![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > df-fn | GIF version |
Description: Define a function with domain. Definition 6.15(1) of [TakeutiZaring] p. 27. (Contributed by NM, 1-Aug-1994.) |
Ref | Expression |
---|---|
df-fn | ⊢ (𝐴 Fn 𝐵 ↔ (Fun 𝐴 ∧ dom 𝐴 = 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cA | . . 3 class 𝐴 | |
2 | cB | . . 3 class 𝐵 | |
3 | 1, 2 | wfn 5213 | . 2 wff 𝐴 Fn 𝐵 |
4 | 1 | wfun 5212 | . . 3 wff Fun 𝐴 |
5 | 1 | cdm 4628 | . . . 4 class dom 𝐴 |
6 | 5, 2 | wceq 1353 | . . 3 wff dom 𝐴 = 𝐵 |
7 | 4, 6 | wa 104 | . 2 wff (Fun 𝐴 ∧ dom 𝐴 = 𝐵) |
8 | 3, 7 | wb 105 | 1 wff (𝐴 Fn 𝐵 ↔ (Fun 𝐴 ∧ dom 𝐴 = 𝐵)) |
Colors of variables: wff set class |
This definition is referenced by: funfn 5248 fnsng 5265 fnprg 5273 fntpg 5274 fntp 5275 fncnv 5284 fneq1 5306 fneq2 5307 nffn 5314 fnfun 5315 fndm 5317 fnun 5324 fnco 5326 fnssresb 5330 fnres 5334 fnresi 5335 fn0 5337 fnopabg 5341 sbcfng 5365 fcoi1 5398 f00 5409 f1cnvcnv 5434 fores 5449 dff1o4 5471 foimacnv 5481 fun11iun 5484 funfvdm 5581 respreima 5646 fpr 5700 fnex 5740 fliftf 5802 fnoprabg 5978 tposfn2 6269 tfrlemibfn 6331 tfri1d 6338 tfr1onlembfn 6347 tfri1dALT 6354 tfrcllembfn 6360 sbthlemi9 6966 caseinl 7092 caseinr 7093 ctssdccl 7112 exmidfodomrlemim 7202 axaddf 7869 axmulf 7870 frecuzrdgtcl 10414 frecuzrdgtclt 10423 shftfn 10835 imasaddfnlemg 12740 fntopon 13563 |
Copyright terms: Public domain | W3C validator |