Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > df-fn | GIF version |
Description: Define a function with domain. Definition 6.15(1) of [TakeutiZaring] p. 27. (Contributed by NM, 1-Aug-1994.) |
Ref | Expression |
---|---|
df-fn | ⊢ (𝐴 Fn 𝐵 ↔ (Fun 𝐴 ∧ dom 𝐴 = 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cA | . . 3 class 𝐴 | |
2 | cB | . . 3 class 𝐵 | |
3 | 1, 2 | wfn 5203 | . 2 wff 𝐴 Fn 𝐵 |
4 | 1 | wfun 5202 | . . 3 wff Fun 𝐴 |
5 | 1 | cdm 4620 | . . . 4 class dom 𝐴 |
6 | 5, 2 | wceq 1353 | . . 3 wff dom 𝐴 = 𝐵 |
7 | 4, 6 | wa 104 | . 2 wff (Fun 𝐴 ∧ dom 𝐴 = 𝐵) |
8 | 3, 7 | wb 105 | 1 wff (𝐴 Fn 𝐵 ↔ (Fun 𝐴 ∧ dom 𝐴 = 𝐵)) |
Colors of variables: wff set class |
This definition is referenced by: funfn 5238 fnsng 5255 fnprg 5263 fntpg 5264 fntp 5265 fncnv 5274 fneq1 5296 fneq2 5297 nffn 5304 fnfun 5305 fndm 5307 fnun 5314 fnco 5316 fnssresb 5320 fnres 5324 fnresi 5325 fn0 5327 fnopabg 5331 sbcfng 5355 fcoi1 5388 f00 5399 f1cnvcnv 5424 fores 5439 dff1o4 5461 foimacnv 5471 fun11iun 5474 funfvdm 5571 respreima 5636 fpr 5690 fnex 5730 fliftf 5790 fnoprabg 5966 tposfn2 6257 tfrlemibfn 6319 tfri1d 6326 tfr1onlembfn 6335 tfri1dALT 6342 tfrcllembfn 6348 sbthlemi9 6954 caseinl 7080 caseinr 7081 ctssdccl 7100 exmidfodomrlemim 7190 axaddf 7842 axmulf 7843 frecuzrdgtcl 10382 frecuzrdgtclt 10391 shftfn 10801 fntopon 13102 |
Copyright terms: Public domain | W3C validator |