| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > df-fn | GIF version | ||
| Description: Define a function with domain. Definition 6.15(1) of [TakeutiZaring] p. 27. (Contributed by NM, 1-Aug-1994.) |
| Ref | Expression |
|---|---|
| df-fn | ⊢ (𝐴 Fn 𝐵 ↔ (Fun 𝐴 ∧ dom 𝐴 = 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cA | . . 3 class 𝐴 | |
| 2 | cB | . . 3 class 𝐵 | |
| 3 | 1, 2 | wfn 5254 | . 2 wff 𝐴 Fn 𝐵 |
| 4 | 1 | wfun 5253 | . . 3 wff Fun 𝐴 |
| 5 | 1 | cdm 4664 | . . . 4 class dom 𝐴 |
| 6 | 5, 2 | wceq 1364 | . . 3 wff dom 𝐴 = 𝐵 |
| 7 | 4, 6 | wa 104 | . 2 wff (Fun 𝐴 ∧ dom 𝐴 = 𝐵) |
| 8 | 3, 7 | wb 105 | 1 wff (𝐴 Fn 𝐵 ↔ (Fun 𝐴 ∧ dom 𝐴 = 𝐵)) |
| Colors of variables: wff set class |
| This definition is referenced by: funfn 5289 fnsng 5306 fnprg 5314 fntpg 5315 fntp 5316 fncnv 5325 fneq1 5347 fneq2 5348 nffn 5355 fnfun 5356 fndm 5358 fnun 5367 fnco 5369 fnssresb 5373 fnres 5377 fnresi 5378 fn0 5380 fnopabg 5384 sbcfng 5408 fcoi1 5441 f00 5452 f1cnvcnv 5477 fores 5493 dff1o4 5515 foimacnv 5525 fun11iun 5528 funfvdm 5627 respreima 5693 fpr 5747 fnex 5787 fliftf 5849 fnoprabg 6027 tposfn2 6333 tfrlemibfn 6395 tfri1d 6402 tfr1onlembfn 6411 tfri1dALT 6418 tfrcllembfn 6424 sbthlemi9 7040 caseinl 7166 caseinr 7167 ctssdccl 7186 exmidfodomrlemim 7280 axaddf 7952 axmulf 7953 frecuzrdgtcl 10521 frecuzrdgtclt 10530 shftfn 11006 imasaddfnlemg 13016 fntopon 14344 |
| Copyright terms: Public domain | W3C validator |