| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > df-fn | GIF version | ||
| Description: Define a function with domain. Definition 6.15(1) of [TakeutiZaring] p. 27. (Contributed by NM, 1-Aug-1994.) |
| Ref | Expression |
|---|---|
| df-fn | ⊢ (𝐴 Fn 𝐵 ↔ (Fun 𝐴 ∧ dom 𝐴 = 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cA | . . 3 class 𝐴 | |
| 2 | cB | . . 3 class 𝐵 | |
| 3 | 1, 2 | wfn 5312 | . 2 wff 𝐴 Fn 𝐵 |
| 4 | 1 | wfun 5311 | . . 3 wff Fun 𝐴 |
| 5 | 1 | cdm 4718 | . . . 4 class dom 𝐴 |
| 6 | 5, 2 | wceq 1395 | . . 3 wff dom 𝐴 = 𝐵 |
| 7 | 4, 6 | wa 104 | . 2 wff (Fun 𝐴 ∧ dom 𝐴 = 𝐵) |
| 8 | 3, 7 | wb 105 | 1 wff (𝐴 Fn 𝐵 ↔ (Fun 𝐴 ∧ dom 𝐴 = 𝐵)) |
| Colors of variables: wff set class |
| This definition is referenced by: funfn 5347 fnsng 5367 fnprg 5375 fntpg 5376 fntp 5377 fncnv 5386 fneq1 5408 fneq2 5409 nffn 5416 fnfun 5417 fndm 5419 fnun 5428 fnco 5430 fnssresb 5434 fnres 5439 fnresi 5440 fn0 5442 fnopabg 5446 sbcfng 5470 fcoi1 5505 f00 5516 f1cnvcnv 5541 fores 5557 dff1o4 5579 foimacnv 5589 fun11iun 5592 funfvdm 5696 respreima 5762 fpr 5820 fnex 5860 fliftf 5922 fnoprabg 6104 tposfn2 6410 tfrlemibfn 6472 tfri1d 6479 tfr1onlembfn 6488 tfri1dALT 6495 tfrcllembfn 6501 sbthlemi9 7128 caseinl 7254 caseinr 7255 ctssdccl 7274 exmidfodomrlemim 7375 axaddf 8051 axmulf 8052 frecuzrdgtcl 10629 frecuzrdgtclt 10638 shftfn 11330 imasaddfnlemg 13342 fntopon 14692 |
| Copyright terms: Public domain | W3C validator |