Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > df-fn | GIF version |
Description: Define a function with domain. Definition 6.15(1) of [TakeutiZaring] p. 27. (Contributed by NM, 1-Aug-1994.) |
Ref | Expression |
---|---|
df-fn | ⊢ (𝐴 Fn 𝐵 ↔ (Fun 𝐴 ∧ dom 𝐴 = 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cA | . . 3 class 𝐴 | |
2 | cB | . . 3 class 𝐵 | |
3 | 1, 2 | wfn 5183 | . 2 wff 𝐴 Fn 𝐵 |
4 | 1 | wfun 5182 | . . 3 wff Fun 𝐴 |
5 | 1 | cdm 4604 | . . . 4 class dom 𝐴 |
6 | 5, 2 | wceq 1343 | . . 3 wff dom 𝐴 = 𝐵 |
7 | 4, 6 | wa 103 | . 2 wff (Fun 𝐴 ∧ dom 𝐴 = 𝐵) |
8 | 3, 7 | wb 104 | 1 wff (𝐴 Fn 𝐵 ↔ (Fun 𝐴 ∧ dom 𝐴 = 𝐵)) |
Colors of variables: wff set class |
This definition is referenced by: funfn 5218 fnsng 5235 fnprg 5243 fntpg 5244 fntp 5245 fncnv 5254 fneq1 5276 fneq2 5277 nffn 5284 fnfun 5285 fndm 5287 fnun 5294 fnco 5296 fnssresb 5300 fnres 5304 fnresi 5305 fn0 5307 fnopabg 5311 sbcfng 5335 fcoi1 5368 f00 5379 f1cnvcnv 5404 fores 5419 dff1o4 5440 foimacnv 5450 fun11iun 5453 funfvdm 5549 respreima 5613 fpr 5667 fnex 5707 fliftf 5767 fnoprabg 5943 tposfn2 6234 tfrlemibfn 6296 tfri1d 6303 tfr1onlembfn 6312 tfri1dALT 6319 tfrcllembfn 6325 sbthlemi9 6930 caseinl 7056 caseinr 7057 ctssdccl 7076 exmidfodomrlemim 7157 axaddf 7809 axmulf 7810 frecuzrdgtcl 10347 frecuzrdgtclt 10356 shftfn 10766 fntopon 12662 |
Copyright terms: Public domain | W3C validator |