ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvfgg GIF version

Theorem dvfgg 14242
Description: Explicitly write out the functionality condition on derivative for 𝑆 = ℝ and . (Contributed by Mario Carneiro, 9-Feb-2015.) (Revised by Jim Kingdon, 28-Jun-2023.)
Assertion
Ref Expression
dvfgg ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) → (𝑆 D 𝐹):dom (𝑆 D 𝐹)⟶ℂ)

Proof of Theorem dvfgg
Dummy variables 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 recnprss 14241 . . . . 5 (𝑆 ∈ {ℝ, ℂ} → 𝑆 ⊆ ℂ)
2 reldvg 14233 . . . . 5 ((𝑆 ⊆ ℂ ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) → Rel (𝑆 D 𝐹))
31, 2sylan 283 . . . 4 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) → Rel (𝑆 D 𝐹))
4 elpmi 6669 . . . . . . . . . . . . . 14 (𝐹 ∈ (ℂ ↑pm 𝑆) → (𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹𝑆))
54simpld 112 . . . . . . . . . . . . 13 (𝐹 ∈ (ℂ ↑pm 𝑆) → 𝐹:dom 𝐹⟶ℂ)
65adantl 277 . . . . . . . . . . . 12 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) → 𝐹:dom 𝐹⟶ℂ)
76adantr 276 . . . . . . . . . . 11 (((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) ∧ 𝑥 ∈ ((int‘((MetOpen‘(abs ∘ − )) ↾t 𝑆))‘dom 𝐹)) → 𝐹:dom 𝐹⟶ℂ)
84simprd 114 . . . . . . . . . . . . . 14 (𝐹 ∈ (ℂ ↑pm 𝑆) → dom 𝐹𝑆)
98adantl 277 . . . . . . . . . . . . 13 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) → dom 𝐹𝑆)
101adantr 276 . . . . . . . . . . . . 13 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) → 𝑆 ⊆ ℂ)
119, 10sstrd 3167 . . . . . . . . . . . 12 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) → dom 𝐹 ⊆ ℂ)
1211adantr 276 . . . . . . . . . . 11 (((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) ∧ 𝑥 ∈ ((int‘((MetOpen‘(abs ∘ − )) ↾t 𝑆))‘dom 𝐹)) → dom 𝐹 ⊆ ℂ)
13 eqid 2177 . . . . . . . . . . . . . . . . 17 (MetOpen‘(abs ∘ − )) = (MetOpen‘(abs ∘ − ))
1413cntoptopon 14117 . . . . . . . . . . . . . . . 16 (MetOpen‘(abs ∘ − )) ∈ (TopOn‘ℂ)
15 resttopon 13756 . . . . . . . . . . . . . . . 16 (((MetOpen‘(abs ∘ − )) ∈ (TopOn‘ℂ) ∧ 𝑆 ⊆ ℂ) → ((MetOpen‘(abs ∘ − )) ↾t 𝑆) ∈ (TopOn‘𝑆))
1614, 15mpan 424 . . . . . . . . . . . . . . 15 (𝑆 ⊆ ℂ → ((MetOpen‘(abs ∘ − )) ↾t 𝑆) ∈ (TopOn‘𝑆))
17 topontop 13599 . . . . . . . . . . . . . . 15 (((MetOpen‘(abs ∘ − )) ↾t 𝑆) ∈ (TopOn‘𝑆) → ((MetOpen‘(abs ∘ − )) ↾t 𝑆) ∈ Top)
1816, 17syl 14 . . . . . . . . . . . . . 14 (𝑆 ⊆ ℂ → ((MetOpen‘(abs ∘ − )) ↾t 𝑆) ∈ Top)
1910, 18syl 14 . . . . . . . . . . . . 13 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) → ((MetOpen‘(abs ∘ − )) ↾t 𝑆) ∈ Top)
20 toponuni 13600 . . . . . . . . . . . . . . . . 17 (((MetOpen‘(abs ∘ − )) ↾t 𝑆) ∈ (TopOn‘𝑆) → 𝑆 = ((MetOpen‘(abs ∘ − )) ↾t 𝑆))
2116, 20syl 14 . . . . . . . . . . . . . . . 16 (𝑆 ⊆ ℂ → 𝑆 = ((MetOpen‘(abs ∘ − )) ↾t 𝑆))
2221sseq2d 3187 . . . . . . . . . . . . . . 15 (𝑆 ⊆ ℂ → (dom 𝐹𝑆 ↔ dom 𝐹 ((MetOpen‘(abs ∘ − )) ↾t 𝑆)))
2310, 22syl 14 . . . . . . . . . . . . . 14 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) → (dom 𝐹𝑆 ↔ dom 𝐹 ((MetOpen‘(abs ∘ − )) ↾t 𝑆)))
249, 23mpbid 147 . . . . . . . . . . . . 13 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) → dom 𝐹 ((MetOpen‘(abs ∘ − )) ↾t 𝑆))
25 eqid 2177 . . . . . . . . . . . . . 14 ((MetOpen‘(abs ∘ − )) ↾t 𝑆) = ((MetOpen‘(abs ∘ − )) ↾t 𝑆)
2625ntrss2 13706 . . . . . . . . . . . . 13 ((((MetOpen‘(abs ∘ − )) ↾t 𝑆) ∈ Top ∧ dom 𝐹 ((MetOpen‘(abs ∘ − )) ↾t 𝑆)) → ((int‘((MetOpen‘(abs ∘ − )) ↾t 𝑆))‘dom 𝐹) ⊆ dom 𝐹)
2719, 24, 26syl2anc 411 . . . . . . . . . . . 12 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) → ((int‘((MetOpen‘(abs ∘ − )) ↾t 𝑆))‘dom 𝐹) ⊆ dom 𝐹)
2827sselda 3157 . . . . . . . . . . 11 (((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) ∧ 𝑥 ∈ ((int‘((MetOpen‘(abs ∘ − )) ↾t 𝑆))‘dom 𝐹)) → 𝑥 ∈ dom 𝐹)
297, 12, 28dvlemap 14234 . . . . . . . . . 10 ((((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) ∧ 𝑥 ∈ ((int‘((MetOpen‘(abs ∘ − )) ↾t 𝑆))‘dom 𝐹)) ∧ 𝑧 ∈ {𝑤 ∈ dom 𝐹𝑤 # 𝑥}) → (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥)) ∈ ℂ)
3029fmpttd 5673 . . . . . . . . 9 (((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) ∧ 𝑥 ∈ ((int‘((MetOpen‘(abs ∘ − )) ↾t 𝑆))‘dom 𝐹)) → (𝑧 ∈ {𝑤 ∈ dom 𝐹𝑤 # 𝑥} ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥))):{𝑤 ∈ dom 𝐹𝑤 # 𝑥}⟶ℂ)
31 ssrab2 3242 . . . . . . . . . 10 {𝑤 ∈ dom 𝐹𝑤 # 𝑥} ⊆ dom 𝐹
3231, 12sstrid 3168 . . . . . . . . 9 (((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) ∧ 𝑥 ∈ ((int‘((MetOpen‘(abs ∘ − )) ↾t 𝑆))‘dom 𝐹)) → {𝑤 ∈ dom 𝐹𝑤 # 𝑥} ⊆ ℂ)
3312, 28sseldd 3158 . . . . . . . . 9 (((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) ∧ 𝑥 ∈ ((int‘((MetOpen‘(abs ∘ − )) ↾t 𝑆))‘dom 𝐹)) → 𝑥 ∈ ℂ)
34 simpr 110 . . . . . . . . 9 (((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) ∧ 𝑥 ∈ ((int‘((MetOpen‘(abs ∘ − )) ↾t 𝑆))‘dom 𝐹)) → 𝑥 ∈ ((int‘((MetOpen‘(abs ∘ − )) ↾t 𝑆))‘dom 𝐹))
3527, 9sstrd 3167 . . . . . . . . . 10 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) → ((int‘((MetOpen‘(abs ∘ − )) ↾t 𝑆))‘dom 𝐹) ⊆ 𝑆)
3635sselda 3157 . . . . . . . . 9 (((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) ∧ 𝑥 ∈ ((int‘((MetOpen‘(abs ∘ − )) ↾t 𝑆))‘dom 𝐹)) → 𝑥𝑆)
3719adantr 276 . . . . . . . . . 10 (((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) ∧ 𝑥 ∈ ((int‘((MetOpen‘(abs ∘ − )) ↾t 𝑆))‘dom 𝐹)) → ((MetOpen‘(abs ∘ − )) ↾t 𝑆) ∈ Top)
3824adantr 276 . . . . . . . . . 10 (((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) ∧ 𝑥 ∈ ((int‘((MetOpen‘(abs ∘ − )) ↾t 𝑆))‘dom 𝐹)) → dom 𝐹 ((MetOpen‘(abs ∘ − )) ↾t 𝑆))
3925ntropn 13702 . . . . . . . . . 10 ((((MetOpen‘(abs ∘ − )) ↾t 𝑆) ∈ Top ∧ dom 𝐹 ((MetOpen‘(abs ∘ − )) ↾t 𝑆)) → ((int‘((MetOpen‘(abs ∘ − )) ↾t 𝑆))‘dom 𝐹) ∈ ((MetOpen‘(abs ∘ − )) ↾t 𝑆))
4037, 38, 39syl2anc 411 . . . . . . . . 9 (((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) ∧ 𝑥 ∈ ((int‘((MetOpen‘(abs ∘ − )) ↾t 𝑆))‘dom 𝐹)) → ((int‘((MetOpen‘(abs ∘ − )) ↾t 𝑆))‘dom 𝐹) ∈ ((MetOpen‘(abs ∘ − )) ↾t 𝑆))
41 simpll 527 . . . . . . . . 9 (((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) ∧ 𝑥 ∈ ((int‘((MetOpen‘(abs ∘ − )) ↾t 𝑆))‘dom 𝐹)) → 𝑆 ∈ {ℝ, ℂ})
42 rabss2 3240 . . . . . . . . . . 11 (((int‘((MetOpen‘(abs ∘ − )) ↾t 𝑆))‘dom 𝐹) ⊆ dom 𝐹 → {𝑤 ∈ ((int‘((MetOpen‘(abs ∘ − )) ↾t 𝑆))‘dom 𝐹) ∣ 𝑤 # 𝑥} ⊆ {𝑤 ∈ dom 𝐹𝑤 # 𝑥})
4327, 42syl 14 . . . . . . . . . 10 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) → {𝑤 ∈ ((int‘((MetOpen‘(abs ∘ − )) ↾t 𝑆))‘dom 𝐹) ∣ 𝑤 # 𝑥} ⊆ {𝑤 ∈ dom 𝐹𝑤 # 𝑥})
4443adantr 276 . . . . . . . . 9 (((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) ∧ 𝑥 ∈ ((int‘((MetOpen‘(abs ∘ − )) ↾t 𝑆))‘dom 𝐹)) → {𝑤 ∈ ((int‘((MetOpen‘(abs ∘ − )) ↾t 𝑆))‘dom 𝐹) ∣ 𝑤 # 𝑥} ⊆ {𝑤 ∈ dom 𝐹𝑤 # 𝑥})
4530, 32, 33, 34, 36, 40, 41, 44, 13limcimo 14219 . . . . . . . 8 (((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) ∧ 𝑥 ∈ ((int‘((MetOpen‘(abs ∘ − )) ↾t 𝑆))‘dom 𝐹)) → ∃*𝑦 𝑦 ∈ ((𝑧 ∈ {𝑤 ∈ dom 𝐹𝑤 # 𝑥} ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥))) lim 𝑥))
4645ex 115 . . . . . . 7 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) → (𝑥 ∈ ((int‘((MetOpen‘(abs ∘ − )) ↾t 𝑆))‘dom 𝐹) → ∃*𝑦 𝑦 ∈ ((𝑧 ∈ {𝑤 ∈ dom 𝐹𝑤 # 𝑥} ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥))) lim 𝑥)))
47 moanimv 2101 . . . . . . 7 (∃*𝑦(𝑥 ∈ ((int‘((MetOpen‘(abs ∘ − )) ↾t 𝑆))‘dom 𝐹) ∧ 𝑦 ∈ ((𝑧 ∈ {𝑤 ∈ dom 𝐹𝑤 # 𝑥} ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥))) lim 𝑥)) ↔ (𝑥 ∈ ((int‘((MetOpen‘(abs ∘ − )) ↾t 𝑆))‘dom 𝐹) → ∃*𝑦 𝑦 ∈ ((𝑧 ∈ {𝑤 ∈ dom 𝐹𝑤 # 𝑥} ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥))) lim 𝑥)))
4846, 47sylibr 134 . . . . . 6 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) → ∃*𝑦(𝑥 ∈ ((int‘((MetOpen‘(abs ∘ − )) ↾t 𝑆))‘dom 𝐹) ∧ 𝑦 ∈ ((𝑧 ∈ {𝑤 ∈ dom 𝐹𝑤 # 𝑥} ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥))) lim 𝑥)))
49 eqid 2177 . . . . . . . 8 ((MetOpen‘(abs ∘ − )) ↾t 𝑆) = ((MetOpen‘(abs ∘ − )) ↾t 𝑆)
50 eqid 2177 . . . . . . . 8 (𝑧 ∈ {𝑤 ∈ dom 𝐹𝑤 # 𝑥} ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥))) = (𝑧 ∈ {𝑤 ∈ dom 𝐹𝑤 # 𝑥} ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥)))
5149, 13, 50, 10, 6, 9eldvap 14236 . . . . . . 7 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) → (𝑥(𝑆 D 𝐹)𝑦 ↔ (𝑥 ∈ ((int‘((MetOpen‘(abs ∘ − )) ↾t 𝑆))‘dom 𝐹) ∧ 𝑦 ∈ ((𝑧 ∈ {𝑤 ∈ dom 𝐹𝑤 # 𝑥} ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥))) lim 𝑥))))
5251mobidv 2062 . . . . . 6 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) → (∃*𝑦 𝑥(𝑆 D 𝐹)𝑦 ↔ ∃*𝑦(𝑥 ∈ ((int‘((MetOpen‘(abs ∘ − )) ↾t 𝑆))‘dom 𝐹) ∧ 𝑦 ∈ ((𝑧 ∈ {𝑤 ∈ dom 𝐹𝑤 # 𝑥} ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥))) lim 𝑥))))
5348, 52mpbird 167 . . . . 5 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) → ∃*𝑦 𝑥(𝑆 D 𝐹)𝑦)
5453alrimiv 1874 . . . 4 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) → ∀𝑥∃*𝑦 𝑥(𝑆 D 𝐹)𝑦)
55 dffun6 5232 . . . 4 (Fun (𝑆 D 𝐹) ↔ (Rel (𝑆 D 𝐹) ∧ ∀𝑥∃*𝑦 𝑥(𝑆 D 𝐹)𝑦))
563, 54, 55sylanbrc 417 . . 3 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) → Fun (𝑆 D 𝐹))
5756funfnd 5249 . 2 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) → (𝑆 D 𝐹) Fn dom (𝑆 D 𝐹))
58 vex 2742 . . . . 5 𝑦 ∈ V
5958elrn 4872 . . . 4 (𝑦 ∈ ran (𝑆 D 𝐹) ↔ ∃𝑥 𝑥(𝑆 D 𝐹)𝑦)
6010, 6, 9dvcl 14237 . . . . . 6 (((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) ∧ 𝑥(𝑆 D 𝐹)𝑦) → 𝑦 ∈ ℂ)
6160ex 115 . . . . 5 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) → (𝑥(𝑆 D 𝐹)𝑦𝑦 ∈ ℂ))
6261exlimdv 1819 . . . 4 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) → (∃𝑥 𝑥(𝑆 D 𝐹)𝑦𝑦 ∈ ℂ))
6359, 62biimtrid 152 . . 3 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) → (𝑦 ∈ ran (𝑆 D 𝐹) → 𝑦 ∈ ℂ))
6463ssrdv 3163 . 2 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) → ran (𝑆 D 𝐹) ⊆ ℂ)
65 df-f 5222 . 2 ((𝑆 D 𝐹):dom (𝑆 D 𝐹)⟶ℂ ↔ ((𝑆 D 𝐹) Fn dom (𝑆 D 𝐹) ∧ ran (𝑆 D 𝐹) ⊆ ℂ))
6657, 64, 65sylanbrc 417 1 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) → (𝑆 D 𝐹):dom (𝑆 D 𝐹)⟶ℂ)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wal 1351   = wceq 1353  wex 1492  ∃*wmo 2027  wcel 2148  {crab 2459  wss 3131  {cpr 3595   cuni 3811   class class class wbr 4005  cmpt 4066  dom cdm 4628  ran crn 4629  ccom 4632  Rel wrel 4633  Fun wfun 5212   Fn wfn 5213  wf 5214  cfv 5218  (class class class)co 5877  pm cpm 6651  cc 7811  cr 7812  cmin 8130   # cap 8540   / cdiv 8631  abscabs 11008  t crest 12693  MetOpencmopn 13530  Topctop 13582  TopOnctopon 13595  intcnt 13678   lim climc 14208   D cdv 14209
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4120  ax-sep 4123  ax-nul 4131  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-iinf 4589  ax-cnex 7904  ax-resscn 7905  ax-1cn 7906  ax-1re 7907  ax-icn 7908  ax-addcl 7909  ax-addrcl 7910  ax-mulcl 7911  ax-mulrcl 7912  ax-addcom 7913  ax-mulcom 7914  ax-addass 7915  ax-mulass 7916  ax-distr 7917  ax-i2m1 7918  ax-0lt1 7919  ax-1rid 7920  ax-0id 7921  ax-rnegex 7922  ax-precex 7923  ax-cnre 7924  ax-pre-ltirr 7925  ax-pre-ltwlin 7926  ax-pre-lttrn 7927  ax-pre-apti 7928  ax-pre-ltadd 7929  ax-pre-mulgt0 7930  ax-pre-mulext 7931  ax-arch 7932  ax-caucvg 7933
This theorem depends on definitions:  df-bi 117  df-stab 831  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-if 3537  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-tr 4104  df-id 4295  df-po 4298  df-iso 4299  df-iord 4368  df-on 4370  df-ilim 4371  df-suc 4373  df-iom 4592  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225  df-fv 5226  df-isom 5227  df-riota 5833  df-ov 5880  df-oprab 5881  df-mpo 5882  df-1st 6143  df-2nd 6144  df-recs 6308  df-frec 6394  df-map 6652  df-pm 6653  df-sup 6985  df-inf 6986  df-pnf 7996  df-mnf 7997  df-xr 7998  df-ltxr 7999  df-le 8000  df-sub 8132  df-neg 8133  df-reap 8534  df-ap 8541  df-div 8632  df-inn 8922  df-2 8980  df-3 8981  df-4 8982  df-n0 9179  df-z 9256  df-uz 9531  df-q 9622  df-rp 9656  df-xneg 9774  df-xadd 9775  df-seqfrec 10448  df-exp 10522  df-cj 10853  df-re 10854  df-im 10855  df-rsqrt 11009  df-abs 11010  df-rest 12695  df-topgen 12714  df-psmet 13532  df-xmet 13533  df-met 13534  df-bl 13535  df-mopn 13536  df-top 13583  df-topon 13596  df-bases 13628  df-ntr 13681  df-limced 14210  df-dvap 14211
This theorem is referenced by:  dvfpm  14243  dvfcnpm  14244  dvaddxx  14252  dvmulxx  14253  dviaddf  14254  dvimulf  14255  dvmptclx  14265
  Copyright terms: Public domain W3C validator