞):(𝐹 “ (𝑁𝑞))–1-1-onto→dom (𝐻𝑞) → Fun (𝐻𝑞))
4845, 46, 473syl 17 . . . . . . . . . 10 ((𝜑𝑞 ∈ dom 𝐻) → Fun (𝐻𝑞))
4948ad2ant2r 500 . . . . . . . . 9 (((𝜑𝑠 ∈ ran 𝐻) ∧ (𝑞 ∈ dom 𝐻𝑠 = (𝐻𝑞))) → Fun (𝐻𝑞))
50 simprr 521 . . . . . . . . . . 11 (((𝜑𝑠 ∈ ran 𝐻) ∧ (𝑞 ∈ dom 𝐻𝑠 = (𝐻𝑞))) → 𝑠 = (𝐻𝑞))
5150cnveqd 4715 . . . . . . . . . 10 (((𝜑𝑠 ∈ ran 𝐻) ∧ (𝑞 ∈ dom 𝐻𝑠 = (𝐻𝑞))) → 𝑠 = (𝐻𝑞))
5251funeqd 5145 . . . . . . . . 9 (((𝜑𝑠 ∈ ran 𝐻) ∧ (𝑞 ∈ dom 𝐻𝑠 = (𝐻𝑞))) → (Fun 𝑠 ↔ Fun (𝐻𝑞)))
5349, 52mpbird 166 . . . . . . . 8 (((𝜑𝑠 ∈ ran 𝐻) ∧ (𝑞 ∈ dom 𝐻𝑠 = (𝐻𝑞))) → Fun 𝑠)
5438, 53rexlimddv 2554 . . . . . . 7 ((𝜑𝑠 ∈ ran 𝐻) → Fun 𝑠)
551ad2antrr 479 . . . . . . . . 9 (((𝜑𝑠 ∈ ran 𝐻) ∧ 𝑡 ∈ ran 𝐻) → ∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦)
562ad2antrr 479 . . . . . . . . 9 (((𝜑𝑠 ∈ ran 𝐻) ∧ 𝑡 ∈ ran 𝐻) → 𝐹:ω–onto𝐴)
573ad2antrr 479 . . . . . . . . 9 (((𝜑𝑠 ∈ ran 𝐻) ∧ 𝑡 ∈ ran 𝐻) → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹𝑘) ≠ (𝐹𝑗))
58 simplr 519 . . . . . . . . 9 (((𝜑𝑠 ∈ ran 𝐻) ∧ 𝑡 ∈ ran 𝐻) → 𝑠 ∈ ran 𝐻)
59 simpr 109 . . . . . . . . 9 (((𝜑𝑠 ∈ ran 𝐻) ∧ 𝑡 ∈ ran 𝐻) → 𝑡 ∈ ran 𝐻)
6055, 56, 57, 4, 5, 6, 7, 58, 59ennnfonelemrnh 11940 . . . . . . . 8 (((𝜑𝑠 ∈ ran 𝐻) ∧ 𝑡 ∈ ran 𝐻) → (𝑠𝑡𝑡𝑠))
6160ralrimiva 2505 . . . . . . 7 ((𝜑𝑠 ∈ ran 𝐻) → ∀𝑡 ∈ ran 𝐻(𝑠𝑡𝑡𝑠))
6233, 54, 61jca31 307 . . . . . 6 ((𝜑𝑠 ∈ ran 𝐻) → ((Fun 𝑠 ∧ Fun 𝑠) ∧ ∀𝑡 ∈ ran 𝐻(𝑠𝑡𝑡𝑠)))
6362ralrimiva 2505 . . . . 5 (𝜑 → ∀𝑠 ∈ ran 𝐻((Fun 𝑠 ∧ Fun 𝑠) ∧ ∀𝑡 ∈ ran 𝐻(𝑠𝑡𝑡𝑠)))
64 fun11uni 5193 . . . . 5 (∀𝑠 ∈ ran 𝐻((Fun 𝑠 ∧ Fun 𝑠) ∧ ∀𝑡 ∈ ran 𝐻(𝑠𝑡𝑡𝑠)) → (Fun ran 𝐻 ∧ Fun ran 𝐻))
6563, 64syl 14 . . . 4 (𝜑 → (Fun ran 𝐻 ∧ Fun ran 𝐻))
6665simprd 113 . . 3 (𝜑 → Fun ran 𝐻)
6715cnveqd 4715 . . . 4 (𝜑𝐿 = ran 𝐻)
6867funeqd 5145 . . 3 (𝜑 → (Fun 𝐿 ↔ Fun ran 𝐻))
6966, 68mpbird 166 . 2 (𝜑 → Fun 𝐿)
70 df-f1 5128 . 2 (𝐿:dom 𝐿1-1𝐴 ↔ (𝐿:dom 𝐿𝐴 ∧ Fun 𝐿))
7130, 69, 70sylanbrc 413 1 (𝜑𝐿:dom 𝐿1-1𝐴)
 Colors of variables: wff set class Syntax hints:   → wi 4   ∧ wa 103   ∨ wo 697  DECID wdc 819   = wceq 1331   ∈ wcel 1480   ≠ wne 2308  ∀wral 2416  ∃wrex 2417   ∪ cun 3069   ⊆ wss 3071  ∅c0 3363  ifcif 3474  {csn 3527  ⟨cop 3530  ∪ cuni 3736  ∪ ciun 3813   ↦ cmpt 3989  suc csuc 4287  ωcom 4504  ◡ccnv 4538  dom cdm 4539  ran crn 4540   “ cima 4542  Fun wfun 5117   Fn wfn 5118  ⟶wf 5119  –1-1→wf1 5120  –onto→wfo 5121  –1-1-onto→wf1o 5122  ‘cfv 5123  (class class class)co 5774   ∈ cmpo 5776  freccfrec 6287   ↑pm cpm 6543  0cc0 7632  1c1 7633   + caddc 7635   − cmin 7945  ℕ0cn0 8989  ℤcz 9066  seqcseq 10230 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502  ax-cnex 7723  ax-resscn 7724  ax-1cn 7725  ax-1re 7726  ax-icn 7727  ax-addcl 7728  ax-addrcl 7729  ax-mulcl 7730  ax-addcom 7732  ax-addass 7734  ax-distr 7736  ax-i2m1 7737  ax-0lt1 7738  ax-0id 7740  ax-rnegex 7741  ax-cnre 7743  ax-pre-ltirr 7744  ax-pre-ltwlin 7745  ax-pre-lttrn 7746  ax-pre-ltadd 7748 This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-if 3475  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-id 4215  df-iord 4288  df-on 4290  df-ilim 4291  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-recs 6202  df-frec 6288  df-pm 6545  df-pnf 7814  df-mnf 7815  df-xr 7816  df-ltxr 7817  df-le 7818  df-sub 7947  df-neg 7948  df-inn 8733  df-n0 8990  df-z 9067  df-uz 9339  df-seqfrec 10231 This theorem is referenced by:  ennnfonelemrn  11943  ennnfonelemen  11945
 Copyright terms: Public domain W3C validator