ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvfgg GIF version

Theorem dvfgg 15008
Description: Explicitly write out the functionality condition on derivative for 𝑆 = ℝ and . (Contributed by Mario Carneiro, 9-Feb-2015.) (Revised by Jim Kingdon, 28-Jun-2023.)
Assertion
Ref Expression
dvfgg ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) → (𝑆 D 𝐹):dom (𝑆 D 𝐹)⟶ℂ)

Proof of Theorem dvfgg
Dummy variables 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 recnprss 15007 . . . . 5 (𝑆 ∈ {ℝ, ℂ} → 𝑆 ⊆ ℂ)
2 reldvg 14999 . . . . 5 ((𝑆 ⊆ ℂ ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) → Rel (𝑆 D 𝐹))
31, 2sylan 283 . . . 4 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) → Rel (𝑆 D 𝐹))
4 elpmi 6735 . . . . . . . . . . . . . 14 (𝐹 ∈ (ℂ ↑pm 𝑆) → (𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹𝑆))
54simpld 112 . . . . . . . . . . . . 13 (𝐹 ∈ (ℂ ↑pm 𝑆) → 𝐹:dom 𝐹⟶ℂ)
65adantl 277 . . . . . . . . . . . 12 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) → 𝐹:dom 𝐹⟶ℂ)
76adantr 276 . . . . . . . . . . 11 (((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) ∧ 𝑥 ∈ ((int‘((MetOpen‘(abs ∘ − )) ↾t 𝑆))‘dom 𝐹)) → 𝐹:dom 𝐹⟶ℂ)
84simprd 114 . . . . . . . . . . . . . 14 (𝐹 ∈ (ℂ ↑pm 𝑆) → dom 𝐹𝑆)
98adantl 277 . . . . . . . . . . . . 13 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) → dom 𝐹𝑆)
101adantr 276 . . . . . . . . . . . . 13 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) → 𝑆 ⊆ ℂ)
119, 10sstrd 3194 . . . . . . . . . . . 12 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) → dom 𝐹 ⊆ ℂ)
1211adantr 276 . . . . . . . . . . 11 (((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) ∧ 𝑥 ∈ ((int‘((MetOpen‘(abs ∘ − )) ↾t 𝑆))‘dom 𝐹)) → dom 𝐹 ⊆ ℂ)
13 eqid 2196 . . . . . . . . . . . . . . . . 17 (MetOpen‘(abs ∘ − )) = (MetOpen‘(abs ∘ − ))
1413cntoptopon 14852 . . . . . . . . . . . . . . . 16 (MetOpen‘(abs ∘ − )) ∈ (TopOn‘ℂ)
15 resttopon 14491 . . . . . . . . . . . . . . . 16 (((MetOpen‘(abs ∘ − )) ∈ (TopOn‘ℂ) ∧ 𝑆 ⊆ ℂ) → ((MetOpen‘(abs ∘ − )) ↾t 𝑆) ∈ (TopOn‘𝑆))
1614, 15mpan 424 . . . . . . . . . . . . . . 15 (𝑆 ⊆ ℂ → ((MetOpen‘(abs ∘ − )) ↾t 𝑆) ∈ (TopOn‘𝑆))
17 topontop 14334 . . . . . . . . . . . . . . 15 (((MetOpen‘(abs ∘ − )) ↾t 𝑆) ∈ (TopOn‘𝑆) → ((MetOpen‘(abs ∘ − )) ↾t 𝑆) ∈ Top)
1816, 17syl 14 . . . . . . . . . . . . . 14 (𝑆 ⊆ ℂ → ((MetOpen‘(abs ∘ − )) ↾t 𝑆) ∈ Top)
1910, 18syl 14 . . . . . . . . . . . . 13 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) → ((MetOpen‘(abs ∘ − )) ↾t 𝑆) ∈ Top)
20 toponuni 14335 . . . . . . . . . . . . . . . . 17 (((MetOpen‘(abs ∘ − )) ↾t 𝑆) ∈ (TopOn‘𝑆) → 𝑆 = ((MetOpen‘(abs ∘ − )) ↾t 𝑆))
2116, 20syl 14 . . . . . . . . . . . . . . . 16 (𝑆 ⊆ ℂ → 𝑆 = ((MetOpen‘(abs ∘ − )) ↾t 𝑆))
2221sseq2d 3214 . . . . . . . . . . . . . . 15 (𝑆 ⊆ ℂ → (dom 𝐹𝑆 ↔ dom 𝐹 ((MetOpen‘(abs ∘ − )) ↾t 𝑆)))
2310, 22syl 14 . . . . . . . . . . . . . 14 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) → (dom 𝐹𝑆 ↔ dom 𝐹 ((MetOpen‘(abs ∘ − )) ↾t 𝑆)))
249, 23mpbid 147 . . . . . . . . . . . . 13 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) → dom 𝐹 ((MetOpen‘(abs ∘ − )) ↾t 𝑆))
25 eqid 2196 . . . . . . . . . . . . . 14 ((MetOpen‘(abs ∘ − )) ↾t 𝑆) = ((MetOpen‘(abs ∘ − )) ↾t 𝑆)
2625ntrss2 14441 . . . . . . . . . . . . 13 ((((MetOpen‘(abs ∘ − )) ↾t 𝑆) ∈ Top ∧ dom 𝐹 ((MetOpen‘(abs ∘ − )) ↾t 𝑆)) → ((int‘((MetOpen‘(abs ∘ − )) ↾t 𝑆))‘dom 𝐹) ⊆ dom 𝐹)
2719, 24, 26syl2anc 411 . . . . . . . . . . . 12 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) → ((int‘((MetOpen‘(abs ∘ − )) ↾t 𝑆))‘dom 𝐹) ⊆ dom 𝐹)
2827sselda 3184 . . . . . . . . . . 11 (((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) ∧ 𝑥 ∈ ((int‘((MetOpen‘(abs ∘ − )) ↾t 𝑆))‘dom 𝐹)) → 𝑥 ∈ dom 𝐹)
297, 12, 28dvlemap 15000 . . . . . . . . . 10 ((((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) ∧ 𝑥 ∈ ((int‘((MetOpen‘(abs ∘ − )) ↾t 𝑆))‘dom 𝐹)) ∧ 𝑧 ∈ {𝑤 ∈ dom 𝐹𝑤 # 𝑥}) → (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥)) ∈ ℂ)
3029fmpttd 5720 . . . . . . . . 9 (((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) ∧ 𝑥 ∈ ((int‘((MetOpen‘(abs ∘ − )) ↾t 𝑆))‘dom 𝐹)) → (𝑧 ∈ {𝑤 ∈ dom 𝐹𝑤 # 𝑥} ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥))):{𝑤 ∈ dom 𝐹𝑤 # 𝑥}⟶ℂ)
31 ssrab2 3269 . . . . . . . . . 10 {𝑤 ∈ dom 𝐹𝑤 # 𝑥} ⊆ dom 𝐹
3231, 12sstrid 3195 . . . . . . . . 9 (((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) ∧ 𝑥 ∈ ((int‘((MetOpen‘(abs ∘ − )) ↾t 𝑆))‘dom 𝐹)) → {𝑤 ∈ dom 𝐹𝑤 # 𝑥} ⊆ ℂ)
3312, 28sseldd 3185 . . . . . . . . 9 (((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) ∧ 𝑥 ∈ ((int‘((MetOpen‘(abs ∘ − )) ↾t 𝑆))‘dom 𝐹)) → 𝑥 ∈ ℂ)
34 simpr 110 . . . . . . . . 9 (((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) ∧ 𝑥 ∈ ((int‘((MetOpen‘(abs ∘ − )) ↾t 𝑆))‘dom 𝐹)) → 𝑥 ∈ ((int‘((MetOpen‘(abs ∘ − )) ↾t 𝑆))‘dom 𝐹))
3527, 9sstrd 3194 . . . . . . . . . 10 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) → ((int‘((MetOpen‘(abs ∘ − )) ↾t 𝑆))‘dom 𝐹) ⊆ 𝑆)
3635sselda 3184 . . . . . . . . 9 (((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) ∧ 𝑥 ∈ ((int‘((MetOpen‘(abs ∘ − )) ↾t 𝑆))‘dom 𝐹)) → 𝑥𝑆)
3719adantr 276 . . . . . . . . . 10 (((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) ∧ 𝑥 ∈ ((int‘((MetOpen‘(abs ∘ − )) ↾t 𝑆))‘dom 𝐹)) → ((MetOpen‘(abs ∘ − )) ↾t 𝑆) ∈ Top)
3824adantr 276 . . . . . . . . . 10 (((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) ∧ 𝑥 ∈ ((int‘((MetOpen‘(abs ∘ − )) ↾t 𝑆))‘dom 𝐹)) → dom 𝐹 ((MetOpen‘(abs ∘ − )) ↾t 𝑆))
3925ntropn 14437 . . . . . . . . . 10 ((((MetOpen‘(abs ∘ − )) ↾t 𝑆) ∈ Top ∧ dom 𝐹 ((MetOpen‘(abs ∘ − )) ↾t 𝑆)) → ((int‘((MetOpen‘(abs ∘ − )) ↾t 𝑆))‘dom 𝐹) ∈ ((MetOpen‘(abs ∘ − )) ↾t 𝑆))
4037, 38, 39syl2anc 411 . . . . . . . . 9 (((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) ∧ 𝑥 ∈ ((int‘((MetOpen‘(abs ∘ − )) ↾t 𝑆))‘dom 𝐹)) → ((int‘((MetOpen‘(abs ∘ − )) ↾t 𝑆))‘dom 𝐹) ∈ ((MetOpen‘(abs ∘ − )) ↾t 𝑆))
41 simpll 527 . . . . . . . . 9 (((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) ∧ 𝑥 ∈ ((int‘((MetOpen‘(abs ∘ − )) ↾t 𝑆))‘dom 𝐹)) → 𝑆 ∈ {ℝ, ℂ})
42 rabss2 3267 . . . . . . . . . . 11 (((int‘((MetOpen‘(abs ∘ − )) ↾t 𝑆))‘dom 𝐹) ⊆ dom 𝐹 → {𝑤 ∈ ((int‘((MetOpen‘(abs ∘ − )) ↾t 𝑆))‘dom 𝐹) ∣ 𝑤 # 𝑥} ⊆ {𝑤 ∈ dom 𝐹𝑤 # 𝑥})
4327, 42syl 14 . . . . . . . . . 10 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) → {𝑤 ∈ ((int‘((MetOpen‘(abs ∘ − )) ↾t 𝑆))‘dom 𝐹) ∣ 𝑤 # 𝑥} ⊆ {𝑤 ∈ dom 𝐹𝑤 # 𝑥})
4443adantr 276 . . . . . . . . 9 (((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) ∧ 𝑥 ∈ ((int‘((MetOpen‘(abs ∘ − )) ↾t 𝑆))‘dom 𝐹)) → {𝑤 ∈ ((int‘((MetOpen‘(abs ∘ − )) ↾t 𝑆))‘dom 𝐹) ∣ 𝑤 # 𝑥} ⊆ {𝑤 ∈ dom 𝐹𝑤 # 𝑥})
4530, 32, 33, 34, 36, 40, 41, 44, 13limcimo 14985 . . . . . . . 8 (((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) ∧ 𝑥 ∈ ((int‘((MetOpen‘(abs ∘ − )) ↾t 𝑆))‘dom 𝐹)) → ∃*𝑦 𝑦 ∈ ((𝑧 ∈ {𝑤 ∈ dom 𝐹𝑤 # 𝑥} ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥))) lim 𝑥))
4645ex 115 . . . . . . 7 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) → (𝑥 ∈ ((int‘((MetOpen‘(abs ∘ − )) ↾t 𝑆))‘dom 𝐹) → ∃*𝑦 𝑦 ∈ ((𝑧 ∈ {𝑤 ∈ dom 𝐹𝑤 # 𝑥} ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥))) lim 𝑥)))
47 moanimv 2120 . . . . . . 7 (∃*𝑦(𝑥 ∈ ((int‘((MetOpen‘(abs ∘ − )) ↾t 𝑆))‘dom 𝐹) ∧ 𝑦 ∈ ((𝑧 ∈ {𝑤 ∈ dom 𝐹𝑤 # 𝑥} ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥))) lim 𝑥)) ↔ (𝑥 ∈ ((int‘((MetOpen‘(abs ∘ − )) ↾t 𝑆))‘dom 𝐹) → ∃*𝑦 𝑦 ∈ ((𝑧 ∈ {𝑤 ∈ dom 𝐹𝑤 # 𝑥} ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥))) lim 𝑥)))
4846, 47sylibr 134 . . . . . 6 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) → ∃*𝑦(𝑥 ∈ ((int‘((MetOpen‘(abs ∘ − )) ↾t 𝑆))‘dom 𝐹) ∧ 𝑦 ∈ ((𝑧 ∈ {𝑤 ∈ dom 𝐹𝑤 # 𝑥} ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥))) lim 𝑥)))
49 eqid 2196 . . . . . . . 8 ((MetOpen‘(abs ∘ − )) ↾t 𝑆) = ((MetOpen‘(abs ∘ − )) ↾t 𝑆)
50 eqid 2196 . . . . . . . 8 (𝑧 ∈ {𝑤 ∈ dom 𝐹𝑤 # 𝑥} ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥))) = (𝑧 ∈ {𝑤 ∈ dom 𝐹𝑤 # 𝑥} ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥)))
5149, 13, 50, 10, 6, 9eldvap 15002 . . . . . . 7 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) → (𝑥(𝑆 D 𝐹)𝑦 ↔ (𝑥 ∈ ((int‘((MetOpen‘(abs ∘ − )) ↾t 𝑆))‘dom 𝐹) ∧ 𝑦 ∈ ((𝑧 ∈ {𝑤 ∈ dom 𝐹𝑤 # 𝑥} ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥))) lim 𝑥))))
5251mobidv 2081 . . . . . 6 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) → (∃*𝑦 𝑥(𝑆 D 𝐹)𝑦 ↔ ∃*𝑦(𝑥 ∈ ((int‘((MetOpen‘(abs ∘ − )) ↾t 𝑆))‘dom 𝐹) ∧ 𝑦 ∈ ((𝑧 ∈ {𝑤 ∈ dom 𝐹𝑤 # 𝑥} ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥))) lim 𝑥))))
5348, 52mpbird 167 . . . . 5 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) → ∃*𝑦 𝑥(𝑆 D 𝐹)𝑦)
5453alrimiv 1888 . . . 4 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) → ∀𝑥∃*𝑦 𝑥(𝑆 D 𝐹)𝑦)
55 dffun6 5273 . . . 4 (Fun (𝑆 D 𝐹) ↔ (Rel (𝑆 D 𝐹) ∧ ∀𝑥∃*𝑦 𝑥(𝑆 D 𝐹)𝑦))
563, 54, 55sylanbrc 417 . . 3 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) → Fun (𝑆 D 𝐹))
5756funfnd 5290 . 2 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) → (𝑆 D 𝐹) Fn dom (𝑆 D 𝐹))
58 vex 2766 . . . . 5 𝑦 ∈ V
5958elrn 4910 . . . 4 (𝑦 ∈ ran (𝑆 D 𝐹) ↔ ∃𝑥 𝑥(𝑆 D 𝐹)𝑦)
6010, 6, 9dvcl 15003 . . . . . 6 (((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) ∧ 𝑥(𝑆 D 𝐹)𝑦) → 𝑦 ∈ ℂ)
6160ex 115 . . . . 5 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) → (𝑥(𝑆 D 𝐹)𝑦𝑦 ∈ ℂ))
6261exlimdv 1833 . . . 4 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) → (∃𝑥 𝑥(𝑆 D 𝐹)𝑦𝑦 ∈ ℂ))
6359, 62biimtrid 152 . . 3 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) → (𝑦 ∈ ran (𝑆 D 𝐹) → 𝑦 ∈ ℂ))
6463ssrdv 3190 . 2 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) → ran (𝑆 D 𝐹) ⊆ ℂ)
65 df-f 5263 . 2 ((𝑆 D 𝐹):dom (𝑆 D 𝐹)⟶ℂ ↔ ((𝑆 D 𝐹) Fn dom (𝑆 D 𝐹) ∧ ran (𝑆 D 𝐹) ⊆ ℂ))
6657, 64, 65sylanbrc 417 1 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) → (𝑆 D 𝐹):dom (𝑆 D 𝐹)⟶ℂ)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wal 1362   = wceq 1364  wex 1506  ∃*wmo 2046  wcel 2167  {crab 2479  wss 3157  {cpr 3624   cuni 3840   class class class wbr 4034  cmpt 4095  dom cdm 4664  ran crn 4665  ccom 4668  Rel wrel 4669  Fun wfun 5253   Fn wfn 5254  wf 5255  cfv 5259  (class class class)co 5925  pm cpm 6717  cc 7894  cr 7895  cmin 8214   # cap 8625   / cdiv 8716  abscabs 11179  t crest 12941  MetOpencmopn 14173  Topctop 14317  TopOnctopon 14330  intcnt 14413   lim climc 14974   D cdv 14975
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-mulrcl 7995  ax-addcom 7996  ax-mulcom 7997  ax-addass 7998  ax-mulass 7999  ax-distr 8000  ax-i2m1 8001  ax-0lt1 8002  ax-1rid 8003  ax-0id 8004  ax-rnegex 8005  ax-precex 8006  ax-cnre 8007  ax-pre-ltirr 8008  ax-pre-ltwlin 8009  ax-pre-lttrn 8010  ax-pre-apti 8011  ax-pre-ltadd 8012  ax-pre-mulgt0 8013  ax-pre-mulext 8014  ax-arch 8015  ax-caucvg 8016
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-if 3563  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-po 4332  df-iso 4333  df-iord 4402  df-on 4404  df-ilim 4405  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-isom 5268  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-recs 6372  df-frec 6458  df-map 6718  df-pm 6719  df-sup 7059  df-inf 7060  df-pnf 8080  df-mnf 8081  df-xr 8082  df-ltxr 8083  df-le 8084  df-sub 8216  df-neg 8217  df-reap 8619  df-ap 8626  df-div 8717  df-inn 9008  df-2 9066  df-3 9067  df-4 9068  df-n0 9267  df-z 9344  df-uz 9619  df-q 9711  df-rp 9746  df-xneg 9864  df-xadd 9865  df-seqfrec 10557  df-exp 10648  df-cj 11024  df-re 11025  df-im 11026  df-rsqrt 11180  df-abs 11181  df-rest 12943  df-topgen 12962  df-psmet 14175  df-xmet 14176  df-met 14177  df-bl 14178  df-mopn 14179  df-top 14318  df-topon 14331  df-bases 14363  df-ntr 14416  df-limced 14976  df-dvap 14977
This theorem is referenced by:  dvfpm  15009  dvfcnpm  15010  dvidsslem  15013  dvaddxx  15023  dvmulxx  15024  dviaddf  15025  dvimulf  15026  dvmptclx  15038
  Copyright terms: Public domain W3C validator