| Step | Hyp | Ref
 | Expression | 
| 1 |   | recnprss 14923 | 
. . . . 5
⊢ (𝑆 ∈ {ℝ, ℂ}
→ 𝑆 ⊆
ℂ) | 
| 2 |   | reldvg 14915 | 
. . . . 5
⊢ ((𝑆 ⊆ ℂ ∧ 𝐹 ∈ (ℂ
↑pm 𝑆)) → Rel (𝑆 D 𝐹)) | 
| 3 | 1, 2 | sylan 283 | 
. . . 4
⊢ ((𝑆 ∈ {ℝ, ℂ} ∧
𝐹 ∈ (ℂ
↑pm 𝑆)) → Rel (𝑆 D 𝐹)) | 
| 4 |   | elpmi 6726 | 
. . . . . . . . . . . . . 14
⊢ (𝐹 ∈ (ℂ
↑pm 𝑆) → (𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹 ⊆ 𝑆)) | 
| 5 | 4 | simpld 112 | 
. . . . . . . . . . . . 13
⊢ (𝐹 ∈ (ℂ
↑pm 𝑆) → 𝐹:dom 𝐹⟶ℂ) | 
| 6 | 5 | adantl 277 | 
. . . . . . . . . . . 12
⊢ ((𝑆 ∈ {ℝ, ℂ} ∧
𝐹 ∈ (ℂ
↑pm 𝑆)) → 𝐹:dom 𝐹⟶ℂ) | 
| 7 | 6 | adantr 276 | 
. . . . . . . . . . 11
⊢ (((𝑆 ∈ {ℝ, ℂ} ∧
𝐹 ∈ (ℂ
↑pm 𝑆)) ∧ 𝑥 ∈ ((int‘((MetOpen‘(abs
∘ − )) ↾t 𝑆))‘dom 𝐹)) → 𝐹:dom 𝐹⟶ℂ) | 
| 8 | 4 | simprd 114 | 
. . . . . . . . . . . . . 14
⊢ (𝐹 ∈ (ℂ
↑pm 𝑆) → dom 𝐹 ⊆ 𝑆) | 
| 9 | 8 | adantl 277 | 
. . . . . . . . . . . . 13
⊢ ((𝑆 ∈ {ℝ, ℂ} ∧
𝐹 ∈ (ℂ
↑pm 𝑆)) → dom 𝐹 ⊆ 𝑆) | 
| 10 | 1 | adantr 276 | 
. . . . . . . . . . . . 13
⊢ ((𝑆 ∈ {ℝ, ℂ} ∧
𝐹 ∈ (ℂ
↑pm 𝑆)) → 𝑆 ⊆ ℂ) | 
| 11 | 9, 10 | sstrd 3193 | 
. . . . . . . . . . . 12
⊢ ((𝑆 ∈ {ℝ, ℂ} ∧
𝐹 ∈ (ℂ
↑pm 𝑆)) → dom 𝐹 ⊆ ℂ) | 
| 12 | 11 | adantr 276 | 
. . . . . . . . . . 11
⊢ (((𝑆 ∈ {ℝ, ℂ} ∧
𝐹 ∈ (ℂ
↑pm 𝑆)) ∧ 𝑥 ∈ ((int‘((MetOpen‘(abs
∘ − )) ↾t 𝑆))‘dom 𝐹)) → dom 𝐹 ⊆ ℂ) | 
| 13 |   | eqid 2196 | 
. . . . . . . . . . . . . . . . 17
⊢
(MetOpen‘(abs ∘ − )) = (MetOpen‘(abs ∘
− )) | 
| 14 | 13 | cntoptopon 14768 | 
. . . . . . . . . . . . . . . 16
⊢
(MetOpen‘(abs ∘ − )) ∈
(TopOn‘ℂ) | 
| 15 |   | resttopon 14407 | 
. . . . . . . . . . . . . . . 16
⊢
(((MetOpen‘(abs ∘ − )) ∈ (TopOn‘ℂ)
∧ 𝑆 ⊆ ℂ)
→ ((MetOpen‘(abs ∘ − )) ↾t 𝑆) ∈ (TopOn‘𝑆)) | 
| 16 | 14, 15 | mpan 424 | 
. . . . . . . . . . . . . . 15
⊢ (𝑆 ⊆ ℂ →
((MetOpen‘(abs ∘ − )) ↾t 𝑆) ∈ (TopOn‘𝑆)) | 
| 17 |   | topontop 14250 | 
. . . . . . . . . . . . . . 15
⊢
(((MetOpen‘(abs ∘ − )) ↾t 𝑆) ∈ (TopOn‘𝑆) → ((MetOpen‘(abs
∘ − )) ↾t 𝑆) ∈ Top) | 
| 18 | 16, 17 | syl 14 | 
. . . . . . . . . . . . . 14
⊢ (𝑆 ⊆ ℂ →
((MetOpen‘(abs ∘ − )) ↾t 𝑆) ∈ Top) | 
| 19 | 10, 18 | syl 14 | 
. . . . . . . . . . . . 13
⊢ ((𝑆 ∈ {ℝ, ℂ} ∧
𝐹 ∈ (ℂ
↑pm 𝑆)) → ((MetOpen‘(abs ∘
− )) ↾t 𝑆) ∈ Top) | 
| 20 |   | toponuni 14251 | 
. . . . . . . . . . . . . . . . 17
⊢
(((MetOpen‘(abs ∘ − )) ↾t 𝑆) ∈ (TopOn‘𝑆) → 𝑆 = ∪
((MetOpen‘(abs ∘ − )) ↾t 𝑆)) | 
| 21 | 16, 20 | syl 14 | 
. . . . . . . . . . . . . . . 16
⊢ (𝑆 ⊆ ℂ → 𝑆 = ∪
((MetOpen‘(abs ∘ − )) ↾t 𝑆)) | 
| 22 | 21 | sseq2d 3213 | 
. . . . . . . . . . . . . . 15
⊢ (𝑆 ⊆ ℂ → (dom
𝐹 ⊆ 𝑆 ↔ dom 𝐹 ⊆ ∪
((MetOpen‘(abs ∘ − )) ↾t 𝑆))) | 
| 23 | 10, 22 | syl 14 | 
. . . . . . . . . . . . . 14
⊢ ((𝑆 ∈ {ℝ, ℂ} ∧
𝐹 ∈ (ℂ
↑pm 𝑆)) → (dom 𝐹 ⊆ 𝑆 ↔ dom 𝐹 ⊆ ∪
((MetOpen‘(abs ∘ − )) ↾t 𝑆))) | 
| 24 | 9, 23 | mpbid 147 | 
. . . . . . . . . . . . 13
⊢ ((𝑆 ∈ {ℝ, ℂ} ∧
𝐹 ∈ (ℂ
↑pm 𝑆)) → dom 𝐹 ⊆ ∪
((MetOpen‘(abs ∘ − )) ↾t 𝑆)) | 
| 25 |   | eqid 2196 | 
. . . . . . . . . . . . . 14
⊢ ∪ ((MetOpen‘(abs ∘ − ))
↾t 𝑆) =
∪ ((MetOpen‘(abs ∘ − ))
↾t 𝑆) | 
| 26 | 25 | ntrss2 14357 | 
. . . . . . . . . . . . 13
⊢
((((MetOpen‘(abs ∘ − )) ↾t 𝑆) ∈ Top ∧ dom 𝐹 ⊆ ∪ ((MetOpen‘(abs ∘ − ))
↾t 𝑆))
→ ((int‘((MetOpen‘(abs ∘ − )) ↾t
𝑆))‘dom 𝐹) ⊆ dom 𝐹) | 
| 27 | 19, 24, 26 | syl2anc 411 | 
. . . . . . . . . . . 12
⊢ ((𝑆 ∈ {ℝ, ℂ} ∧
𝐹 ∈ (ℂ
↑pm 𝑆)) → ((int‘((MetOpen‘(abs
∘ − )) ↾t 𝑆))‘dom 𝐹) ⊆ dom 𝐹) | 
| 28 | 27 | sselda 3183 | 
. . . . . . . . . . 11
⊢ (((𝑆 ∈ {ℝ, ℂ} ∧
𝐹 ∈ (ℂ
↑pm 𝑆)) ∧ 𝑥 ∈ ((int‘((MetOpen‘(abs
∘ − )) ↾t 𝑆))‘dom 𝐹)) → 𝑥 ∈ dom 𝐹) | 
| 29 | 7, 12, 28 | dvlemap 14916 | 
. . . . . . . . . 10
⊢ ((((𝑆 ∈ {ℝ, ℂ} ∧
𝐹 ∈ (ℂ
↑pm 𝑆)) ∧ 𝑥 ∈ ((int‘((MetOpen‘(abs
∘ − )) ↾t 𝑆))‘dom 𝐹)) ∧ 𝑧 ∈ {𝑤 ∈ dom 𝐹 ∣ 𝑤 # 𝑥}) → (((𝐹‘𝑧) − (𝐹‘𝑥)) / (𝑧 − 𝑥)) ∈ ℂ) | 
| 30 | 29 | fmpttd 5717 | 
. . . . . . . . 9
⊢ (((𝑆 ∈ {ℝ, ℂ} ∧
𝐹 ∈ (ℂ
↑pm 𝑆)) ∧ 𝑥 ∈ ((int‘((MetOpen‘(abs
∘ − )) ↾t 𝑆))‘dom 𝐹)) → (𝑧 ∈ {𝑤 ∈ dom 𝐹 ∣ 𝑤 # 𝑥} ↦ (((𝐹‘𝑧) − (𝐹‘𝑥)) / (𝑧 − 𝑥))):{𝑤 ∈ dom 𝐹 ∣ 𝑤 # 𝑥}⟶ℂ) | 
| 31 |   | ssrab2 3268 | 
. . . . . . . . . 10
⊢ {𝑤 ∈ dom 𝐹 ∣ 𝑤 # 𝑥} ⊆ dom 𝐹 | 
| 32 | 31, 12 | sstrid 3194 | 
. . . . . . . . 9
⊢ (((𝑆 ∈ {ℝ, ℂ} ∧
𝐹 ∈ (ℂ
↑pm 𝑆)) ∧ 𝑥 ∈ ((int‘((MetOpen‘(abs
∘ − )) ↾t 𝑆))‘dom 𝐹)) → {𝑤 ∈ dom 𝐹 ∣ 𝑤 # 𝑥} ⊆ ℂ) | 
| 33 | 12, 28 | sseldd 3184 | 
. . . . . . . . 9
⊢ (((𝑆 ∈ {ℝ, ℂ} ∧
𝐹 ∈ (ℂ
↑pm 𝑆)) ∧ 𝑥 ∈ ((int‘((MetOpen‘(abs
∘ − )) ↾t 𝑆))‘dom 𝐹)) → 𝑥 ∈ ℂ) | 
| 34 |   | simpr 110 | 
. . . . . . . . 9
⊢ (((𝑆 ∈ {ℝ, ℂ} ∧
𝐹 ∈ (ℂ
↑pm 𝑆)) ∧ 𝑥 ∈ ((int‘((MetOpen‘(abs
∘ − )) ↾t 𝑆))‘dom 𝐹)) → 𝑥 ∈ ((int‘((MetOpen‘(abs
∘ − )) ↾t 𝑆))‘dom 𝐹)) | 
| 35 | 27, 9 | sstrd 3193 | 
. . . . . . . . . 10
⊢ ((𝑆 ∈ {ℝ, ℂ} ∧
𝐹 ∈ (ℂ
↑pm 𝑆)) → ((int‘((MetOpen‘(abs
∘ − )) ↾t 𝑆))‘dom 𝐹) ⊆ 𝑆) | 
| 36 | 35 | sselda 3183 | 
. . . . . . . . 9
⊢ (((𝑆 ∈ {ℝ, ℂ} ∧
𝐹 ∈ (ℂ
↑pm 𝑆)) ∧ 𝑥 ∈ ((int‘((MetOpen‘(abs
∘ − )) ↾t 𝑆))‘dom 𝐹)) → 𝑥 ∈ 𝑆) | 
| 37 | 19 | adantr 276 | 
. . . . . . . . . 10
⊢ (((𝑆 ∈ {ℝ, ℂ} ∧
𝐹 ∈ (ℂ
↑pm 𝑆)) ∧ 𝑥 ∈ ((int‘((MetOpen‘(abs
∘ − )) ↾t 𝑆))‘dom 𝐹)) → ((MetOpen‘(abs ∘
− )) ↾t 𝑆) ∈ Top) | 
| 38 | 24 | adantr 276 | 
. . . . . . . . . 10
⊢ (((𝑆 ∈ {ℝ, ℂ} ∧
𝐹 ∈ (ℂ
↑pm 𝑆)) ∧ 𝑥 ∈ ((int‘((MetOpen‘(abs
∘ − )) ↾t 𝑆))‘dom 𝐹)) → dom 𝐹 ⊆ ∪
((MetOpen‘(abs ∘ − )) ↾t 𝑆)) | 
| 39 | 25 | ntropn 14353 | 
. . . . . . . . . 10
⊢
((((MetOpen‘(abs ∘ − )) ↾t 𝑆) ∈ Top ∧ dom 𝐹 ⊆ ∪ ((MetOpen‘(abs ∘ − ))
↾t 𝑆))
→ ((int‘((MetOpen‘(abs ∘ − )) ↾t
𝑆))‘dom 𝐹) ∈ ((MetOpen‘(abs
∘ − )) ↾t 𝑆)) | 
| 40 | 37, 38, 39 | syl2anc 411 | 
. . . . . . . . 9
⊢ (((𝑆 ∈ {ℝ, ℂ} ∧
𝐹 ∈ (ℂ
↑pm 𝑆)) ∧ 𝑥 ∈ ((int‘((MetOpen‘(abs
∘ − )) ↾t 𝑆))‘dom 𝐹)) → ((int‘((MetOpen‘(abs
∘ − )) ↾t 𝑆))‘dom 𝐹) ∈ ((MetOpen‘(abs ∘
− )) ↾t 𝑆)) | 
| 41 |   | simpll 527 | 
. . . . . . . . 9
⊢ (((𝑆 ∈ {ℝ, ℂ} ∧
𝐹 ∈ (ℂ
↑pm 𝑆)) ∧ 𝑥 ∈ ((int‘((MetOpen‘(abs
∘ − )) ↾t 𝑆))‘dom 𝐹)) → 𝑆 ∈ {ℝ, ℂ}) | 
| 42 |   | rabss2 3266 | 
. . . . . . . . . . 11
⊢
(((int‘((MetOpen‘(abs ∘ − )) ↾t
𝑆))‘dom 𝐹) ⊆ dom 𝐹 → {𝑤 ∈ ((int‘((MetOpen‘(abs
∘ − )) ↾t 𝑆))‘dom 𝐹) ∣ 𝑤 # 𝑥} ⊆ {𝑤 ∈ dom 𝐹 ∣ 𝑤 # 𝑥}) | 
| 43 | 27, 42 | syl 14 | 
. . . . . . . . . 10
⊢ ((𝑆 ∈ {ℝ, ℂ} ∧
𝐹 ∈ (ℂ
↑pm 𝑆)) → {𝑤 ∈ ((int‘((MetOpen‘(abs
∘ − )) ↾t 𝑆))‘dom 𝐹) ∣ 𝑤 # 𝑥} ⊆ {𝑤 ∈ dom 𝐹 ∣ 𝑤 # 𝑥}) | 
| 44 | 43 | adantr 276 | 
. . . . . . . . 9
⊢ (((𝑆 ∈ {ℝ, ℂ} ∧
𝐹 ∈ (ℂ
↑pm 𝑆)) ∧ 𝑥 ∈ ((int‘((MetOpen‘(abs
∘ − )) ↾t 𝑆))‘dom 𝐹)) → {𝑤 ∈ ((int‘((MetOpen‘(abs
∘ − )) ↾t 𝑆))‘dom 𝐹) ∣ 𝑤 # 𝑥} ⊆ {𝑤 ∈ dom 𝐹 ∣ 𝑤 # 𝑥}) | 
| 45 | 30, 32, 33, 34, 36, 40, 41, 44, 13 | limcimo 14901 | 
. . . . . . . 8
⊢ (((𝑆 ∈ {ℝ, ℂ} ∧
𝐹 ∈ (ℂ
↑pm 𝑆)) ∧ 𝑥 ∈ ((int‘((MetOpen‘(abs
∘ − )) ↾t 𝑆))‘dom 𝐹)) → ∃*𝑦 𝑦 ∈ ((𝑧 ∈ {𝑤 ∈ dom 𝐹 ∣ 𝑤 # 𝑥} ↦ (((𝐹‘𝑧) − (𝐹‘𝑥)) / (𝑧 − 𝑥))) limℂ 𝑥)) | 
| 46 | 45 | ex 115 | 
. . . . . . 7
⊢ ((𝑆 ∈ {ℝ, ℂ} ∧
𝐹 ∈ (ℂ
↑pm 𝑆)) → (𝑥 ∈ ((int‘((MetOpen‘(abs
∘ − )) ↾t 𝑆))‘dom 𝐹) → ∃*𝑦 𝑦 ∈ ((𝑧 ∈ {𝑤 ∈ dom 𝐹 ∣ 𝑤 # 𝑥} ↦ (((𝐹‘𝑧) − (𝐹‘𝑥)) / (𝑧 − 𝑥))) limℂ 𝑥))) | 
| 47 |   | moanimv 2120 | 
. . . . . . 7
⊢
(∃*𝑦(𝑥 ∈
((int‘((MetOpen‘(abs ∘ − )) ↾t 𝑆))‘dom 𝐹) ∧ 𝑦 ∈ ((𝑧 ∈ {𝑤 ∈ dom 𝐹 ∣ 𝑤 # 𝑥} ↦ (((𝐹‘𝑧) − (𝐹‘𝑥)) / (𝑧 − 𝑥))) limℂ 𝑥)) ↔ (𝑥 ∈ ((int‘((MetOpen‘(abs
∘ − )) ↾t 𝑆))‘dom 𝐹) → ∃*𝑦 𝑦 ∈ ((𝑧 ∈ {𝑤 ∈ dom 𝐹 ∣ 𝑤 # 𝑥} ↦ (((𝐹‘𝑧) − (𝐹‘𝑥)) / (𝑧 − 𝑥))) limℂ 𝑥))) | 
| 48 | 46, 47 | sylibr 134 | 
. . . . . 6
⊢ ((𝑆 ∈ {ℝ, ℂ} ∧
𝐹 ∈ (ℂ
↑pm 𝑆)) → ∃*𝑦(𝑥 ∈ ((int‘((MetOpen‘(abs
∘ − )) ↾t 𝑆))‘dom 𝐹) ∧ 𝑦 ∈ ((𝑧 ∈ {𝑤 ∈ dom 𝐹 ∣ 𝑤 # 𝑥} ↦ (((𝐹‘𝑧) − (𝐹‘𝑥)) / (𝑧 − 𝑥))) limℂ 𝑥))) | 
| 49 |   | eqid 2196 | 
. . . . . . . 8
⊢
((MetOpen‘(abs ∘ − )) ↾t 𝑆) = ((MetOpen‘(abs ∘
− )) ↾t 𝑆) | 
| 50 |   | eqid 2196 | 
. . . . . . . 8
⊢ (𝑧 ∈ {𝑤 ∈ dom 𝐹 ∣ 𝑤 # 𝑥} ↦ (((𝐹‘𝑧) − (𝐹‘𝑥)) / (𝑧 − 𝑥))) = (𝑧 ∈ {𝑤 ∈ dom 𝐹 ∣ 𝑤 # 𝑥} ↦ (((𝐹‘𝑧) − (𝐹‘𝑥)) / (𝑧 − 𝑥))) | 
| 51 | 49, 13, 50, 10, 6, 9 | eldvap 14918 | 
. . . . . . 7
⊢ ((𝑆 ∈ {ℝ, ℂ} ∧
𝐹 ∈ (ℂ
↑pm 𝑆)) → (𝑥(𝑆 D 𝐹)𝑦 ↔ (𝑥 ∈ ((int‘((MetOpen‘(abs
∘ − )) ↾t 𝑆))‘dom 𝐹) ∧ 𝑦 ∈ ((𝑧 ∈ {𝑤 ∈ dom 𝐹 ∣ 𝑤 # 𝑥} ↦ (((𝐹‘𝑧) − (𝐹‘𝑥)) / (𝑧 − 𝑥))) limℂ 𝑥)))) | 
| 52 | 51 | mobidv 2081 | 
. . . . . 6
⊢ ((𝑆 ∈ {ℝ, ℂ} ∧
𝐹 ∈ (ℂ
↑pm 𝑆)) → (∃*𝑦 𝑥(𝑆 D 𝐹)𝑦 ↔ ∃*𝑦(𝑥 ∈ ((int‘((MetOpen‘(abs
∘ − )) ↾t 𝑆))‘dom 𝐹) ∧ 𝑦 ∈ ((𝑧 ∈ {𝑤 ∈ dom 𝐹 ∣ 𝑤 # 𝑥} ↦ (((𝐹‘𝑧) − (𝐹‘𝑥)) / (𝑧 − 𝑥))) limℂ 𝑥)))) | 
| 53 | 48, 52 | mpbird 167 | 
. . . . 5
⊢ ((𝑆 ∈ {ℝ, ℂ} ∧
𝐹 ∈ (ℂ
↑pm 𝑆)) → ∃*𝑦 𝑥(𝑆 D 𝐹)𝑦) | 
| 54 | 53 | alrimiv 1888 | 
. . . 4
⊢ ((𝑆 ∈ {ℝ, ℂ} ∧
𝐹 ∈ (ℂ
↑pm 𝑆)) → ∀𝑥∃*𝑦 𝑥(𝑆 D 𝐹)𝑦) | 
| 55 |   | dffun6 5272 | 
. . . 4
⊢ (Fun
(𝑆 D 𝐹) ↔ (Rel (𝑆 D 𝐹) ∧ ∀𝑥∃*𝑦 𝑥(𝑆 D 𝐹)𝑦)) | 
| 56 | 3, 54, 55 | sylanbrc 417 | 
. . 3
⊢ ((𝑆 ∈ {ℝ, ℂ} ∧
𝐹 ∈ (ℂ
↑pm 𝑆)) → Fun (𝑆 D 𝐹)) | 
| 57 | 56 | funfnd 5289 | 
. 2
⊢ ((𝑆 ∈ {ℝ, ℂ} ∧
𝐹 ∈ (ℂ
↑pm 𝑆)) → (𝑆 D 𝐹) Fn dom (𝑆 D 𝐹)) | 
| 58 |   | vex 2766 | 
. . . . 5
⊢ 𝑦 ∈ V | 
| 59 | 58 | elrn 4909 | 
. . . 4
⊢ (𝑦 ∈ ran (𝑆 D 𝐹) ↔ ∃𝑥 𝑥(𝑆 D 𝐹)𝑦) | 
| 60 | 10, 6, 9 | dvcl 14919 | 
. . . . . 6
⊢ (((𝑆 ∈ {ℝ, ℂ} ∧
𝐹 ∈ (ℂ
↑pm 𝑆)) ∧ 𝑥(𝑆 D 𝐹)𝑦) → 𝑦 ∈ ℂ) | 
| 61 | 60 | ex 115 | 
. . . . 5
⊢ ((𝑆 ∈ {ℝ, ℂ} ∧
𝐹 ∈ (ℂ
↑pm 𝑆)) → (𝑥(𝑆 D 𝐹)𝑦 → 𝑦 ∈ ℂ)) | 
| 62 | 61 | exlimdv 1833 | 
. . . 4
⊢ ((𝑆 ∈ {ℝ, ℂ} ∧
𝐹 ∈ (ℂ
↑pm 𝑆)) → (∃𝑥 𝑥(𝑆 D 𝐹)𝑦 → 𝑦 ∈ ℂ)) | 
| 63 | 59, 62 | biimtrid 152 | 
. . 3
⊢ ((𝑆 ∈ {ℝ, ℂ} ∧
𝐹 ∈ (ℂ
↑pm 𝑆)) → (𝑦 ∈ ran (𝑆 D 𝐹) → 𝑦 ∈ ℂ)) | 
| 64 | 63 | ssrdv 3189 | 
. 2
⊢ ((𝑆 ∈ {ℝ, ℂ} ∧
𝐹 ∈ (ℂ
↑pm 𝑆)) → ran (𝑆 D 𝐹) ⊆ ℂ) | 
| 65 |   | df-f 5262 | 
. 2
⊢ ((𝑆 D 𝐹):dom (𝑆 D 𝐹)⟶ℂ ↔ ((𝑆 D 𝐹) Fn dom (𝑆 D 𝐹) ∧ ran (𝑆 D 𝐹) ⊆ ℂ)) | 
| 66 | 57, 64, 65 | sylanbrc 417 | 
1
⊢ ((𝑆 ∈ {ℝ, ℂ} ∧
𝐹 ∈ (ℂ
↑pm 𝑆)) → (𝑆 D 𝐹):dom (𝑆 D 𝐹)⟶ℂ) |