Step | Hyp | Ref
| Expression |
1 | | recnprss 13296 |
. . . . 5
⊢ (𝑆 ∈ {ℝ, ℂ}
→ 𝑆 ⊆
ℂ) |
2 | | reldvg 13288 |
. . . . 5
⊢ ((𝑆 ⊆ ℂ ∧ 𝐹 ∈ (ℂ
↑pm 𝑆)) → Rel (𝑆 D 𝐹)) |
3 | 1, 2 | sylan 281 |
. . . 4
⊢ ((𝑆 ∈ {ℝ, ℂ} ∧
𝐹 ∈ (ℂ
↑pm 𝑆)) → Rel (𝑆 D 𝐹)) |
4 | | elpmi 6633 |
. . . . . . . . . . . . . 14
⊢ (𝐹 ∈ (ℂ
↑pm 𝑆) → (𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹 ⊆ 𝑆)) |
5 | 4 | simpld 111 |
. . . . . . . . . . . . 13
⊢ (𝐹 ∈ (ℂ
↑pm 𝑆) → 𝐹:dom 𝐹⟶ℂ) |
6 | 5 | adantl 275 |
. . . . . . . . . . . 12
⊢ ((𝑆 ∈ {ℝ, ℂ} ∧
𝐹 ∈ (ℂ
↑pm 𝑆)) → 𝐹:dom 𝐹⟶ℂ) |
7 | 6 | adantr 274 |
. . . . . . . . . . 11
⊢ (((𝑆 ∈ {ℝ, ℂ} ∧
𝐹 ∈ (ℂ
↑pm 𝑆)) ∧ 𝑥 ∈ ((int‘((MetOpen‘(abs
∘ − )) ↾t 𝑆))‘dom 𝐹)) → 𝐹:dom 𝐹⟶ℂ) |
8 | 4 | simprd 113 |
. . . . . . . . . . . . . 14
⊢ (𝐹 ∈ (ℂ
↑pm 𝑆) → dom 𝐹 ⊆ 𝑆) |
9 | 8 | adantl 275 |
. . . . . . . . . . . . 13
⊢ ((𝑆 ∈ {ℝ, ℂ} ∧
𝐹 ∈ (ℂ
↑pm 𝑆)) → dom 𝐹 ⊆ 𝑆) |
10 | 1 | adantr 274 |
. . . . . . . . . . . . 13
⊢ ((𝑆 ∈ {ℝ, ℂ} ∧
𝐹 ∈ (ℂ
↑pm 𝑆)) → 𝑆 ⊆ ℂ) |
11 | 9, 10 | sstrd 3152 |
. . . . . . . . . . . 12
⊢ ((𝑆 ∈ {ℝ, ℂ} ∧
𝐹 ∈ (ℂ
↑pm 𝑆)) → dom 𝐹 ⊆ ℂ) |
12 | 11 | adantr 274 |
. . . . . . . . . . 11
⊢ (((𝑆 ∈ {ℝ, ℂ} ∧
𝐹 ∈ (ℂ
↑pm 𝑆)) ∧ 𝑥 ∈ ((int‘((MetOpen‘(abs
∘ − )) ↾t 𝑆))‘dom 𝐹)) → dom 𝐹 ⊆ ℂ) |
13 | | eqid 2165 |
. . . . . . . . . . . . . . . . 17
⊢
(MetOpen‘(abs ∘ − )) = (MetOpen‘(abs ∘
− )) |
14 | 13 | cntoptopon 13172 |
. . . . . . . . . . . . . . . 16
⊢
(MetOpen‘(abs ∘ − )) ∈
(TopOn‘ℂ) |
15 | | resttopon 12811 |
. . . . . . . . . . . . . . . 16
⊢
(((MetOpen‘(abs ∘ − )) ∈ (TopOn‘ℂ)
∧ 𝑆 ⊆ ℂ)
→ ((MetOpen‘(abs ∘ − )) ↾t 𝑆) ∈ (TopOn‘𝑆)) |
16 | 14, 15 | mpan 421 |
. . . . . . . . . . . . . . 15
⊢ (𝑆 ⊆ ℂ →
((MetOpen‘(abs ∘ − )) ↾t 𝑆) ∈ (TopOn‘𝑆)) |
17 | | topontop 12652 |
. . . . . . . . . . . . . . 15
⊢
(((MetOpen‘(abs ∘ − )) ↾t 𝑆) ∈ (TopOn‘𝑆) → ((MetOpen‘(abs
∘ − )) ↾t 𝑆) ∈ Top) |
18 | 16, 17 | syl 14 |
. . . . . . . . . . . . . 14
⊢ (𝑆 ⊆ ℂ →
((MetOpen‘(abs ∘ − )) ↾t 𝑆) ∈ Top) |
19 | 10, 18 | syl 14 |
. . . . . . . . . . . . 13
⊢ ((𝑆 ∈ {ℝ, ℂ} ∧
𝐹 ∈ (ℂ
↑pm 𝑆)) → ((MetOpen‘(abs ∘
− )) ↾t 𝑆) ∈ Top) |
20 | | toponuni 12653 |
. . . . . . . . . . . . . . . . 17
⊢
(((MetOpen‘(abs ∘ − )) ↾t 𝑆) ∈ (TopOn‘𝑆) → 𝑆 = ∪
((MetOpen‘(abs ∘ − )) ↾t 𝑆)) |
21 | 16, 20 | syl 14 |
. . . . . . . . . . . . . . . 16
⊢ (𝑆 ⊆ ℂ → 𝑆 = ∪
((MetOpen‘(abs ∘ − )) ↾t 𝑆)) |
22 | 21 | sseq2d 3172 |
. . . . . . . . . . . . . . 15
⊢ (𝑆 ⊆ ℂ → (dom
𝐹 ⊆ 𝑆 ↔ dom 𝐹 ⊆ ∪
((MetOpen‘(abs ∘ − )) ↾t 𝑆))) |
23 | 10, 22 | syl 14 |
. . . . . . . . . . . . . 14
⊢ ((𝑆 ∈ {ℝ, ℂ} ∧
𝐹 ∈ (ℂ
↑pm 𝑆)) → (dom 𝐹 ⊆ 𝑆 ↔ dom 𝐹 ⊆ ∪
((MetOpen‘(abs ∘ − )) ↾t 𝑆))) |
24 | 9, 23 | mpbid 146 |
. . . . . . . . . . . . 13
⊢ ((𝑆 ∈ {ℝ, ℂ} ∧
𝐹 ∈ (ℂ
↑pm 𝑆)) → dom 𝐹 ⊆ ∪
((MetOpen‘(abs ∘ − )) ↾t 𝑆)) |
25 | | eqid 2165 |
. . . . . . . . . . . . . 14
⊢ ∪ ((MetOpen‘(abs ∘ − ))
↾t 𝑆) =
∪ ((MetOpen‘(abs ∘ − ))
↾t 𝑆) |
26 | 25 | ntrss2 12761 |
. . . . . . . . . . . . 13
⊢
((((MetOpen‘(abs ∘ − )) ↾t 𝑆) ∈ Top ∧ dom 𝐹 ⊆ ∪ ((MetOpen‘(abs ∘ − ))
↾t 𝑆))
→ ((int‘((MetOpen‘(abs ∘ − )) ↾t
𝑆))‘dom 𝐹) ⊆ dom 𝐹) |
27 | 19, 24, 26 | syl2anc 409 |
. . . . . . . . . . . 12
⊢ ((𝑆 ∈ {ℝ, ℂ} ∧
𝐹 ∈ (ℂ
↑pm 𝑆)) → ((int‘((MetOpen‘(abs
∘ − )) ↾t 𝑆))‘dom 𝐹) ⊆ dom 𝐹) |
28 | 27 | sselda 3142 |
. . . . . . . . . . 11
⊢ (((𝑆 ∈ {ℝ, ℂ} ∧
𝐹 ∈ (ℂ
↑pm 𝑆)) ∧ 𝑥 ∈ ((int‘((MetOpen‘(abs
∘ − )) ↾t 𝑆))‘dom 𝐹)) → 𝑥 ∈ dom 𝐹) |
29 | 7, 12, 28 | dvlemap 13289 |
. . . . . . . . . 10
⊢ ((((𝑆 ∈ {ℝ, ℂ} ∧
𝐹 ∈ (ℂ
↑pm 𝑆)) ∧ 𝑥 ∈ ((int‘((MetOpen‘(abs
∘ − )) ↾t 𝑆))‘dom 𝐹)) ∧ 𝑧 ∈ {𝑤 ∈ dom 𝐹 ∣ 𝑤 # 𝑥}) → (((𝐹‘𝑧) − (𝐹‘𝑥)) / (𝑧 − 𝑥)) ∈ ℂ) |
30 | 29 | fmpttd 5640 |
. . . . . . . . 9
⊢ (((𝑆 ∈ {ℝ, ℂ} ∧
𝐹 ∈ (ℂ
↑pm 𝑆)) ∧ 𝑥 ∈ ((int‘((MetOpen‘(abs
∘ − )) ↾t 𝑆))‘dom 𝐹)) → (𝑧 ∈ {𝑤 ∈ dom 𝐹 ∣ 𝑤 # 𝑥} ↦ (((𝐹‘𝑧) − (𝐹‘𝑥)) / (𝑧 − 𝑥))):{𝑤 ∈ dom 𝐹 ∣ 𝑤 # 𝑥}⟶ℂ) |
31 | | ssrab2 3227 |
. . . . . . . . . 10
⊢ {𝑤 ∈ dom 𝐹 ∣ 𝑤 # 𝑥} ⊆ dom 𝐹 |
32 | 31, 12 | sstrid 3153 |
. . . . . . . . 9
⊢ (((𝑆 ∈ {ℝ, ℂ} ∧
𝐹 ∈ (ℂ
↑pm 𝑆)) ∧ 𝑥 ∈ ((int‘((MetOpen‘(abs
∘ − )) ↾t 𝑆))‘dom 𝐹)) → {𝑤 ∈ dom 𝐹 ∣ 𝑤 # 𝑥} ⊆ ℂ) |
33 | 12, 28 | sseldd 3143 |
. . . . . . . . 9
⊢ (((𝑆 ∈ {ℝ, ℂ} ∧
𝐹 ∈ (ℂ
↑pm 𝑆)) ∧ 𝑥 ∈ ((int‘((MetOpen‘(abs
∘ − )) ↾t 𝑆))‘dom 𝐹)) → 𝑥 ∈ ℂ) |
34 | | simpr 109 |
. . . . . . . . 9
⊢ (((𝑆 ∈ {ℝ, ℂ} ∧
𝐹 ∈ (ℂ
↑pm 𝑆)) ∧ 𝑥 ∈ ((int‘((MetOpen‘(abs
∘ − )) ↾t 𝑆))‘dom 𝐹)) → 𝑥 ∈ ((int‘((MetOpen‘(abs
∘ − )) ↾t 𝑆))‘dom 𝐹)) |
35 | 27, 9 | sstrd 3152 |
. . . . . . . . . 10
⊢ ((𝑆 ∈ {ℝ, ℂ} ∧
𝐹 ∈ (ℂ
↑pm 𝑆)) → ((int‘((MetOpen‘(abs
∘ − )) ↾t 𝑆))‘dom 𝐹) ⊆ 𝑆) |
36 | 35 | sselda 3142 |
. . . . . . . . 9
⊢ (((𝑆 ∈ {ℝ, ℂ} ∧
𝐹 ∈ (ℂ
↑pm 𝑆)) ∧ 𝑥 ∈ ((int‘((MetOpen‘(abs
∘ − )) ↾t 𝑆))‘dom 𝐹)) → 𝑥 ∈ 𝑆) |
37 | 19 | adantr 274 |
. . . . . . . . . 10
⊢ (((𝑆 ∈ {ℝ, ℂ} ∧
𝐹 ∈ (ℂ
↑pm 𝑆)) ∧ 𝑥 ∈ ((int‘((MetOpen‘(abs
∘ − )) ↾t 𝑆))‘dom 𝐹)) → ((MetOpen‘(abs ∘
− )) ↾t 𝑆) ∈ Top) |
38 | 24 | adantr 274 |
. . . . . . . . . 10
⊢ (((𝑆 ∈ {ℝ, ℂ} ∧
𝐹 ∈ (ℂ
↑pm 𝑆)) ∧ 𝑥 ∈ ((int‘((MetOpen‘(abs
∘ − )) ↾t 𝑆))‘dom 𝐹)) → dom 𝐹 ⊆ ∪
((MetOpen‘(abs ∘ − )) ↾t 𝑆)) |
39 | 25 | ntropn 12757 |
. . . . . . . . . 10
⊢
((((MetOpen‘(abs ∘ − )) ↾t 𝑆) ∈ Top ∧ dom 𝐹 ⊆ ∪ ((MetOpen‘(abs ∘ − ))
↾t 𝑆))
→ ((int‘((MetOpen‘(abs ∘ − )) ↾t
𝑆))‘dom 𝐹) ∈ ((MetOpen‘(abs
∘ − )) ↾t 𝑆)) |
40 | 37, 38, 39 | syl2anc 409 |
. . . . . . . . 9
⊢ (((𝑆 ∈ {ℝ, ℂ} ∧
𝐹 ∈ (ℂ
↑pm 𝑆)) ∧ 𝑥 ∈ ((int‘((MetOpen‘(abs
∘ − )) ↾t 𝑆))‘dom 𝐹)) → ((int‘((MetOpen‘(abs
∘ − )) ↾t 𝑆))‘dom 𝐹) ∈ ((MetOpen‘(abs ∘
− )) ↾t 𝑆)) |
41 | | simpll 519 |
. . . . . . . . 9
⊢ (((𝑆 ∈ {ℝ, ℂ} ∧
𝐹 ∈ (ℂ
↑pm 𝑆)) ∧ 𝑥 ∈ ((int‘((MetOpen‘(abs
∘ − )) ↾t 𝑆))‘dom 𝐹)) → 𝑆 ∈ {ℝ, ℂ}) |
42 | | rabss2 3225 |
. . . . . . . . . . 11
⊢
(((int‘((MetOpen‘(abs ∘ − )) ↾t
𝑆))‘dom 𝐹) ⊆ dom 𝐹 → {𝑤 ∈ ((int‘((MetOpen‘(abs
∘ − )) ↾t 𝑆))‘dom 𝐹) ∣ 𝑤 # 𝑥} ⊆ {𝑤 ∈ dom 𝐹 ∣ 𝑤 # 𝑥}) |
43 | 27, 42 | syl 14 |
. . . . . . . . . 10
⊢ ((𝑆 ∈ {ℝ, ℂ} ∧
𝐹 ∈ (ℂ
↑pm 𝑆)) → {𝑤 ∈ ((int‘((MetOpen‘(abs
∘ − )) ↾t 𝑆))‘dom 𝐹) ∣ 𝑤 # 𝑥} ⊆ {𝑤 ∈ dom 𝐹 ∣ 𝑤 # 𝑥}) |
44 | 43 | adantr 274 |
. . . . . . . . 9
⊢ (((𝑆 ∈ {ℝ, ℂ} ∧
𝐹 ∈ (ℂ
↑pm 𝑆)) ∧ 𝑥 ∈ ((int‘((MetOpen‘(abs
∘ − )) ↾t 𝑆))‘dom 𝐹)) → {𝑤 ∈ ((int‘((MetOpen‘(abs
∘ − )) ↾t 𝑆))‘dom 𝐹) ∣ 𝑤 # 𝑥} ⊆ {𝑤 ∈ dom 𝐹 ∣ 𝑤 # 𝑥}) |
45 | 30, 32, 33, 34, 36, 40, 41, 44, 13 | limcimo 13274 |
. . . . . . . 8
⊢ (((𝑆 ∈ {ℝ, ℂ} ∧
𝐹 ∈ (ℂ
↑pm 𝑆)) ∧ 𝑥 ∈ ((int‘((MetOpen‘(abs
∘ − )) ↾t 𝑆))‘dom 𝐹)) → ∃*𝑦 𝑦 ∈ ((𝑧 ∈ {𝑤 ∈ dom 𝐹 ∣ 𝑤 # 𝑥} ↦ (((𝐹‘𝑧) − (𝐹‘𝑥)) / (𝑧 − 𝑥))) limℂ 𝑥)) |
46 | 45 | ex 114 |
. . . . . . 7
⊢ ((𝑆 ∈ {ℝ, ℂ} ∧
𝐹 ∈ (ℂ
↑pm 𝑆)) → (𝑥 ∈ ((int‘((MetOpen‘(abs
∘ − )) ↾t 𝑆))‘dom 𝐹) → ∃*𝑦 𝑦 ∈ ((𝑧 ∈ {𝑤 ∈ dom 𝐹 ∣ 𝑤 # 𝑥} ↦ (((𝐹‘𝑧) − (𝐹‘𝑥)) / (𝑧 − 𝑥))) limℂ 𝑥))) |
47 | | moanimv 2089 |
. . . . . . 7
⊢
(∃*𝑦(𝑥 ∈
((int‘((MetOpen‘(abs ∘ − )) ↾t 𝑆))‘dom 𝐹) ∧ 𝑦 ∈ ((𝑧 ∈ {𝑤 ∈ dom 𝐹 ∣ 𝑤 # 𝑥} ↦ (((𝐹‘𝑧) − (𝐹‘𝑥)) / (𝑧 − 𝑥))) limℂ 𝑥)) ↔ (𝑥 ∈ ((int‘((MetOpen‘(abs
∘ − )) ↾t 𝑆))‘dom 𝐹) → ∃*𝑦 𝑦 ∈ ((𝑧 ∈ {𝑤 ∈ dom 𝐹 ∣ 𝑤 # 𝑥} ↦ (((𝐹‘𝑧) − (𝐹‘𝑥)) / (𝑧 − 𝑥))) limℂ 𝑥))) |
48 | 46, 47 | sylibr 133 |
. . . . . 6
⊢ ((𝑆 ∈ {ℝ, ℂ} ∧
𝐹 ∈ (ℂ
↑pm 𝑆)) → ∃*𝑦(𝑥 ∈ ((int‘((MetOpen‘(abs
∘ − )) ↾t 𝑆))‘dom 𝐹) ∧ 𝑦 ∈ ((𝑧 ∈ {𝑤 ∈ dom 𝐹 ∣ 𝑤 # 𝑥} ↦ (((𝐹‘𝑧) − (𝐹‘𝑥)) / (𝑧 − 𝑥))) limℂ 𝑥))) |
49 | | eqid 2165 |
. . . . . . . 8
⊢
((MetOpen‘(abs ∘ − )) ↾t 𝑆) = ((MetOpen‘(abs ∘
− )) ↾t 𝑆) |
50 | | eqid 2165 |
. . . . . . . 8
⊢ (𝑧 ∈ {𝑤 ∈ dom 𝐹 ∣ 𝑤 # 𝑥} ↦ (((𝐹‘𝑧) − (𝐹‘𝑥)) / (𝑧 − 𝑥))) = (𝑧 ∈ {𝑤 ∈ dom 𝐹 ∣ 𝑤 # 𝑥} ↦ (((𝐹‘𝑧) − (𝐹‘𝑥)) / (𝑧 − 𝑥))) |
51 | 49, 13, 50, 10, 6, 9 | eldvap 13291 |
. . . . . . 7
⊢ ((𝑆 ∈ {ℝ, ℂ} ∧
𝐹 ∈ (ℂ
↑pm 𝑆)) → (𝑥(𝑆 D 𝐹)𝑦 ↔ (𝑥 ∈ ((int‘((MetOpen‘(abs
∘ − )) ↾t 𝑆))‘dom 𝐹) ∧ 𝑦 ∈ ((𝑧 ∈ {𝑤 ∈ dom 𝐹 ∣ 𝑤 # 𝑥} ↦ (((𝐹‘𝑧) − (𝐹‘𝑥)) / (𝑧 − 𝑥))) limℂ 𝑥)))) |
52 | 51 | mobidv 2050 |
. . . . . 6
⊢ ((𝑆 ∈ {ℝ, ℂ} ∧
𝐹 ∈ (ℂ
↑pm 𝑆)) → (∃*𝑦 𝑥(𝑆 D 𝐹)𝑦 ↔ ∃*𝑦(𝑥 ∈ ((int‘((MetOpen‘(abs
∘ − )) ↾t 𝑆))‘dom 𝐹) ∧ 𝑦 ∈ ((𝑧 ∈ {𝑤 ∈ dom 𝐹 ∣ 𝑤 # 𝑥} ↦ (((𝐹‘𝑧) − (𝐹‘𝑥)) / (𝑧 − 𝑥))) limℂ 𝑥)))) |
53 | 48, 52 | mpbird 166 |
. . . . 5
⊢ ((𝑆 ∈ {ℝ, ℂ} ∧
𝐹 ∈ (ℂ
↑pm 𝑆)) → ∃*𝑦 𝑥(𝑆 D 𝐹)𝑦) |
54 | 53 | alrimiv 1862 |
. . . 4
⊢ ((𝑆 ∈ {ℝ, ℂ} ∧
𝐹 ∈ (ℂ
↑pm 𝑆)) → ∀𝑥∃*𝑦 𝑥(𝑆 D 𝐹)𝑦) |
55 | | dffun6 5202 |
. . . 4
⊢ (Fun
(𝑆 D 𝐹) ↔ (Rel (𝑆 D 𝐹) ∧ ∀𝑥∃*𝑦 𝑥(𝑆 D 𝐹)𝑦)) |
56 | 3, 54, 55 | sylanbrc 414 |
. . 3
⊢ ((𝑆 ∈ {ℝ, ℂ} ∧
𝐹 ∈ (ℂ
↑pm 𝑆)) → Fun (𝑆 D 𝐹)) |
57 | 56 | funfnd 5219 |
. 2
⊢ ((𝑆 ∈ {ℝ, ℂ} ∧
𝐹 ∈ (ℂ
↑pm 𝑆)) → (𝑆 D 𝐹) Fn dom (𝑆 D 𝐹)) |
58 | | vex 2729 |
. . . . 5
⊢ 𝑦 ∈ V |
59 | 58 | elrn 4847 |
. . . 4
⊢ (𝑦 ∈ ran (𝑆 D 𝐹) ↔ ∃𝑥 𝑥(𝑆 D 𝐹)𝑦) |
60 | 10, 6, 9 | dvcl 13292 |
. . . . . 6
⊢ (((𝑆 ∈ {ℝ, ℂ} ∧
𝐹 ∈ (ℂ
↑pm 𝑆)) ∧ 𝑥(𝑆 D 𝐹)𝑦) → 𝑦 ∈ ℂ) |
61 | 60 | ex 114 |
. . . . 5
⊢ ((𝑆 ∈ {ℝ, ℂ} ∧
𝐹 ∈ (ℂ
↑pm 𝑆)) → (𝑥(𝑆 D 𝐹)𝑦 → 𝑦 ∈ ℂ)) |
62 | 61 | exlimdv 1807 |
. . . 4
⊢ ((𝑆 ∈ {ℝ, ℂ} ∧
𝐹 ∈ (ℂ
↑pm 𝑆)) → (∃𝑥 𝑥(𝑆 D 𝐹)𝑦 → 𝑦 ∈ ℂ)) |
63 | 59, 62 | syl5bi 151 |
. . 3
⊢ ((𝑆 ∈ {ℝ, ℂ} ∧
𝐹 ∈ (ℂ
↑pm 𝑆)) → (𝑦 ∈ ran (𝑆 D 𝐹) → 𝑦 ∈ ℂ)) |
64 | 63 | ssrdv 3148 |
. 2
⊢ ((𝑆 ∈ {ℝ, ℂ} ∧
𝐹 ∈ (ℂ
↑pm 𝑆)) → ran (𝑆 D 𝐹) ⊆ ℂ) |
65 | | df-f 5192 |
. 2
⊢ ((𝑆 D 𝐹):dom (𝑆 D 𝐹)⟶ℂ ↔ ((𝑆 D 𝐹) Fn dom (𝑆 D 𝐹) ∧ ran (𝑆 D 𝐹) ⊆ ℂ)) |
66 | 57, 64, 65 | sylanbrc 414 |
1
⊢ ((𝑆 ∈ {ℝ, ℂ} ∧
𝐹 ∈ (ℂ
↑pm 𝑆)) → (𝑆 D 𝐹):dom (𝑆 D 𝐹)⟶ℂ) |