| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > df-fn | GIF version | ||
| Description: Define a function with domain. Definition 6.15(1) of [TakeutiZaring] p. 27. (Contributed by NM, 1-Aug-1994.) |
| Ref | Expression |
|---|---|
| df-fn | ⊢ (𝐴 Fn 𝐵 ↔ (Fun 𝐴 ∧ dom 𝐴 = 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cA | . . 3 class 𝐴 | |
| 2 | cB | . . 3 class 𝐵 | |
| 3 | 1, 2 | wfn 5275 | . 2 wff 𝐴 Fn 𝐵 |
| 4 | 1 | wfun 5274 | . . 3 wff Fun 𝐴 |
| 5 | 1 | cdm 4683 | . . . 4 class dom 𝐴 |
| 6 | 5, 2 | wceq 1373 | . . 3 wff dom 𝐴 = 𝐵 |
| 7 | 4, 6 | wa 104 | . 2 wff (Fun 𝐴 ∧ dom 𝐴 = 𝐵) |
| 8 | 3, 7 | wb 105 | 1 wff (𝐴 Fn 𝐵 ↔ (Fun 𝐴 ∧ dom 𝐴 = 𝐵)) |
| Colors of variables: wff set class |
| This definition is referenced by: funfn 5310 fnsng 5330 fnprg 5338 fntpg 5339 fntp 5340 fncnv 5349 fneq1 5371 fneq2 5372 nffn 5379 fnfun 5380 fndm 5382 fnun 5391 fnco 5393 fnssresb 5397 fnres 5402 fnresi 5403 fn0 5405 fnopabg 5409 sbcfng 5433 fcoi1 5468 f00 5479 f1cnvcnv 5504 fores 5520 dff1o4 5542 foimacnv 5552 fun11iun 5555 funfvdm 5655 respreima 5721 fpr 5779 fnex 5819 fliftf 5881 fnoprabg 6059 tposfn2 6365 tfrlemibfn 6427 tfri1d 6434 tfr1onlembfn 6443 tfri1dALT 6450 tfrcllembfn 6456 sbthlemi9 7082 caseinl 7208 caseinr 7209 ctssdccl 7228 exmidfodomrlemim 7325 axaddf 8001 axmulf 8002 frecuzrdgtcl 10579 frecuzrdgtclt 10588 shftfn 11210 imasaddfnlemg 13221 fntopon 14571 |
| Copyright terms: Public domain | W3C validator |