Step | Hyp | Ref
| Expression |
1 | | ennnfonelemh.dceq |
. . . . 5
⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦) |
2 | | ennnfonelemh.f |
. . . . 5
⊢ (𝜑 → 𝐹:ω–onto→𝐴) |
3 | | ennnfonelemh.ne |
. . . . 5
⊢ (𝜑 → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹‘𝑘) ≠ (𝐹‘𝑗)) |
4 | | ennnfonelemh.g |
. . . . 5
⊢ 𝐺 = (𝑥 ∈ (𝐴 ↑pm ω), 𝑦 ∈ ω ↦
if((𝐹‘𝑦) ∈ (𝐹 “ 𝑦), 𝑥, (𝑥 ∪ {〈dom 𝑥, (𝐹‘𝑦)〉}))) |
5 | | ennnfonelemh.n |
. . . . 5
⊢ 𝑁 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) |
6 | | ennnfonelemh.j |
. . . . 5
⊢ 𝐽 = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, ∅, (◡𝑁‘(𝑥 − 1)))) |
7 | | ennnfonelemh.h |
. . . . 5
⊢ 𝐻 = seq0(𝐺, 𝐽) |
8 | | ennnfone.l |
. . . . 5
⊢ 𝐿 = ∪ 𝑖 ∈ ℕ0 (𝐻‘𝑖) |
9 | 1, 2, 3, 4, 5, 6, 7, 8 | ennnfonelemfun 12372 |
. . . 4
⊢ (𝜑 → Fun 𝐿) |
10 | 9 | funfnd 5229 |
. . 3
⊢ (𝜑 → 𝐿 Fn dom 𝐿) |
11 | 1, 2, 3, 4, 5, 6, 7 | ennnfonelemh 12359 |
. . . . . . . . 9
⊢ (𝜑 → 𝐻:ℕ0⟶(𝐴 ↑pm
ω)) |
12 | 11 | ffnd 5348 |
. . . . . . . 8
⊢ (𝜑 → 𝐻 Fn ℕ0) |
13 | | fniunfv 5741 |
. . . . . . . 8
⊢ (𝐻 Fn ℕ0 →
∪ 𝑖 ∈ ℕ0 (𝐻‘𝑖) = ∪ ran 𝐻) |
14 | 12, 13 | syl 14 |
. . . . . . 7
⊢ (𝜑 → ∪ 𝑖 ∈ ℕ0 (𝐻‘𝑖) = ∪ ran 𝐻) |
15 | 8, 14 | eqtrid 2215 |
. . . . . 6
⊢ (𝜑 → 𝐿 = ∪ ran 𝐻) |
16 | 15 | rneqd 4840 |
. . . . 5
⊢ (𝜑 → ran 𝐿 = ran ∪ ran
𝐻) |
17 | | rnuni 5022 |
. . . . 5
⊢ ran ∪ ran 𝐻 = ∪ 𝑥 ∈ ran 𝐻ran 𝑥 |
18 | 16, 17 | eqtrdi 2219 |
. . . 4
⊢ (𝜑 → ran 𝐿 = ∪ 𝑥 ∈ ran 𝐻ran 𝑥) |
19 | 11 | frnd 5357 |
. . . . . . . . . 10
⊢ (𝜑 → ran 𝐻 ⊆ (𝐴 ↑pm
ω)) |
20 | 19 | sselda 3147 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ ran 𝐻) → 𝑥 ∈ (𝐴 ↑pm
ω)) |
21 | | elpmi 6645 |
. . . . . . . . 9
⊢ (𝑥 ∈ (𝐴 ↑pm ω) →
(𝑥:dom 𝑥⟶𝐴 ∧ dom 𝑥 ⊆ ω)) |
22 | 20, 21 | syl 14 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ ran 𝐻) → (𝑥:dom 𝑥⟶𝐴 ∧ dom 𝑥 ⊆ ω)) |
23 | 22 | simpld 111 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ ran 𝐻) → 𝑥:dom 𝑥⟶𝐴) |
24 | 23 | frnd 5357 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ ran 𝐻) → ran 𝑥 ⊆ 𝐴) |
25 | 24 | ralrimiva 2543 |
. . . . 5
⊢ (𝜑 → ∀𝑥 ∈ ran 𝐻ran 𝑥 ⊆ 𝐴) |
26 | | iunss 3914 |
. . . . 5
⊢ (∪ 𝑥 ∈ ran 𝐻ran 𝑥 ⊆ 𝐴 ↔ ∀𝑥 ∈ ran 𝐻ran 𝑥 ⊆ 𝐴) |
27 | 25, 26 | sylibr 133 |
. . . 4
⊢ (𝜑 → ∪ 𝑥 ∈ ran 𝐻ran 𝑥 ⊆ 𝐴) |
28 | 18, 27 | eqsstrd 3183 |
. . 3
⊢ (𝜑 → ran 𝐿 ⊆ 𝐴) |
29 | | df-f 5202 |
. . 3
⊢ (𝐿:dom 𝐿⟶𝐴 ↔ (𝐿 Fn dom 𝐿 ∧ ran 𝐿 ⊆ 𝐴)) |
30 | 10, 28, 29 | sylanbrc 415 |
. 2
⊢ (𝜑 → 𝐿:dom 𝐿⟶𝐴) |
31 | 19 | sselda 3147 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑠 ∈ ran 𝐻) → 𝑠 ∈ (𝐴 ↑pm
ω)) |
32 | | pmfun 6646 |
. . . . . . . 8
⊢ (𝑠 ∈ (𝐴 ↑pm ω) →
Fun 𝑠) |
33 | 31, 32 | syl 14 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑠 ∈ ran 𝐻) → Fun 𝑠) |
34 | 11 | ffund 5351 |
. . . . . . . . . 10
⊢ (𝜑 → Fun 𝐻) |
35 | 34 | adantr 274 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑠 ∈ ran 𝐻) → Fun 𝐻) |
36 | | simpr 109 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑠 ∈ ran 𝐻) → 𝑠 ∈ ran 𝐻) |
37 | | elrnrexdm 5635 |
. . . . . . . . 9
⊢ (Fun
𝐻 → (𝑠 ∈ ran 𝐻 → ∃𝑞 ∈ dom 𝐻 𝑠 = (𝐻‘𝑞))) |
38 | 35, 36, 37 | sylc 62 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑠 ∈ ran 𝐻) → ∃𝑞 ∈ dom 𝐻 𝑠 = (𝐻‘𝑞)) |
39 | 1 | adantr 274 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑞 ∈ dom 𝐻) → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦) |
40 | 2 | adantr 274 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑞 ∈ dom 𝐻) → 𝐹:ω–onto→𝐴) |
41 | 3 | adantr 274 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑞 ∈ dom 𝐻) → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹‘𝑘) ≠ (𝐹‘𝑗)) |
42 | 11 | fdmd 5354 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → dom 𝐻 = ℕ0) |
43 | 42 | eleq2d 2240 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝑞 ∈ dom 𝐻 ↔ 𝑞 ∈
ℕ0)) |
44 | 43 | biimpa 294 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑞 ∈ dom 𝐻) → 𝑞 ∈ ℕ0) |
45 | 39, 40, 41, 4, 5, 6,
7, 44 | ennnfonelemhf1o 12368 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑞 ∈ dom 𝐻) → (𝐻‘𝑞):dom (𝐻‘𝑞)–1-1-onto→(𝐹 “ (◡𝑁‘𝑞))) |
46 | | f1ocnv 5455 |
. . . . . . . . . . 11
⊢ ((𝐻‘𝑞):dom (𝐻‘𝑞)–1-1-onto→(𝐹 “ (◡𝑁‘𝑞)) → ◡(𝐻‘𝑞):(𝐹 “ (◡𝑁‘𝑞))–1-1-onto→dom
(𝐻‘𝑞)) |
47 | | f1ofun 5444 |
. . . . . . . . . . 11
⊢ (◡(𝐻‘𝑞):(𝐹 “ (◡𝑁‘𝑞))–1-1-onto→dom
(𝐻‘𝑞) → Fun ◡(𝐻‘𝑞)) |
48 | 45, 46, 47 | 3syl 17 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑞 ∈ dom 𝐻) → Fun ◡(𝐻‘𝑞)) |
49 | 48 | ad2ant2r 506 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑠 ∈ ran 𝐻) ∧ (𝑞 ∈ dom 𝐻 ∧ 𝑠 = (𝐻‘𝑞))) → Fun ◡(𝐻‘𝑞)) |
50 | | simprr 527 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑠 ∈ ran 𝐻) ∧ (𝑞 ∈ dom 𝐻 ∧ 𝑠 = (𝐻‘𝑞))) → 𝑠 = (𝐻‘𝑞)) |
51 | 50 | cnveqd 4787 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑠 ∈ ran 𝐻) ∧ (𝑞 ∈ dom 𝐻 ∧ 𝑠 = (𝐻‘𝑞))) → ◡𝑠 = ◡(𝐻‘𝑞)) |
52 | 51 | funeqd 5220 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑠 ∈ ran 𝐻) ∧ (𝑞 ∈ dom 𝐻 ∧ 𝑠 = (𝐻‘𝑞))) → (Fun ◡𝑠 ↔ Fun ◡(𝐻‘𝑞))) |
53 | 49, 52 | mpbird 166 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑠 ∈ ran 𝐻) ∧ (𝑞 ∈ dom 𝐻 ∧ 𝑠 = (𝐻‘𝑞))) → Fun ◡𝑠) |
54 | 38, 53 | rexlimddv 2592 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑠 ∈ ran 𝐻) → Fun ◡𝑠) |
55 | 1 | ad2antrr 485 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑠 ∈ ran 𝐻) ∧ 𝑡 ∈ ran 𝐻) → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦) |
56 | 2 | ad2antrr 485 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑠 ∈ ran 𝐻) ∧ 𝑡 ∈ ran 𝐻) → 𝐹:ω–onto→𝐴) |
57 | 3 | ad2antrr 485 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑠 ∈ ran 𝐻) ∧ 𝑡 ∈ ran 𝐻) → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹‘𝑘) ≠ (𝐹‘𝑗)) |
58 | | simplr 525 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑠 ∈ ran 𝐻) ∧ 𝑡 ∈ ran 𝐻) → 𝑠 ∈ ran 𝐻) |
59 | | simpr 109 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑠 ∈ ran 𝐻) ∧ 𝑡 ∈ ran 𝐻) → 𝑡 ∈ ran 𝐻) |
60 | 55, 56, 57, 4, 5, 6,
7, 58, 59 | ennnfonelemrnh 12371 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑠 ∈ ran 𝐻) ∧ 𝑡 ∈ ran 𝐻) → (𝑠 ⊆ 𝑡 ∨ 𝑡 ⊆ 𝑠)) |
61 | 60 | ralrimiva 2543 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑠 ∈ ran 𝐻) → ∀𝑡 ∈ ran 𝐻(𝑠 ⊆ 𝑡 ∨ 𝑡 ⊆ 𝑠)) |
62 | 33, 54, 61 | jca31 307 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑠 ∈ ran 𝐻) → ((Fun 𝑠 ∧ Fun ◡𝑠) ∧ ∀𝑡 ∈ ran 𝐻(𝑠 ⊆ 𝑡 ∨ 𝑡 ⊆ 𝑠))) |
63 | 62 | ralrimiva 2543 |
. . . . 5
⊢ (𝜑 → ∀𝑠 ∈ ran 𝐻((Fun 𝑠 ∧ Fun ◡𝑠) ∧ ∀𝑡 ∈ ran 𝐻(𝑠 ⊆ 𝑡 ∨ 𝑡 ⊆ 𝑠))) |
64 | | fun11uni 5268 |
. . . . 5
⊢
(∀𝑠 ∈
ran 𝐻((Fun 𝑠 ∧ Fun ◡𝑠) ∧ ∀𝑡 ∈ ran 𝐻(𝑠 ⊆ 𝑡 ∨ 𝑡 ⊆ 𝑠)) → (Fun ∪
ran 𝐻 ∧ Fun ◡∪ ran 𝐻)) |
65 | 63, 64 | syl 14 |
. . . 4
⊢ (𝜑 → (Fun ∪ ran 𝐻 ∧ Fun ◡∪ ran 𝐻)) |
66 | 65 | simprd 113 |
. . 3
⊢ (𝜑 → Fun ◡∪ ran 𝐻) |
67 | 15 | cnveqd 4787 |
. . . 4
⊢ (𝜑 → ◡𝐿 = ◡∪ ran 𝐻) |
68 | 67 | funeqd 5220 |
. . 3
⊢ (𝜑 → (Fun ◡𝐿 ↔ Fun ◡∪ ran 𝐻)) |
69 | 66, 68 | mpbird 166 |
. 2
⊢ (𝜑 → Fun ◡𝐿) |
70 | | df-f1 5203 |
. 2
⊢ (𝐿:dom 𝐿–1-1→𝐴 ↔ (𝐿:dom 𝐿⟶𝐴 ∧ Fun ◡𝐿)) |
71 | 30, 69, 70 | sylanbrc 415 |
1
⊢ (𝜑 → 𝐿:dom 𝐿–1-1→𝐴) |